Extracting Visualization Workflows from 4| Northern Ilinois

. [@ University
Versioned Notebooks

Colin Brown, Hamed Alhoori, Maoyuan Sun, David Koop
Department of Computer Science, College of Liberal Arts & Sciences, Northern lllinois University

Motivation & Approach Methods & Data

e Designing visualizations is an iterative process involving exploration of various visual e We collected 173,211 publicly available notebooks from We distinguished meaningful fc_)rks as those where
encodings Observable over the past year. users made changes after forking the notebook.
' e We identified Chart Cells via cell metadata and -
e We wanted to understand how users build on existing work, like templates, and explore Observable Plot & Vega-Lite using static code analysis. We checked If users added new data to the

different types of visualizations and encodings. notebook after forking.

We computed how likely a user is to iterate on the

e \We wanted to examine differences between users, frameworks, and settings. Library/Tool # Notebooks # Cells # Cell-Versions _
same cell versus moving to another.

e EXploratory notebooks and higher-level frameworks facilitate rapid iteration, allowing users to Observable Plot | 22,751 83,005 752.041

quickly test ideas and examine results. We examined cloned cells by searching for the

Vega-Lite 10,046 53,777 319,783 same code structure across the corpus.

e Changes in code-heavy visualization workflows can be difficult to understand and analyze.
Chart Cell 2,156 5,169 141,169

e \We decided to use publicly-available notebook version histories to observe how users build and
refine visualizations over time.

e Observable [1] hosts over 100,000 publicly-available notebooks, many with visualizations,
along with (partial) version histories.

Results

Adapting Existing Visualizations

e Authors modifying forks added new files (data) to their fork only 51.7% of the time. This may indicate that
users that find a promising example determine it does not fit their needs.

e We found 119,598 cells that were duplicated across Observable notebooks. The percentage relating to Plot

(6.55%) and Vega-Lite (4.03%) were relatively low, but cells that contained fragments related to D3
(26.25%) comprised more than a quarter of the cloned cells.

e Our study compares the Observable Plot [2] and Vega-Lite [8] frameworks and the Observable
Chart Cell wizard.

e The structure of Plot and Vega-Lite visualization code allowed us to build a truncated abstract
syntax tree (AST) to analyze changes in Observable JavaScript (0js) code cells, and we used
this to summarize changes in visualizations.

Visualization Modifications
e \We computed a walk factor that measures how often users stay in a cell (0) vs. move to another cell (1). A

* culmen_depth_mm S notebook’s walk factor is computed as an average across all edits in the notebook. Notebooks with higher
21 - o °c o °O walk factors have users switching between cells more often than those with lower walk factors. We
. °ooo°°o o0 o computed box plots for each visualization framework.
o oooozo © fo LM ° °
000292%" %ioogfo%ogo : 8
18— 00 0 000 9 8o o .
17 — 0© 00&08%%%
00y o ° 3 -
o ®) : :)
16- © o ° o - — _ I
o -'(—U’ Vega-||te- |— hnomu CNING 00 0000 ¢ ¢ ¢ Visualization Type
N B Chart Wizard
© Vega-lite
. 3 g Plot bt A S LI AL S BB Plot
culmen leng mm > | I | | I I
0.0 0.2 0.4 0.6 0.8 1.0
Plot.dot(penguins, {x: "culmen_length_mm", Walk FaCtor
Observable Plot y: "culmen_depth_mm",
stroke: "species"}).plot()
| - e | e Chart Cell wizard cells do not see many changes related to data values, and most options (color, fx, fy, mark,
cell 15 penguins... * X ClearAll S5 SwapX[Y $} Customize size, X, y) are rarely changed after being set.
X Z - Y L~ e Vega-Lite cells have many properties; 95 of the 329 potential properties are changed on average more than
culmen_length_mm > % # culmen_depth mm T 1.5 times while only 46 change are changed more than twice. Two frequently changed properties are axis
Color v Size v and hover.
Observable Chart Cell species v X — v X
— n——a — Framework Differences
e e Mark types vary across the visualization frameworks, although there are some differences.
it Sl m e Chart cells use bar marks most often; Plot has higher point mark use; and Vega-Lite leverages more line
marks.
vli.markCircle({fill: null})
.data(penguins) ChartCell.bar
.encode ('
Vega-Lite v0l.x().fieldQ("culmen_length_mm").scale({'zero':false}), Vl-markBar
J vi.y().fieldQ("culmen_depth_mm").scale({'zero':false}), Plot.barY
vl.stroke().fieldN("species"), Plot.barX
) o) ChartCell.line
e vl.markLine
PIot_.Ilne
Plot.lineY
Code/settings to produce similar plots in Observable Plot, Observable Chart Cell and Vega-Lite (shown plot uses Observable Plot). O Cha rtCe| | .dOt
9 Plot.dot
G vl.markPoint
Goals O vl.markText
e Understand the process of iterative design by examining user behavior in Observable Notebooks 8 PII?)ItOEgg’E()E
. . e -
e Understand how users reuse and adapt published notebooks for their own work T ChartCell.area
e Build programmatic methods to analyze large numbers of Observable Notebooks - vl.gc?trlgﬁerg$—
X vl.markGeoshape1
(© Plot.geo 1.
= vl.markCircle-
ChartCell.rule
vl.markRule-
Plot.ruleY Framework
| PIot.IzuIeX B Chart Wizard
vli.markRect :
FUture WOrk vl.markSquare Vegalite
Plot.rectY B Plot
Plot.rect | | | | | |
e Incorporate lower-level visualization frameworks like D3 into the analyses 0.00 0.05 0.10 0.15 0.20 0.25 0.30
e Examine the coupling between data wrangling tasks and visualization updates Most modified mark types by percentage of changes

e Classify different visualization changes based on the structures of underlying frameworks

References

[1] Observable, 2024. observablehq.com [2] Observable Plot, 2024. observablehg.com/plot/ [3] H. K. Bako, A. Varma, A. Faboro, M. Haider, F. Nerrise, B. Kenah, J. P. Dickerson, and L. Battle. User-Driven Support for Visualization Prototyping in D3. In Intelligent User
Interfaces, pp. 958-972. ACM, Sydney NSW Australia, Mar. 2023. doi: 10.1145/3581641.3584041 [4] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents. IEEE Trans. Visual. Comput. Graphics, 17(12):2301-2309, Dec. 2011. doi: 10.1109/TVCG.2011.185
[5] A. Head, E. L. Glassman, B. Hartmann, and M. A. Hearst. Interactive Extraction of Examples from Existing Code. In CHI, pp. 1-12. ACM, Montreal QC Canada, Apr. 2018. doi: 10.1145/3173574.3173659 [6] A. M. McNutt and R. Chugh. Integrated Visualization Editing via
Parameterized Declarative Templates. In CHI, pp. 1-14. ACM, Yokohama Japan, May 2021. doi: 10.1145/3411764.3445356 [7] X. Pu and M. Kay. How Data Analysts Use a Visualization Grammar in Practice. In CHI, pp. 1-22. ACM, Hamburg Germany, Apr. 2023.
doi:10.1145/3544548.3580837 [8] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visual. Comput. Graphics, 23(1):341-350, Jan. 2017. doi: 10.1109/TVCG.2016.2599030

	Slide 1

