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ABSTRACT

Tetrahedral meshes are widely used due to their flexibility and
adaptability in representing changes of complex geometries and
topology. However, most existing data structures struggle to effi-
ciently encode the irregular connectivity of tetrahedral meshes with
billions of vertices.

We address this problem by proposing a novel framework for
efficient and scalable analysis of large tetrahedral meshes using
Apache Spark. The proposed framework, called Tetra-Spark, fea-
tures optimized approaches to locally compute many connectivity
relations by first retrieving the Vertex-Tetrahedron (VT) relation.
This strategy significantly improves Tetra-Spark’s efficiency in per-
forming morphology computations on large tetrahedral meshes.

To prove the effectiveness and scalability of such a framework,
we conduct a comprehensive comparison against a vanilla Spark
implementation for the analysis of tetrahedral meshes. Our exper-
imental evaluation shows that Tetra-Spark achieves up to a 78x
speedup and reduces memory usage by up to 80% when retrieving
connectivity relations with the VT relation available. This opti-
mized design further accelerates subsequent morphology computa-
tions, resulting in up to a 47.7x speedup.

Index Terms: Data representation, connectivity relation, topolog-
ical data analysis, Apache Spark.

1 INTRODUCTION

Tetrahedral meshes have found many applications in computational
science and engineering due to their flexibility and adaptability in
representing complex geometries [26, 36, 56, 44]. Unlike regular
grids, tetrahedral meshes do not require the underlying domain to
conform to a regular cube [49]. This helps eliminate ambiguities
and simplifies the management of degeneracies in feature extrac-
tion and tracking [23]. One example application is in computa-
tional fluid dynamics, where tetrahedral meshes facilitate efficient
and precise simulations of airflow around aircraft [8].

Despite their widespread adoption, processing this type of data
still represents a major bottleneck in the analysis pipeline [7, 27,
53]. The primary challenges stem from the substantial memory re-
quirements to compute and store the mesh connectivity when com-
pared to regular data [34].

A common solution to address these challenges is to scale up
the computational power by relying on distributed environments.
Within large computational clusters, tetrahedral meshes can be dis-
tributed and processed, taking advantage of multiple CPU cores and
extensive memory space [13, 31]. However, this approach comes
with a cost in terms of usability. Since communication costs be-
tween cluster nodes are typically non-negligible, algorithms and
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data structures for processing tetrahedral meshes have to be re-
designed from scratch. This redesign must consider not only the
computational efficiency of the algorithm itself but also the distri-
bution of data across cluster nodes.

To mitigate this issue, we investigate the use of a self-managing
distributed computing system, Apache Spark [59]. Apache Spark is
an in-memory distributed computing framework that can distribute
computations across multiple nodes. By leveraging implicit data
parallelism [1, 60], it eliminates the need for users to explicitly
manage and design Map-Reduce diagrams for distributed compu-
tation. By abstracting away the underlying complexity of task dis-
tribution and fault tolerance, Spark enables users to quickly develop
scalable applications without requiring in-depth knowledge of the
intricacies of distributed systems.

In this work, we propose a novel framework for tetrahedral mesh
representation and analysis in Apache Spark, named Tetra-Spark.
Tetra-Spark incorporates optimized techniques for encoding a tetra-
hedral mesh and computing its connectivity relations. By first re-
trieving the Vertex-Tetrahedron (VT) relation (i.e., the set of tetrahe-
dra incident to a given vertex), the framework enables embarrass-
ingly parallel computation of various connectivity relations. This
optimized approach for locally deriving relations significantly ac-
celerates the computation of topological features. Specifically, our
contributions include: (1) a minimal representation for encoding
a tetrahedral mesh with scalar fields defined on it based on Spark
DataFrames [1]; (2) new algorithms for deriving the connectivity
relations of a tetrahedral mesh using DataFrame operations; (3) op-
timized algorithms to locally compute groups of connectivity re-
lations using Spark User Defined Functions; (4) an evaluation of
the effectiveness and scalability of our new algorithms across vari-
ous cluster configurations and applications; and (5) an open-source
Python implementation of our proposed framework!.

2 BACKGROUND
2.1 Simplicial complex

A k-simplex is defined as the convex hull of k+ 1 linearly indepen-
dent points in Euclidean space. When considering a simplex ¢ of
dimension k, the convex hull of any nonempty subset of these k£ + 1
points, consisting of m+ 1 points where m < k, forms an m-simplex
7. The simplex 7 is known as an m-face of ¢, and conversely, o is
a coface of 7. The collection of all cofaces of a simplex ¢ is called
the star of . In general, O-faces are called vertices, 1-faces are
edges, and (n — 1)-faces are termed facets.

A simplicial complex X is composed of a set of k-simplicies (0 <
k < d), such that the face of every simplex o is also included in X,
and the intersection between any two simplices ¢ and 7 is either a
face common to both or is empty. A d-simplex is also called a top
simplex if it is not a face of any other simplex in X. In this paper, we
consider simplicial complexes up to dimension three (d = 3), and
we refer to them as tetrahedral meshes.

Connectivity relations describe how simplices in a simplicial
complex are “glued” together. There are three major categories of
connectivity relations: a boundary relation maps a simplex to its
faces, a coboundary relation maps a simplex to its cofaces, and an
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Figure 1: The (a) FE relation for the triangle fy, (b) F'T relation for
the triangle fi, and (c) V'V relation for the vertex vy in X.

adjacency relation maps a simplex to neighboring simplices of the
same dimension. Suppose two simplices ¢ and 7 are in £, and o is
a face of 7: o is on the boundary of 7, T is on the coboundary of c.
Two k-simplices (k > 0) 7| and 1, are adjacent if and only if they
share a common (k — 1)-simplex &, and two vertices are adjacent if
there exists an edge connecting them.

