Exploring Large-scale Trajectory Data through 2D Time-space View

Yumeng Xue¹, Patrick Paetzold¹, Bin Chen¹, Rebecca Kehlbeck¹, Yunhai Wang², Oliver Deussen¹ ¹University of Konstanz ²Renmin University of China

Spatial view with a line-based density plot to display spatial patterns and brushing for selecting regions of interest (ROI)

B Temporal view with color encoding to represent temporal-related attributes (such as speed or number of trajectories) of the ROI

ΜοτινατιοΝ

Α

- Visualizing Large-scale Trajectory Data
 - Trajectory visualization attributes include space, time, and other associated properties such as velocity.
 - Visualizing both temporal and spatial information on a 2D view is challenging, as one of the dimensions must be discarded in a single 2D view.
- Limitation of Space-time Cube
 - The space-time cube uses the time axis as a third dimension, which presents challenges in user comprehension due to its less intuitive operation and higher learning curve.
 - Furthermore, it causes severe visual clutter when dealing with largescale data, such as datasets containing tens of thousands of trajectories.

METHOD

1. Binning

- Data Aggregation: We aggregate the spatio-temporal data into a 3D bin matrix, capturing x, y, and time dimensions.
- Data Structure: Each bin records trajectory IDs passing through it, enabling both spatial and temporal visualizations.
- 2. Spatial View and Region of Interest Selection A
 - Line-based Density Plot: Density in the spatial view is calculated by combining bins across time slices, showing overall spatial distribution.

D Time-space Multi-view

 2D views are more intuitive than 3D views and interactions are easier to understand, thus we propose focusing on 2D visualizations that separately handle spatial and temporal features.

GOALS

Primary Objective

 To develop a user-friendly, efficient, and scalable visualization method that leverages 2D multi-view techniques to effectively represent largescale spatio-temporal trajectory data.

Sub-goals

- Enhance Usability: Focus on creating an intuitive interface that allows users to easily interact with and explore large datasets.
- Improve Interaction: Provide tools that enable users to select regions of interest, query data, and filter results with minimal effort.
- Optimize for Scale: Ensure that the visualization method can handle large datasets without significant performance degradation, allowing users to focus on aggregated patterns rather than individual trajectories.

- Interactive Region Selection: Users can select regions of interest (ROI) in the spatial view, which are then expanded along the time axis for detailed temporal analysis.
- Data Projection: ROI selection aligns with the 3D bin matrix, ensuring consistency across spatial and temporal views.

3. Temporal View and Interactions B

- Time Band Analysis: Each ROI in the spatial view corresponds to a time band in the temporal view, divided into intervals matching temporal bins.
- Visual Encodings and Interactions:
 - Time Band Coloring: Time bands are color-coded based on user-selected attributes (e.g., velocity, density) with options for aggregated statistics.
 - Direction Filtering: Users can filter trajectories by direction in the temporal view, with clusters displayed for easy selection.

 Temporal Correlation Across ROIs: Temporal correlations between ROIs are explored by intersecting trajectory sets, with

LIMITATIONS

Fixed Time Slices

The use of fixed-length time slices limits flexibility in time range selection.

Directional Control

While clustering supports direction filtering, some users prefer manual direction selection.

Precision Loss

- The binning approach sacrifices some precision and user freedom, particularly in large-scale data handling.
- Color-coding temporal attributes may hinder users from detecting small differences.

color-coded similar time slices.

