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ABSTRACT

Uncertainty visualization is a key component in translating im-
portant insights from ensemble simulation data into actionable
decision-making by visually conveying various aspects of uncer-
tainty within a system. With the recent advent of fast surrogate
models trained on ensemble data, we can substitute computation-
ally expensive simulations, which allows users to interact with more
aspects of data spaces than ever before. However, the use of ensem-
ble data with surrogate models in a decision-making tool brings up
new challenges for uncertainty visualization, namely how to recon-
cile and communicate the new and different types of uncertainties
brought in by surrogates and how to utilize these new data estimates
in actionable ways. In this work, we examine these issues as they
relate to high-dimensional data visualization, the integration of dis-
crete datasets and the continuous representations of those datasets,
and the unique difficulties associated with systems that allow users
to iterate between input and output spaces. We assess the role of
uncertainty visualization in facilitating intuitive and actionable in-
teraction with ensemble data and surrogate models, and highlight
key challenges in this new frontier of computational simulation.

Index Terms: Ensemble data, surrogate models, uncertainty visu-
alization

1 INTRODUCTION

Ensemble simulation is a popular approach for investigating ranges
of possibilities, mitigating unknowns, or estimating error in com-
plex computational systems [35]. By perturbing parameter settings
and simulating numerous realizations, we can examine a broad
view of possible dynamics, retrieve an understanding of param-
eter sensitivities, and determine confidence levels around system
states. As ensemble simulations increase in complexity, visualiza-
tion challenges are compounded. Specifically, the data are multi-
dimensional as they consist of both spatial and temporal compo-
nents. They are multi-variable, outputting tens to hundreds of vari-
ables. Finally, the ensemble data are multi-valued as they capture
many realizations of the space-time-variable combinations. The
size and complexity of ensemble data quickly overwhelm the lim-
ited number of visual channels in the design space and force visu-
alization creators to make choices on how to reduce the data for
communication. In the rest of this manuscript, we use the term en-
semble data to refer to data produced from the actual computational
simulation.

Simultaneously, novel artificial intelligence (AI) methods are ris-
ing in popularity, allowing us to train fast-running surrogate models
that approximate simulations at a fraction of the computational cost.
However, there exist trade offs in fidelity and uncertainty quantifi-
cation, and nuances in what surrogates can estimate. This new ca-
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Figure 1: The relationship between ensemble datasets and surro-
gates. Parameters (left) and outputs (right) in solid rectangles rep-
resent realizations from an ensemble dataset. A forward surrogate
(top) enables a user to propose novel parameter settings and pre-
dict output variables, along with quantified uncertainty relating to how
close those predictions get to the original ensemble outputs. A re-
verse surrogate (bottom) allows the user to choose output values
and determine possible input parameters that will get within a range
of that proposed output.

pability allows us to query novel parameter settings and instanta-
neously retrieve predicted values and uncertainty estimations (as
shown in Figure 1). These advances in AI and machine learning
dramatically increase the simulation space users can explore, thus
increasing the demand on the visual design space, and exacerbating
visualization challenges.

Ultimately, comprehension of ensemble simulation paradigms
combined with surrogate modeling is fundamental both for scien-
tific inquiry and decision-making, as these systems gain wide trac-
tion across scientific domains. As surrogate models permeate com-
putational modeling, such as in the use of digital twins, they become
increasingly consequential to decisions that affect multiple aspects
of daily life. Designing visualization systems that effectively con-
vey ensembles and surrogate data, and the uncertainty contained
within, remains an open, essential, and challenging area of research.