In this paper, we focus on connectivity relations within a tetrahe-
dral mesh and use capital letters to indicate whether the relation in-
volves a vertex (V), edge (E), triangle (F), or tetrahedron (7). Each
connectivity relation is denoted as a pair of letters. Fig. 1 shows
three examples of connectivity relations for a mesh X consisting
of two tetrahedra sharing a common triangular face. Specifically,
Fig. 1a shows the FE relation for the triangle fj, which relates fj
to edges eg, e1, and ep. Fig. 1b illustrates the FT relation for the
triangle f, which relates f; to tetrahedra that have f| as boundary
(i.e., to and 7). Fig. 1c shows the V'V relation for the vertex vy,
which relates v to all vertices sharing an edge with v (i.e., vy, vo,
V3, and V4),

2.2 Apache Spark

Apache Spark [59] is a robust in-memory computing framework
that introduces a data abstraction called Resilient Distributed
Datasets (RDDs). RDDs are collections of read-only objects dis-
tributed across multiple machines, optimized for efficient data reuse
in parallel operations. While functionally similar to legacy mod-
els like MapReduce [12], the in-memory storage of RDDs enables
Spark to significantly outperform these models.

Spark provides a user-friendly programming interface for clus-
ter environments [1, 60], which is facilitated by Spark DataFrame.
Spark DataFrame [1] is an internal API of Spark SQL, which
simplifies data manipulation through optimized query plans.
DataFrames organize data in a structured format, similar to rela-
tional database tables. DataFrames in Spark are partitioned and
distributed across a cluster, allowing Spark to leverage the full po-
tential of distributed computing. Importantly, data within the same
row of a DataFrame will always be stored on the same cluster node
[48], enhancing data locality and minimizing the need for exten-
sive data shuffling across the network. Moreover, the Spark engine
transparently manages data distribution and task execution, ensur-
ing efficient computation and optimized resource utilization across
the cluster, all without requiring user intervention.

Fig. 2 presents an overview of the DataFrames used to encode
a tetrahedral mesh, which can be viewed as tables formed by rows
and columns. A detailed description of the information stored in
these tables is provided in Sec. 4.

3 RELATED WORK

In this section, we survey existing data structures that support the
efficient extraction of connectivity relations on a simplicial complex
in shared-memory and distributed environments.

3.1 Data structures for shared-memory systems

Data structures that provide access to connectivity relations can be
classified into two categories: static and dynamic.
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Figure 2: An example of (a) the DataFrame DFy, which stores the
x, v, and z coordinates plus scalar values f, of vertices in X, and (b)
the DataFrame DFr, which stores four vertices of each tetrahedron.

Static data structures. The approach adopted by static data
structures involves computing and storing connectivity relations at
initialization time. Variations among these structures lie in the spe-
cific types of relations they encode.

The Incidence graph [14] is a static data structure for simplicial
complexes of arbitrary dimension, which explicitly encodes all sim-
plices and all boundary and coboundary relations. Given the huge
memory consumption it requires, several compact alternatives have
been developed to reduce the memory footprint [5, 10, 11].

The Simplex tree [4] avoids encoding boundary relations by or-
ganizing all simplices of X in a trie [3]. This data structure supports
the efficient query of coboundary relations but has limited scalabil-
ity when working with simplicial complexes in high dimensions
[19]. The Half-edge data structure [41] is designed for triangle
meshes, which reduces the storage costs by only encoding edge-
related connectivity relations. Extending this, Half-faces [30] adapt
the half-edge concept to polyhedral complexes. Indexed data struc-
tures [32] provide a more compact option by encoding only ver-
tices, top simplices, and the boundary relation from top simplices
to their vertices. This structure contains sufficient information to
efficiently extract all the boundary relations of cells but requires
additional steps for deriving coboundary or adjacency relations.

Several data structures provide efficient access to connectivity
relations through adjacency information. Examples include the In-
dexed data structure with Adjacencies (IA data structure) [43, 45]
and the Corner-Table data structure [46] along with several exten-
sions specifically proposed for triangle meshes [24, 37] and tetra-
hedral meshes [25]. The Generalized Indexed data structure with
Adjacencies (IA* data structure) [6] extends the IA data structure
to non-manifold simplicial complexes of arbitrary dimension. The
[A* data structure has been shown to be the most compact among
static topological data structures as the dimension increases [5].

Dynamic data structures. Unlike static data structures, dy-
namic data structures compute (and discard) connectivity relations
at runtime rather than at initialization time. This strategy allows the
control of the memory footprint and provides greater scalability.

The PR-star octree [54] is considered the first dynamic data
structure for tetrahedral meshes. It supports the reconstruction of
connectivity information by only encoding the list of tetrahedra in-
cident at each vertex. This data structure uses a PR-Octree decom-
position that focuses on the mesh vertices to segment the mesh into
subsets. Then, it is capable of extracting any connectivity relation
locally to a subset of the mesh.

The Stellar tree data structure generalizes the PR-star octree to
handle a broader class of complexes in arbitrary dimensions and
is the first concrete realization of the Stellar decomposition model
[19]. The Stellar tree is shown to be more compact than most
state-of-the-art static data structures, requiring only a fraction of
the memory space of the latter [19].

The Stellar decomposition model has also been adopted by the
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Figure 3: An example to extract the F'V relation from DFr using the pure global method.

TopoCluster data structure [35], which enriches the Stellar decom-
position with an implicit enumeration scheme for the mesh sim-
plices. This scheme provides an interface for the easy integration
of TopoCluster into any algorithm for topological data analysis in
a transparent manner for developers. The ease and flexibility of
integrating TopoCluster were demonstrated by deploying the data
structure in the TTK framework [38, 51], which allowed running
any algorithm implemented in the framework out-of-the-box while
drastically reducing the memory footprint.

The Accelerated Clustered TOPOlogical (ACTOPO) data struc-
ture [34] is the first data structure to introduce task-parallelism for
connectivity relation computation. ACTOPO assigns different tasks
to CPU threads, allowing threads that precompute connectivity re-
lations and those executing the analysis algorithm to run concur-
rently. Such a task-parallel approach can improve the time perfor-
mance in both sequential and parallel algorithms while maintaining
a low memory footprint of dynamic data structures.

