
Abstract

This work applies recent advancements in 3D Gaussian splatting to generate high-quality approximations of scientific data. Typically, a 3D Gaussian 

splatting model is built from a structure-from-motion or randomly initialized point cloud, refined through machine learning to match ground truth images. We 

modified this pipeline to train Gaussian models directly from scientific data, bypassing the need for structure-from-motion. We tested exporting an isosurface

as a point cloud to train a Gaussian model, with promising results. We also tried using a cinema database, but it was less effective due to poor point cloud 

initialization. Our findings suggest this technique could enable efficient post-hoc visualization with fewer computational resources.
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Comparison of an isosurface rendered in ParaView (left), 3D Gaussian splat rendering of a Gaussian splat model trained using a point cloud extracted from the isosurface
(middle), and using a randomly initialized point cloud (right). This bonsai dataset consists of 256x256x256 elements (16 MB), courtesy of the open scientific visualization 
dataset repository.

Conclusions

We demonstrate the potential of new 3D Gaussian splatting techniques 

as a valuable tool for scientific data visualization, particularly for 

reconstructing and approximating the data with high-fidelity. By bypassing 

structure-from-motion and leveraging volumetric data directly, we have 

developed a method that produces high-quality 3D Gaussian models 

suitable for real-time visualization. Our findings emphasize the importance 

of a robust initial point cloud, which is critical for achieving accurate 

reconstructions.

Next Steps

• Expand Testing: Apply 3D Gaussian splatting to larger, more complex 

datasets.

• Performance Analysis: Collect performance data across different 

datasets and hardware configurations to quantify the benefits of this 

approach.

• Explore In Situ Training: Investigate the feasibility of training Gaussian 

models in situ, or at least producing the necessary components in situ.
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