2 BACKGROUND AND RELATED WORK

A little over a decade ago, uncertainty visualization was called out
as a critical next step for the visualization community [16]. En-
semble data are a unique formulation that enable exploration of un-
certainty by simulating many runs of computational models. Due
to their popularity [10, 34] the understanding of scientific simu-
lation ensembles and their uncertainty have become central chal-
lenges in the visualization community [5, 23, 24]. Much research
has been dedicated to exploring variability of simulation outputs,
often relying on summary statistics and multi-window frameworks
[25, 26, 35]. Visual parameter space exploration explicitly focuses
on understanding the relationship between simulation inputs and
simulation outputs [7, 27]. In each of these cases, the ability of a
user to explore input-output relationships and build understanding
of the dynamics of the system is constrained by the content of the
ensemble itself. Not only are there computational challenges from
running large-scale, complex systems with formidable data sizes, it
is also unclear how to visually convey these data and their uncer-
tainties in a manner that is appropriate for any particular decision



maker [15] or address issues surrounding interpretation and usabil-
ity of scientific data by non-experts [22].

Recently, fast surrogate models have helped address compu-
tational limitations and expand user flexibility in model explo-
ration [1,4,9,13,18,30,31]. In scientific simulations, surrogates are
typically machine learning-based models that can learn complex re-
lationships from ensemble datasets, approximating the behavior of
the original computational model. But, unlike an ensemble dataset
composed of discrete simulation realizations, surrogates learn con-
tinuous representations of the input-output relationships. Conse-
quently, a surrogate model enables a user to query an arbitrary set
of input parameters, and immediately receive a predicted output as
if they had just run the full simulation.

A particularly interesting and under-explored application of sur-
rogate models in the visualization community is inverse analysis,
which we define here as identifying a set of possible inputs from
a specifically requested output. For clarity, we refer to surrogates
that take inputs and produce outputs as forward surrogates. The
process of going from output to inputs can be achieved through var-
ious methods, including intrinsically invertible surrogates [36], or
through search algorithms [17]. Intrinsically invertible surrogates
facilitate direct inversion, that is to say, outputs can be passed to the
same model that did a forward inference, which then provides the
corresponding inputs (or input distribution). Search algorithms, on
the other hand, leverage the speed of forward surrogates to search
through input space and evaluate predicted outputs for closeness to
the requested output.

The type of surrogate model explicitly dictates the content and
associated uncertainty of the model results. In principle, any math-
ematical model that sufficiently captures input-output relationships
in the data could be used as a simulation surrogate. That being said,
several categories of models have proven especially useful due to
their instrinsic properties. Specifically, Gaussian processes (GPs)
are probabilistic models that enable multivariate inputs and outputs,
and inherently provide a quantification of uncertainty [20, 28, 32].

In cases of large-scale, multi-dimensional data (e.g., volumet-
ric or geospatial), a deep learning model might more accurately
capture small-scale details as well as global structure in the sim-
ulation output, where GPs tend to struggle. One such example is
InSituNet [14], a generative, deep learning-based surrogate. In its
original formulation, InSituNet learns the relationship between sim-
ulation parameters and completely composed 3D visualizations–
images of a 3D reconstruction of the simulation outputs from a
specified viewpoint. Conveniently, the overall architecture of In-
SituNet also allows it to learn a more straightforward matrix-style,
2D representation (i.e., image) of data resulting from a simulation.

However, unlike a GP, InSituNet does not intrinsically provide
a quantification of uncertainty. In order to visualize uncertainty
in its predictions, we would need to introduce additional meth-
ods, such as Monte Carlo dropout [12] or training multiple in-
stances of the same model [6, 11, 19]. In general, uncertainty quan-
tification and visualization of AI models is an area of active re-
search [3, 13, 21, 29, 33]. Given that most surrogates are “black-
box” models, understanding their stability and accuracy across in-
put space is essential for trustworthiness and confidence in their
results. High uncertainty in surrogate model predictions can occur
because of insufficient data (i.e., not enough members in the en-
semble used to train the surrogate) or imbalanced data distribution
in certain regions (i.e., ensemble sampling fidelity is too high or
irregular).

Although problems still exist in ensemble visualization and sur-
rogate models for visualization, we argue here that unifying these
sources is ultimately a fruitful endeavor in decision-making visual-
ization systems. However, we also find multiple unique challenges
with this integration, and identify opportunities for uncertainty vi-
sualization to help address them.