3.2 Data structures for distributed systems

Cluster computing systems are highly effective solutions for han-
dling very large datasets [52, 58, 59]. A common approach em-
ployed in distributed systems is to subdivide the mesh into multiple
partitions and distribute these partitions across the system. Bound-
ary simplices are duplicated across partitions to allow local compu-
tation of connectivity relations and maintain efficiency.

Recently, researchers have developed distributed data structures
to support specific topological algorithms [2, 42]. For instance,
Bauer et al. [2] developed a data structure designed for encoding
the boundary matrix to facilitate distributed computation of persis-
tent homology. As another example, Nigmetov and Morozov [42]
proposed a data structure for the distributed computation of merge
trees. While efficient for the intended tasks, these data structures
are specialized for extracting a particular connectivity relation and
are not suitable for general topological algorithms.

A recent advancement is the distributed extension of TTK’s tri-
angulation data structure [33], which decomposes the input mesh
into multiple disjoint blocks, each managed by a separate process.
Each simplex in a block is assigned both a local identifier for inter-
nal tasks and a global identifier for inter-process communications.
To reduce communication overhead and manage ownership, bound-
ary simplices of each block are duplicated into adjacent blocks with
exclusive ownership by the block with the smallest identifier [35].

TTK’s distributed triangulation uses the Message Passing Inter-
face (MPI) to handle communications across the cluster’s nodes,
which poses several challenges for a developer who is responsible
for managing data distribution, synchronization, and communica-
tion. In this paper, we are interested in developing solutions based
on existing frameworks for distributed processing.

Apache Hadoop [52] provides a simplified abstraction for man-
aging complex distributed programs, drawing from the Google
MapReduce model [12]. However, it struggles with high disk I/O
operations and lacks native support for spatial data. SpatialHadoop
[17] enhances the Hadoop framework by specifically addressing the
need for geospatial data processing. Nevertheless, it does not sup-

port the extraction of connectivity relations in a mesh. Instead, a
mesh is represented as a collection of polygons, requiring users to
perform spatial joins to identify connections between them.
Apache Spark [59] is an in-memory distributed computing sys-
tem that provides a platform for general-purpose cluster computing
while hiding the details of parallelization, fault tolerance, and data
distribution. The in-memory computing paradigm significantly en-
hances the speed of repeated data access, enabling it to outperform
Hadoop by up to 100 times [60]. To efficiently process large spatial
datasets, several Spark-based cluster computing systems have been
developed, such as Simba [55], SpatialSpark [57], LocationSpark
[50], and Apache Sedona [58]. Among them, Apache Sedona [58]
stands out as the most widely used one for distributed spatial data
processing and analysis. However, these systems treat simplicial
complexes merely as general collections of polygons and do not
support the computation and encoding of connectivity relations.

4 ENCODING A TETRAHEDRAL MESH IN APACHE SPARK

In this section, we introduce a new distributed data representation
of static data structures, which we call Tetra-Spark, designed to
efficiently encode scalar fields defined on a tetrahedral mesh using
Apache Spark.

Design strategy The first strategy of Tetra-Spark aims to min-
imize the information stored during the loading stage and use mem-
ory only as required by an algorithm at runtime. This is achieved
by limiting the encoded information only to vertices and tetrahedra
of a mesh and to one connectivity relation (e.g., TV). All other
simplices and connectivity relations are computed at runtime only
if required by an algorithm.

The second strategy is to represent edges, triangles, and tetra-
hedra as arrays of vertices rather than as indices. This strategy is
adopted due to the efficiency it affords by limiting internode com-
munication. All information encoded by Tetra-Spark is contained
in Spark DataFrames, which are automatically partitioned and dis-
tributed across a cluster of machines in a transparent manner to the
user. The only guarantee regarding data distribution is that data
within the same row of a DataFrame is stored on the same node of
the cluster. By representing these simplices as tuples of vertices,
retrieving vertices on the boundary of an edge (EV), triangle (FV),
or tetrahedron (7'V) becomes a local operation. Using global in-
dexing, instead, would require traversing the entire DataFrame and
triggering time-consuming internode communication.

Base encoding. The above design strategies are implemented
using two DataFrames, called DFy and DFr (see Fig. 2). DFy
stores all vertices of a tetrahedral mesh ¥ where each vertex v is
characterized by five columns: the index of v, the x, y, and z coordi-
nates, and the scalar value f,. DFy encodes the tetrahedra of ¥ by
storing the connectivity relation 7V. Each row stores the indices of
four vertices composing a tetrahedron.

The two DataFrames DFy and DFr are automatically partitioned
and distributed among different nodes in Spark. Each partition in-
cludes part of the data, enabling parallel computation on the input
mesh. All information encoded in DFy and DFr is provided as



input by common formats for mesh or scalar field encoding [47].
Since the number of tetrahedra is typically proportional to the num-
ber of vertices in X, the computational complexity of loading a mesh
is linear to the number of vertices. Starting from DFy, and DFr, any
other connectivity relation can be computed on demand.

5 COMPUTING CONNECTIVITY RELATIONS IN APACHE
SPARK

In this section, we describe two strategies for extracting connectiv-
ity relations in Tetra-Spark: global methods and local methods. As
we will show in Sec. 6, these two strategies have a radically differ-
ent impact on the performance of the system.

Global methods work on an entire DataFrame by using native op-
erations provided in Apache Spark, such as groupby (), union(),
explode(), and join(). These operations can always be applied
as long as DFy and DFr are provided. However, they necessitate
data exchanges among different rows of a DataFrame or across sev-
eral DataFrames, which may lead to inefficiencies.

Local methods offer a more efficient approach by applying user-
defined functions (UDFs) to a DataFrame. UDFs [1] enable the im-
plementation of custom logic at the row level. They operate by tak-
ing one or more columns from a single row as inputs and producing
an output column based on the specified logic. Since all required
data is contained within the same row and each row is stored on the
same node, this method can significantly reduce the need for data
redistribution and exchange, resulting in enhanced computational
performance and scalability.

