
− Temporal Correlation Across ROIs: Temporal correlations 
between ROIs are explored by intersecting trajectory sets, with 
color-coded similar time slices.

− Direction Filtering: Users can filter 
trajectories by direction in the 
temporal view, with clusters 
displayed for easy selection.

− Time Band Coloring: Time bands are color-coded based on 
user-selected attributes (e.g., velocity, density) with options 
for aggregated statistics.
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1. Binning

− Data Aggregation: We aggregate the spatio-temporal data into a 
3D bin matrix, capturing x, y, and time dimensions.

− Data Structure: Each bin records trajectory IDs passing through 
it, enabling both spatial and temporal visualizations.

2. Spatial View and Region of Interest Selection

− Line-based Density Plot: Density in the spatial view is 
calculated by combining bins across time slices, showing 
overall spatial distribution.

− Interactive Region Selection: Users can select regions of 
interest (ROI) in the spatial view, which are then expanded 
along the time axis for detailed temporal analysis.

− Data Projection: ROI selection aligns with the 3D bin matrix, 
ensuring consistency across spatial and temporal views.

3. Temporal View and Interactions

− Time Band Analysis: Each ROI in the spatial view corresponds 
to a time band in the temporal view, divided into intervals 
matching temporal bins.

− Visual Encodings and Interactions:

METHOD

 Fixed Time Slices

− The use of fixed-length time slices limits flexibility in time 
range selection. 

 Directional Control

− While clustering supports direction filtering, some users 
prefer manual direction selection.

 Precision Loss

− The binning approach sacrifices some precision and 
user freedom, particularly in large-scale data handling.

− Color-coding temporal attributes may hinder users from 
detecting small differences.

LIMITATIONS

GOALS

 Primary Objective

− To develop a user-friendly, efficient, and scalable visualization method 
that leverages 2D multi-view techniques to effectively represent large-
scale spatio-temporal trajectory data.

 Sub-goals

− Enhance Usability: Focus on creating an intuitive interface that allows 
users to easily interact with and explore large datasets.

− Improve Interaction: Provide tools that enable users to select regions 
of interest, query data, and filter results with minimal effort.

− Optimize for Scale: Ensure that the visualization method can handle 
large datasets without significant performance degradation, allowing 
users to focus on aggregated patterns rather than individual trajectories.

MOTIVATION

 Visualizing Large-scale Trajectory Data

− Trajectory visualization attributes include space, time, and other
associated properties such as velocity.

− Visualizing both temporal and spatial information on a 2D view is 
challenging, as one of the dimensions must be discarded in a single 2D 
view.

 Limitation of Space-time Cube

− The space-time cube uses the time axis as a third dimension, which
presents challenges in user comprehension due to its less intuitive 
operation and higher learning curve.

− Furthermore, it causes severe visual clutter when dealing with large-
scale data, such as datasets containing tens of thousands of trajectories.

 2D Time-space Multi-view

− 2D views are more intuitive than 3D views and interactions are easier to 
understand, thus we propose focusing on 2D visualizations that
separately handle spatial and temporal features.
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