3 FLOOD MODELING EXAMPLE

To illustrate important considerations for the visualization design
of ensemble datasets combined with surrogate models, we explore
modeling floods due to a dam breach, using the DSS-Wise Lite
flood model [2]. At a high level, the flood model accounts for dam
properties (e.g., materials, structure, reservoir characteristics), and
detailed hydrology to capture water movement. The model com-
putes variables describing a resulting flood including detailed spa-
tial grids and aggregate geographic measures. We consider three
main input parameters: breach width, breach failure elevation, and
breach formation time and focus on the aggregate output variables
of: maximum flood depth, maximum flood speed, the mean arrival
time of the flood, and the number of people at risk due to the flood.

Figure 2: An ensemble visualization of the output variable flood
spread. Each contour line represents a realization in the ensem-
ble and the collective view shows the geographic range that the flood
might reach.

3.1 Ensemble Data
Ensemble datasets are well-suited for describing global properties
of parameter and outcome spaces. The primary goal of the flood
model is to understand where a flood might occur and the level of
damage that might be inflicted, particularly as it relates to populated
areas. Figure 2 shows a contour of the flood spread for each member
of the flood simulation. Specifically, we can see a range of contours
that relate to how far down a valley a flood might reach. We show
the ensemble of inputs and aggregate measures of the flood in the
parallel coordinates plot of Figure 3, where each grey line indicates
a member of the ensemble.

3.2 Surrogate Models
Surrogate models provide a means of exploring novel areas of sim-
ulation input and output space. In the context of the flood simula-
tion, we may be interested in the flooding that would result from
a dam break whose failure elevation and width are not represented
in the original ensemble dataset. Or we might want to designate a
particular distance of flood spread and use an inverse surrogate to
provide potential input parameter settings. Such surrogates allow
for a more refined interrogation of the model by enabling more lo-
calized queries in both the input and output space, thus facilitating
multiple ways for a user to reason with the model.

For the flood data, we could choose a novel set of input parame-
ters and get a prediction of output values using a Gaussian Process
surrogate. The output prediction range of this forward surrogate is
shown in Figure 3 by the blue shaded region. In a similar fash-
ion, one could propose target values for the output space and use
an inverse surrogate or search algorithm to then retrieve ranges of



Figure 3: Parallel coordinate plot for a flood simulation ensemble. Input parameters are on the left hand side and output variables on the right.
Grey lines represent individual ensemble realizations connecting specific values of input parameters and output variables. A forward surrogate
prediction (predicting outputs using inputs) is shown as blue vertical lines for each output, with shading indicating the range of predicted output
values. An inverse surrogate (predicting inputs using outputs) is shown as red vertical lines with the range of possible input parameters shaded
in red.

input variables that might yield that request (such as the red shaded
region in Figure 3). Figure 4 shows an example of a widget that
could be used to specify the maximal depth of a flood. In this ex-
ample, a user can move the red line to trigger an inverse surrogate
model. This particular example limits the user to specifying val-
ues for a single output, but a more robust interface might allow for
many outputs to be specified, but presents its own design challenge
for a visualization system [8], which we discuss in more detail in
the next section.

While the parallel coordinates plot in Figure 3 gives us a clear
picture of the ensemble data and potential ranges of input or out-
put values predicted from forward or inverse surrogates, it does not
provide much, if any, insight of use in real-world decision-making.
While we use the GPs to model relationships with scalar outputs,
visualization surrogates like InSituNet could be used to model the
entire flood-plane itself, including depth or speed values at each
individual location, encoded as a geospatial heatmap. Figure 5
shows an example of a flood model visualization using InSituNet
that gives greater context for the data. This sort of visualization is
likely much more useful within a decision-making system. Under-
standing when and what types of surrogates to use in a particular
sitation is a fundamental design challenge.
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Figure 4: Example of a widget showing the flood depth profile. Users
can move the red line to define a desired maximum flood depth which
could then trigger a prediction from the inverse surrogate.