We begin this section with a discussion of global methods, fol-
lowed by local methods. The performance analysis of every method
is presented in Sec. 6.2. Due to space constraints, we only focus on
a few connectivity relations. A comprehensive description of all
connectivity relations is provided in the supplementary material.

5.1 Computing relations with global methods

There are two types of global methods for computing connectiv-
ity relations. Pure global methods extract connectivity relations
starting from the base encoding DFy and DFy. Symmetric global
methods retrieve connectivity relations starting from a symmetric
relation (e.g., computing F'V given VF).

Boundary relations The FV relation is a boundary relation
representing the set of vertices bounding a triangle.

Since triangles are not explicitly encoded in Tetra-Spark, the
pure global method first extracts all triangles from the base encod-
ing, and then computes the relations between triangles and vertices.
These steps are described in Fig. 3. For each tetrahedron in DFr,
four bounding triangles are computed as all possible combinations
of three of its four vertices (step 1). By extracting all triangles
in a dedicated list (step 2) and removing duplicates (step 3), the
DataFrame Dy storing all triangles in X is created. Finally, the FV
relation is computed by retrieving three vertices of each triangle,
creating a new DataFrame DFry (step 4).

An alternative approach for computing a relation starts from the
symmetric relation. For example, the F'V relation can be computed
using its symmetric VF relation (see Fig. 4). Assuming that the
VF relation is already encoded in the DataFrame DFyF, the col-
umn storing triangles in DFyr is exploded so that each triangle is
encoded in a separate row (step 1). Then, duplicate triangle entries
are removed (step 2), and the individual FV relation is computed
similarly to the pure method.

Coboundary relations The FT relation is an example of a
coboundary relation which represents the set of tetrahedra incident
to a triangular face.

Using the pure global method, the FT relation is computed start-
ing from DFr. Since only indices of extreme vertices of each tetra-
hedron are provided by DFr, we have to use vertex indices to link

DFr DFr DFrv

v VF f f [ Ly RuavBay
» [(veviva), (vavavs), (vavavs), 0 ) v2) (Vo viv2) (Voviva)| vo | vi | v
(Vovivy), (vovivy)] (Vovivs) (Ve v:vs) (vevavy)| vo | v | s
v (v v,(v;), (v;v;(v;), (V;;' vy, |stepl (Vo viva) step 2 (vavsvy) step 3 (vovivy)| vo | vi | v

Vivavs), (Vivs vy oo —_—

> remove

Vo [ [(voviv), (vavavy), (vivavs)] explodel .y, dupli (vovivylextracti(vivivy| vo | vi | ve
, [(vavevy), (vevivy), (vavsvy), oco (vevivs) (Vovivs)| vo | vi | s
) (Vivavs), (Vivavi)] (Vovive) (vivavs) (Vivavg)| vi | v | v
Ve | [(vavive), (Vovsve), (vivsva)] (v:\:.«.w) (Vv vy (Vivsvy| vi | v | v

Figure 4: An example to extract the F'V relation from its symmetric
VF relation.

relations together. This process involves extracting F'V and VT re-
lations and then joining these relations to derive the FT relation.

We have already described the computation of the FV relation
(see Fig. 3). The VT relation can only be extracted globally by
utilizing DFr (see Fig. 5). If we arbitrarily select a vertex (e.g.,
vo) as dominant, the tetrahedron (vg,vy,vy,v3) then represents a
partial VT relation for vg (step 1). To obtain a full VT relation, four
copies of DFr are created, each with a different vertex designated
as dominant (step 2). These copies are subsequently merged into
the unified DataFrame, DF,;o, (step 3). The rows in DF,,,, are
grouped by the vertex column and consolidated into the DataFrame
DFyr (step 4).

Once the F'V and VT relations are retrieved, we join the FV and
VT relations three times, each time using a different vertex as the
key. The FT relation is derived by iterating over the tetrahedra
stored in the three VT lists.

The symmetric global method, instead, leverages a pre-computed
TF relation, which is stored in a DataFrame DFrr. DFpp consists
of five columns: a tetrahedron and its four bounding triangles. For
each row in DFrF, the tetrahedron represents a partial F'T relation
for its bounding triangles. To obtain a full FT relation, we cre-
ate four copies of DFrp, each with a different triangle designated
as dominant. These copies are merged into a unified DataFrame
DF,pion. The FT relation is derived by grouping DF,,,, based on
the dominant triangle column.

Adjacency relations The V'V relation is an example adjacency
relation representing the set of vertices that share a common edge
with a given vertex.

The VV relation can only be computed from DFr using a pure
global method. Similar to the extraction of VT relation depicted in
Fig. 5, for each tetrahedron (vo,vy,vz,v3) in DFr, if we arbitrarily
select one vertex (e.g., vg) as dominant, the other three vertices de-
note a partial V'V relation for vy. To obtain a complete VV relation,
four copies of DFr are created, with each copy picking a different
vertex as dominant. Within each copy, the other three columns are
merged to indicate a partial V'V relation. These four copies are then
unified to form a new DataFrame DF,,;,,, which is subsequently
grouped by the dominant vertex column to get a full V'V relation.

5.2 Computing relations with local methods

Local methods facilitate the computation of connectivity rela-
tions through row-level logic, which is feasible only if specific
DataFrames are first computed globally. However, once the re-
quired DataFrames have been computed, local methods will utilize
embarrassingly parallel routines to extract connectivity relations.

Boundary relations The FV relation can be derived locally
from a pre-computed VT relation. Assuming that the DataFrame
DFyr storing the VT relation consists of two columns: a vertex v,
and a list of tetrahedra incident to v (e.g., VTM). Within each row
of DFy T, the objective is to derive the FV relation for all triangles
in VT{,) where v is the vertex with the highest index. This can
be achieved by applying a UDF to DFyr. Within this UDF, the
set of triangles is identified by iterating over the tetrahedra stored
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Figure 5: An example to extract the VT relation based on DFr using the pure global method.

in VT(,). The FV relation is then derived by extracting the three
extreme vertices from each triangle.

Coboundary relations The local method for computing the
FT relation leverages the previously extracted VT relation (see
Fig. 6). Given a vertex v, it aims to comput the F'T relation for
triangles in V7{,) where v is the vertex with the highest index. To
achieve this, a UDF is applied to DFyt to retrieve the list of tri-
angles incident to v that have the largest index (step 1). Subse-
quently, another UDF iterates over the triangle list and identifies
the coboundary tetrahedra for each triangle in this list (step 2). The
resultant DataFrame DFpr is composed of two columns: a vertex v
and the FT relation for triangles where v has the highest index.

Adjacency relations The VV relation can also be computed
with a local method if the VT relation is provided. The VV rela-
tion is derived by applying a UDF to DFyr. Within this UDF, we
iterate over the tetrahedra incident to a given vertex v, extracting all
extreme vertices while excluding v itself.

6 EXPERIMENTAL EVALUATION

Local methods are typically more efficient than global methods.
However, the effectiveness of localized strategies for computing
connectivity relations depends on the prior global computation of
a specific relation (e.g., VT). To evaluate the trade-offs between
global and local methods, we conduct extensive evaluations focus-
ing on extracting connectivity relations (see Sec. 6.2) and comput-
ing topological features (see Sec. 6.3). Additionally, we evaluate
the node scalability of Tetra-Spark when more nodes are available
in a cluster in Sec. 6.4.

6.1 Experimental settings

In this section, we describe our experimental settings.

Datasets We use six tetrahedral meshes with the number of
vertices ranging from about 300K to 1.8 billion. The number of
simplices for each mesh is shown in Tab. 1. Among these, four
datasets, Brain, Foot, Stent, and Synthetic, are obtained by thresh-
olding and tetrahedralizing points from volume images. The re-
maining two datasets, Lander_small, and Lander_huge, are obtained
by tetrahedralizing meshes defined on general polytopes.

System and parameters All experiments are conducted on a
cluster equipped with one gateway node, three name nodes, and six
worker nodes. The cluster operates using Apache Hadoop 3.0 and
Apache Spark 2.4. The gateway node serves as the user interface for
submitting Spark jobs and managing cluster resources. The name
nodes manage the file system namespace, maintain the metadata
for all files and directories, and regulate clients’ access to files. The
worker nodes store the actual data in the Hadoop file system and
execute the actual computational tasks. The gateway node boasts 20
processor cores and 256 GB of RAM, while each of the three name
nodes has 16 processing cores and 128 GB of RAM. Additionally,

Table 1: Overview of experimental datasets. We list the number of
vertices |Xy|, edges |Xg|, triangles |Xr|, and tetrahedra |Er| for
each tetrahedral mesh. Regular means that the mesh is tetrahe-
dralized from regular volume images. Irregular means the mesh
is tetrahedralized from irregularly distributed points in polytopes.

Dataset Type |Zy| |Zg]| |ZF| |7
Brain Regular 03M 21M 3.6 M 1.8 M
Foot Regular 59M 40.7M 69.5M 347M
Stent Regular 17M 1188M 2014M 999M

Synthetic Regular 118.7M 7473 M 1.2B 588.7M
Lander_small  Irregular 2249 M 14B 24B 12B
Lander_huge  Irregular 1.8B 11.5B 194 B 9.7B

each of the six worker nodes is equipped with 28 processing cores
(168 physical cores in total) and 768 GB of RAM (4.6 TB in total).

We have performed preliminary experiments to determine the
impact of various parameters on execution performance, consider-
ing the fixed number of physical cores and available memory. Our
pilot tests focus on computing the V'V relation using the pure global
method with the largest dataset Lander_huge. We varied the number
of executors, ranging from 1 to 64, the number of cores per executor
from 1 to 20, and the memory allocated per executor, from 4 GB to
100 GB. The results, shown in the supplementary material, indicate
that the cluster performs well when using 64 executors, with each
executor equipped with 5 cores and 64 GB of memory plus an 8 GB
overhead, thereby fully utilizing the cluster’s total memory capacity
of 4.6 TB.

In assessing the performance of these data structures, we focus
on execution time and peak memory usage. Execution time refers
to the total time required to complete a specific task. Peak memory
usage, on the other hand, is more involved. In Spark, memory usage
can be categorized into two main types [59]: execution and storage.
Execution memory is the memory used at runtime by computational
operations such as shuffles and joins. Storage memory, instead, is
used for caching and distributing internal data throughout the clus-
ter. In our evaluation, we report the peak total memory, defined as
the sum of execution and storage memory.

6.2 Computing connectivity relations

In this section, we evaluate the performance of different methods
used to extract each connectivity relation. Due to space constraints,
we present results only for the relations discussed in Sec. 5, which
are also relevant to the computation of the topological features dis-
cussed in Sec. 6.3. In the supplementary material, we provide per-
formance evaluations for all connectivity relations.

For each relation, we evaluate the time and memory consump-
tion using three methods: pure global, symmetric global, and local.
In the pure global method, we report the time and memory required
to compute the desired relation starting from the initial DataFrame
DFr. For the symmetric global and local methods, we measure the
time needed to extract the pre-computed relation (e.g., VT') from
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Figure 6: An example to locally extract the FT relation from the pre-computed VT relation.
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DFr, and the time required to derive the desired relation from this
pre-retrieved relation. For instance, when assessing the F'V relation
using the symmetric global method, we detail both the time to com-
pute VF from DFr and the time to derive F'V from VF. Similarly,
in the local method, we specify the time for computing VT from
DFr and the time for locally deriving FV from VT.

6.2.1

The time and memory required for extracting the F'V relation are
shown in Fig. 7, where the slashed bar denotes the time taken to
derive the pre-computed relation and the dotted bar denotes the time
required for extracting the desired relation after preparing the pre-
computed one.