4 VISUALIZATION CHALLENGES FOR DECISION MAKING

Uncertainty visualization is a key component in addressing the
challenges that arise from integrating ensemble data and surro-
gate models within a single visualization system. The interplay
of the uncertainties associated with each of these sources is com-
plex and important to consider when designing systems for support-
ing decision-making, particularly in critical situations such as flood
modeling. Challenges inherent to ensemble visualization are exac-
erbated by the inclusion of surrogate modeling, and it is unlikely
that any general approach will be appropriate for all situations.

Specifically, we have identified the following challenges that will
need to be addressed in any system focused on visualizing uncer-
tainty and integrating ensemble data with surrogate modeling:

Figure 5: A visualization of the flood model generated using InSi-
tuNet. This image shows the height of the flood and is colored by
highest hazard risk in blue (derived from max velocity).

1. Leveraging the strengths of ensemble data and surrogate mod-
els to contextualize and interact with global and local simula-
tion space, while mitigating their respective limitations;

2. Clearly communicating the different types of uncertainties
that arise from ensemble data and surrogate models;

3. Clarifying the complex relationships within and between in-
puts and outputs.

All of these challenges are relevant for assisting users in decision-
making. In particular, each one is a crucial part in allowing users to
obtain the correct information for a decision and accurately evaluate
that information and their confidence in it.

4.1 Ensemble and Surrogate Model Interplay
Our first two listed challenges primarily address the complexities of
using ensemble data and surrogate models together in visualization.
Their synergies offer a strong argument for incorporating them both
in a single visualization system, but there are a number of pitfalls
that must be addressed.

Overall, the strength of ensemble data is in capturing global char-
acteristics of simulation space, whereas surrogate models excel at



facilitating local access to any point in that space. More concretely,
ensemble data provide useful global information of parameter and
output spaces, while surrogate models fill in gaps present in ensem-
ble data, which can be important when analyzing local regions of
simulation space. The complementary strengths of ensemble data
and surrogate models is especially relevant in analyses that move
between global and local investigations of simulation space.

As an example of our first listed challenge, consider the flood en-
semble shown in the parallel coordinates plot of Figure 3, where the
spread across each variable is immediately apparent by the layout
of the grey lines across each coordinate. A task might be to identify
partitions of arrival time that separates the number of people at risk
into either tens of thousands vs. hundreds. We can see a large gap
between ensemble members on the arrival time variable approxi-
mately between .37 and .55 hours, which has a clear relationship
with the number of people at risk (longer arrival time leads to less
people at risk). We could then use surrogate models to investigate
that area in simulation space further to better determine at what ar-
rival time the person’s at risk variable increases significantly.

Although surrogate models are trained on ensemble data, they
do not represent it perfectly. In regions of simulation space where
surrogate prediction uncertainty is large, we may need to rely on
ensemble data as a better representation of that space, or even dis-
cover the need to obtain more realizations of the original dataset
and re-train our surrogates. In our flood simulation example, for-
ward surrogate predictions for the outputs of the flood simulation
are shown as blue shaded regions in Figure 3. The uncertainty as-
sociated with the prediction of the number of people at risk has a
significant range, larger than twenty thousand people. In this case,
it may make more sense to investigate the ensemble members di-
rectly to better understand what can cause such a drastic difference
in people at risk.

However, the interaction between ensemble data and surrogate
models must be handled with care. Poorly designed visualization
systems could result in users iterating far too much between vi-
sualizations of ensemble data and surrogate predictions to try and
understand discrepancies between them. Specifically, users need to
know if differences between an ensemble member and a surrogate
prediction are the result of the surrogate uncertainty (i.e., surrogate
accuracy) or an actual change in the simulation space landscape
(i.e., does the difference actually exist in the simulation space?).
This highlights the importance of our second listed challenge.