The local method outperforms both the pure global and symmet-
ric global methods, achieving speedups of up to 1.7x and 3.1x
(see Fig. 7a), and reducing memory usage by up to 57% and 69%
(see Fig. 7b), respectively. We recall that the pure global method
requires global DataFrame operations to gather and deduplicate tri-
angle entries, which is why it underperforms the localized strategy.
The inefficiency of the symmetric global method mainly stems from
its explode operation, which generates a new row for each triangle
in the VF(, list, causing extensive data movement and reduced per-
formance.

If we assume the pre-computed relation has already been re-
trieved in the system and focus solely on the timings for extracting
the desired relation from it, the local method offers speedups of up
to 42x and 50 over the pure global and symmetric global meth-
ods, respectively. Such superior efficiency of the local method is
primarily attributed to the pre-computed VT relation, which elimi-
nates the need to retrieve triangles from different partitions, signif-
icantly reducing internode communication.

Boundary relations

6.2.2 Coboundary relations

The time and memory consumption for computing the FT relation
are displayed in Fig. 8. As described above, the time to derive the
pre-computed relation is denoted with slashed bars, and the time to
compute the desired relation is illustrated using dotted bars.

The local method still performs the best among all three ap-
proaches, achieving up to 3.5x and 1.4x speedups (see Fig. 8a)
and saving up to 80% and 48% memory (see Fig. 8b) compared
to the pure global and symmetric global approaches, respectively.
Such great advantage stems from the localized strategy of deriving
FT from VT in the local method, allowing operations to be com-
pleted within the same row of the DataFrame DFyr, minimizing
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data movements between partitions.

When considering only the time requirement for extracting the
expected relation with the pre-computed relation already available,
the local method is up to 78 x and 24 x faster than the pure global
and symmetric global approaches, respectively. This substantial in-
crease in efficiency can be attributed to the embarrassingly paral-
lel nature of the computations in the /ocal method, where data ex-
change between nodes is completely eliminated.

6.2.3 Adjacency relations

Recall that we have two different approaches for computing the VV
relation: pure global and local. The corresponding time and mem-
ory costs for each approach are detailed in Fig. 9.

The local method exhibits comparable performance to the pure
global method in terms of total time and memory efficiency. This
similarity arises because the local method initially relies on an anal-
ogous global step to retrieve the VT relation.

When focusing solely on the time needed to derive the VV rela-
tion from the already retrieved VT relation, the local method out-
performs the pure global method, providing a speedup of up to 33 x
(see Fig. 9a). This notable increase in time efficiency comes from
the localized strategy, where adjacent vertices are directly retrieved
from the VT list encoded in the same row of a DataFrame, and thus
no data exchange among nodes is required.

6.3 Computing topological features

The previous section highlights the importance of local methods
for efficiently computing connectivity relations. In this section, we
compare global and local methods for computing groups of rela-
tions in support of real algorithms for topological feature extraction.
The objective is to quantify the improvements offered by our opti-
mized approach in retrieving relations for practical applications.



6.3.1 Topological algorithms

We have selected three algorithms for extracting different topo-
logical features on a given scalar field: discrete distortion, critical
points, and the Forman gradient. Detailed descriptions of these al-
gorithms are provided in the supplementary material.

Discrete distortion The concept of curvature is fundamental
to comprehending the geometric and topological characteristics of
surfaces [39]. In the context of scalar fields defined on tetrahedral
meshes, vertex distortion is a generalization of the concept of con-
centrated curvature and allows analyzing the local geometry and
topology of a three-dimensional manifold. In this work, we ap-
proximate vertex distortion using the discrete approach proposed
by Mesmoudi et al. [39].

From the perspective of connectivity relations, vertex distortion
computation is an example of an algorithm requiring only cobound-
ary relations involving vertices. Specifically, this computation only
needs the VT and VF relations.

Critical points  Critical points are fundamental topological fea-
tures for identifying the regions of interest in a scalar field. To clas-
sify a vertex v in X as critical, we adopt the approach proposed by
Edelsbrunner et al. [15], which works on the vertices adjacent to v.

In terms of connectivity relations, computing critical points re-
quires the VT, VF, VV, and TE relations. This algorithm ex-
plores the capability of Tetra-Spark to manage both boundary and
coboundary relations involving vertices.

Forman gradient The Forman gradient is a fundamental tool
rooted in discrete Morse theory [20], which aids the computation of
many topological abstractions, such as the Morse complex [40] and
the persistent diagram [16]. We compute the Forman gradient using
the coreduction-based algorithm proposed by Robins et al. [45].
The core idea of this algorithm involves establishing a total order /
for the vertices of . The total order will serve as a guiding schema
for the subdivision of tetrahedra, triangles, edges, and vertices of
¥ into independent sets. This partitioning facilitates the parallel
computation of the Forman gradient.

Regarding required connectivity relations, computing the For-
man gradient is the most demanding among all algorithms since it
involves the VT, VF,VE, EF, and FT relations.

6.3.2 Analysis of results

In this section, we evaluate the performance of computing discrete
distortion, critical points, and the Forman gradient. While the im-
plementation of these topological algorithms does not change, the
underlying data structures that provide the required connectivity re-
lations work differently. Tetra-Spark always computes connectivity
relations using local methods after initially deriving the VT relation
globally. The alternative implementation, referred to as Vanilla-
Spark, uses global methods for all connectivity computations.

Discrete distortion computation We recall that computing
vertex distortion relies solely on VT and VF relations. As the VT
relation is retrieved globally in both Tetra-Spark and Vanilla-Spark,
the performance of these two implementations is expected to be
similar. This scenario provides a good example to demonstrate the
limited effectiveness of Tetra-Spark when only a few connectivity
relations are involved for topological algorithms.

The time and memory required for computing vertex distortion
in Tetra-Spark and Vanilla-Spark are presented in Fig. 10. Specifi-
cally, we outline the time costs for extracting connectivity relations
using slashed bars and the time costs for computing vertex distor-
tion after these relations are prepared using dotted bars in Fig. 10a.
Fig. 10b illustrates the memory consumption for solely computing
the involved relations, while Fig. 10c shows the overall memory
usage for the entire algorithm computation.

Tetra-Spark is approximately 1.3 faster than Vanilla-Spark for
the entire computation. Specifically, it offers a 1.5x to 2.8x

speedup in deriving relations (see the slashed bar chart in Fig. 10a),
and about a 1.2x speedup for the actual algorithm computation
even though the operations involved are completely the same once
the relations are retrieved (see the dotted bar chart in Fig. 10a).

The speedup for computing relations in Tetra-Spark is attributed
to its localized strategy. Conversely, both the VT and VF relations
are extracted globally and separately in Vanilla-Spark. Further-
more, Vanilla-Spark requires a join operation to align VT and VF
in the same DataFrame row, causing substantial data movements
and increased inter-node communication.

The speedup of the actual algorithm computation in Tetra-Spark
stems from its memory efficiency in deriving relations. As shown
in Fig. 10b, Tera-Spark uses 20% to 46% less memory than Vanilla-
Spark for computing relations, allowing more intermediate data to
be kept in memory to enhance subsequent processing efficiency
through Spark’s dynamic memory allocation strategy [60].

Interestingly, the overall peak memory usage for the entire al-
gorithm computation, as shown in Fig. 10c, is consistent across
Tetra-Spark and Vanilla-Spark frameworks. This similarity occurs
because the largest DataFrames cached in both implementations are
the same, which are used to encode VT and V F relations. Further-
more, both implementations employ a global strategy to derive the
VT relation. As a result, we observe the same peak memory usage.

Critical points extraction Note that extracting critical points
requires multiple connectivity relations. This scenario is a great
example to demonstrate the significant improvements offered by the
localized strategy in Tetra-Spark for deriving connectivity relations.

The time and memory consumption for extracting critical points
using Tera-Spark and Vanilla-Spark are presented in Fig. 11. Simi-
lar to the algorithm for computing vertex distortion, we illustrate the
time spent on computing connectivity relations using the slashed
bars in Fig. 11a, and display the time taken for extracting critical
points from these relations using the dotted bars.

Tetra-Spark is 2.2x to 13.1x faster than Vanilla-Spark for the
entire computation. Specifically, it provides a 2.5x to 16.5x
speedup in computing connectivity relations and a 1.6x to 9.0x
speedup in the actual computation of critical points.

The efficiency of relation extraction in Tetra-Spark is primar-
ily attributed to its localized approach for retrieving the VF, VV,
and TE relations, coupled with the elimination of join operations
to align these relations in the same DataFrame. Moreover, the ef-
ficiency gains are more pronounced with larger datasets. This is
because the data shuffling associated with joining two DataFrames
in Vanilla-Spark escalates with the dataset size, leading to substan-
tial computational overheads.

The speedup of actual algorithm computation in Tetra-Spark de-
rives from its memory efficiency in extracting relations. As shown
in Fig. 11b, Tetra-Spark utilizes approximately 60% less memory
than Vanilla-Spark for deriving relations. Similar to the findings
in distortion calculation, the memory saved allows for more inter-
mediate data to be cached in Spark, thereby improving the time
efficiency of subsequent computations.

Regarding the peak memory usage for the entire algorithm,
Tetra-Spark consumes between 12.7% and 35.8% less memory
than Vanilla-Spark. This efficiency gain, while significant, is not
as pronounced as it is for the extraction of connectivity relations
alone. This is attributed to the similar storage memory requirements
in Tetra-Spark and Vanilla-Spark, as they both cache the largest
DataFrame that encodes the VV and TE relations.

Forman gradient computation The time and memory re-
quirements for computing the Forman gradient are displayed in
Fig. 12. Similarly, we show the time taken for solely deriving rela-
tions with the slashed bars and the time needed for only computing
the Forman gradient using the dotted bars in Fig. 12a.

Tetra-Spark achieves an overall speedup ranging from 2.4x to
55.6x compared to Vanilla-Spark. Specifically, it is 3.0 to 61.5x



350 | |[LL] Tetra-Spark relation
Tetra-Spark algorithm
300 illa- e relati
[/ Vanilla-Spark relation
€250 Vanilla-Spark algorithm|
=
2 200
= 40
30
20

10 ::::
0 S | = -

[/ ] Tetra-Spark relation 7 2000 [ | Tetra-Spark entire computation
[/ Vanilla-Spark relation| 1750 1 \C_] Vanilla-Spark entire computation 1

5]
= 300
200
Ea 100 m
L= = AA b= = M1

Brain Foot Stent Synthetic Lander Lander
S

small _huge Brain  Foot
()

Stent Synthetic

Lander Lander Brain  Foot Stent Synthetlc Lander Lander
_small _huge _huge

(b) (©)

Figure 10: (a) The time cost (in minutes) for deriving connectivity relations and executing the algorithm in computing vertex distortion. (b)
The peak memory consumption (in GB) for extracting relations. (c) The overall peak memory usage (in GB) for the entire computation.
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Figure 11: (a) The time cost (in minutes) for extracting connectivity relations and executing the algorithm in extracting critical points. (b)
The peak memory consumption (in GB) for extracting relations. (c) The peak memory usage (in GB) for the entire computation.

faster in retrieving the involved relations, and up to 47.7 x faster for
computing the Forman gradient after preparing the relations.

This notable increase in time efficiency for deriving relations in
Tetra-Spark is due to its approach of retrieving only the VT rela-
tion globally, while all other relations are computed locally from
VT. Additionally, the requirement for several join operations to as-
sociate these relations within the same DataFrame row in Vanilla-
Spark contributes to its lower performance.

The speedup of actual algorithm computation in Tetra-Spark
arises from its memory efficiency in extracting relations. It uses
approximately 60% less memory than Vanilla-Spark, as shown in
Fig. 12b. This allows an effective utilization of memory to cache
more intermediate data during subsequent computations.