4.2 Decision Making using Inputs and Outputs

A significant opportunity for decision-making visualization sys-
tems is the use of invertible surrogates—that is—models that can
either take inputs and produce outputs or take outputs and produce
inputs. This presents unique opportunities for visualization design,
because we can facilitate interactions between inputs and outputs
according to what makes the most sense to support a user’s decision
or their background knowledge. In our example flooding scenario,
defining dam breaks (the inputs) may work for modelers or dam en-
gineers deciding if the dam needs upgrades, because they have suffi-
cient understanding of the relationship between dam breaks and hy-
drology. However, emergency planners deciding evacuation plans
by assessing overall flooding risk likely benefit more from interac-
tion with the flood spread (as in Figure 2) or the number of people
at risk output measure.

While promising, there are challenges associated with surrogates
that can go between inputs and outputs in either direction. Consider
the case where a user queries a surrogate in one direction, and then
uses that prediction to query the surrogate in the opposite direction,
as in the red and blue shaded regions of Figure 3. Even with careful
design of surrogates, poor communication of the uncertainty in the
predictions could result in users drifting in simulation space in un-
intended ways. Designing interactions with surrogates that demon-

strate to users how they are moving through simulation space, and
why they end up in particular regions, is a crucial part of addressing
challenges 2 and 3.

Moving within and between input and output spaces with sur-
rogates is especially difficult for high-dimensional data where the
relationships are more complex. Consider the case where a user de-
fines an output and a surrogate returns possible sets of inputs that
could produce that output (e.g., via a search algorithm that uses a
forward surrogate). The dependencies between inputs is important
information for users. Specifically, it is not enough for users to
know the range of possible values for each input individually (as is
currently shown in Figure 3), because the value of one input influ-
ences the possible values of the others. In the case of our flooding
example, to see the same flooding for two different dam breaks with
different elevations, the width and possibly the formation time must
also be different. In other words, when a user requests a fixed out-
put, it is not particularly useful to show the relationship between
inputs and outputs. Instead, uncertainty visualizations must convey
the joint and conditional distributions of inputs for a given output.

Lastly, although we can now design systems that allow users to
define desired outputs and query for the inputs that produce them,
it is not a guarantee that the request is a feasible realization ac-
cording to the surrogate. This scenario must be treated with special
consideration. It could mean the user does not understand a de-
pendency between the requested outputs, and improved uncertainty
visualization design that better conveys the relationship between
the outputs could alleviate this issue. However, focusing solely on
the relationship between the outputs misses a key opportunity to
address an important analytical task in decision-making that is not
well-addressed in the uncertainty visualization community. Specif-
ically, this scenario highlights a natural way that trade-off analysis
can arise within visualization systems, and warrants further explo-
ration. When a user requests multiple outputs that are not achiev-
able simultaneously, we can use uncertainty visualization to show
the sets of inputs that result in the desired outputs individually, as
well as sets of inputs that get as close to all desired outputs as possi-
ble (e.g., Pareto optimality). These kinds of complex trade-off anal-
yses between multi-dimensional distributions of inputs and outputs
are important for decision-making, and a unique opportunity for
uncertainty visualization. Other analysis tasks relevant to decision-
making may also arise as we learn more about the capabilities of
surrogate models to facilitate interaction within and between input
and output spaces.

5 CONCLUSION

In this work, we delineated three major challenges for visualiza-
tion systems that incorporate both ensemble data and surrogate
models, in the context of decision-making. Uncertainty visualiza-
tion is a foundational component of such systems, as it influences
users’ understanding and reasoning with ensemble data and surro-
gate models, which impacts decision-making. We discussed the
quickly evolving landscape of surrogate models, and the opportuni-
ties to utilize them in novel ways to support more intuitive decision-
making within visualization systems. Furthermore, we highlighted
how existing problems in ensemble and uncertainty visualization
are exacerbated when incorporating ensemble data and surrogate
models together. Namely, issues surrounding high-dimensional
data, relationships, and uncertainties are compounded significantly.

Future research should investigate further the dependence of un-
certainty visualization design on ensemble data types and surrogate
model capabilities. The trade-off in ensemble data size and surro-
gate model accuracy is a relevant consideration, as it will influence
when each are utilized in a system. Finally, in this work we primar-
ily focused on aleatory uncertainties, but including epistemic uncer-
tainty is an additional complexity to consider for decision-making
visualization systems.
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