Tetra-Spark demonstrates an overall memory usage reduction by
up to 37% over Vanilla-Spark, as shown in Fig. 12c. This sub-
stantial decrease is primarily due to the reduced execution memory
required for locally retrieving relations in Tetra-Spark. Conversely,
Vanilla-Spark necessitates join operations to associate tetrahedra,
triangles, and edges incident to the same vertex within the same
row of a DataFrame. This process requires massive data exchanges
among nodes and results in higher memory consumption.

6.4 Node scalability analysis

To explore whether the performance of Tetra-Spark consistently
improves when more nodes are available in a cluster, we con-
ducted various experiments focusing on the speedup and efficiency
achieved with varying numbers of executors. Since the observed
performance is similar on all datasets, in this section, we show only
the plots from the largest dataset Lander_huge. In the supplemen-
tary material, we provide figures describing the performance trends
of other datasets.

Fig. 13a illustrates the speedup achieved by Tetra-Spark as the
number of executors increases from 2 to 64. The results show
that Tetra-Spark experiences almost linear speedup as the execu-
tor count rises from 2 to 32. The speedup is achieved by more
executors available for parallel computation. However, a diminish-

ing return on speedup is observed when the number of executors
rises to 64. Specifically, the speedup with 64 executors is only ap-
proximately 1.1x compared to 32 executors. Further analysis indi-
cates that the total number of cores configured for use with 64 ex-
ecutors reaches 320, which substantially exceeds the 168 available
physical cores among the worker nodes in the cluster. Additionally,
the workload is spread across more nodes when configuring 64 ex-
ecutors, leading to greater complexity in coordination and resource
management, which further diminishes the speedup gains.

When comparing the speedup across different applications, the
computation of the Forman gradient achieves the highest speedup,
while vertex distortion records the lowest. The superior perfor-
mance of the Forman gradient stems from its local processing ap-
proach. Once the required connectivity relations are obtained, the
Forman gradient is computed within the same row and partition,
making optimal use of available computational resources. Con-
versely, computing vertex distortion requires a join operation to
retrieve vertex coordinates and scalar values. This process involves
substantial data shuffling and inter-node communication, which can
significantly reduce the speedup gains.

Fig. 13b depicts the efficiency of Tetra-Spark when the number
of executors is varied. Efficiency is defined as the ratio of the time
cost with a single node to the product of the time requirements with
N nodes and N. As shown in Fig. 13b, the efficiency drops as the
executor number increases, which is a common characteristic in a
distributed computing system. This decrease is due to the increased
inter-executor communication overhead and potential load imbal-
ance across the cluster executors. Notably, the drop becomes more
pronounced when the number of executors exceeds 32. This is be-
cause the number of allocated cores with 64 executors, which is
320, exceeds the number of available physical cores, which is 168.

When it comes to the comparison of efficiency among different
applications, vertex distortion calculation drops more rapidly than
other applications. As highlighted in the speedup analysis, this de-
crease is primarily driven by the significant data shuffling and inter-
node communication required by the join operation for retrieving
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vertex coordinates and scalar values.

7 DISCUSSION OF LIMITATIONS

‘We have introduced three methods for computing connectivity rela-
tions in Spark: the pure global, symmetric global, and local meth-
ods. Our experimental evaluations have demonstrated the efficiency
of the localized strategy in deriving connectivity relations and com-
puting topological features. In this section, we explore the limita-
tions of the localized methodology implemented in Tetra-Spark.

As detailed in Sec. 6.2, the localized method achieves significant
speedup when the VT relation is pre-computed, allowing for em-
barrassingly parallel computations of many connectivity relations.
However, this strategy provides limited speedup for applications
requiring only a few relations, due to the preliminary global com-
putation of the VT relation. A potential improvement could involve
embedding the VT relation directly within the original DataFrame
DFy. This would eliminate the need for an initial global retrieval
step but increase the storage requirements of Tetra-Spark.

Additionally, as discussed in Sec. 6.3, the localized methodol-
ogy exhibits limited efficiency when computing topological fea-
tures that require vertex coordinates. This inefficiency arises from
the lack of a global array storing all vertex data. Consequently,
a time-consuming join operation with DFy is necessary to access
vertex coordinates for analyses requiring this data. To enhance ef-
ficiency, one possible solution is to incorporate vertex data directly
into the original DataFrame DFr. Specifically, the vertex index
in DFr could be replaced with an array that includes the vertex’s
coordinates and associated scalar values. Since these attributes
are unique to each vertex, this array could effectively serve as a
new vertex index. This approach would transform the encoding
of a tetrahedral mesh into a single DataFrame composed of four
columns, each containing an array of coordinates and scalar fields
for one of the tetrahedron’s vertices.

Furthermore, as described in Sec. 6.3, the localized methodology
leverages the power of embarrassingly parallel processing for com-
puting topological features like critical points and the Forman gra-
dient. However, these computations are predominantly local, rely-

ing mainly on the connectivity relations limited to a vertex’s neigh-
bors. For applications requiring extensive mesh navigation, the per-
formance gains would not be the same. This limitation stems from
the need for frequent data access between nodes, which can slow
down processes due to increased communication overhead. Addi-
tionally, Spark does not support granular control over inter-node
communication, which makes it more challenging to minimize the
communication overhead. One potential solution involves defin-
ing custom partitioning for DataFrames, which could implicitly re-
duce network traffic by strategically distributing data across nodes
to align with the computation needs. Another scheme is to concep-
tualize the mesh as a graph and integrate Tetra-Spark with graph-
parallel computation systems like Apache Giraph [9] and GraphX
[22] to facilitate more efficient graph navigation.

8 CONCLUSIONS

We have proposed Tetra-Spark, a new framework for processing
large tetrahedral meshes within Apache Spark. This framework en-
codes only the essential information necessary to represent a tetra-
hedral mesh with scalar fields defined on it. Tetra-Spark supports
the optimized extraction of boundary, co-boundary, and adjacency
relations in batches, thereby providing a substantial speedup com-
pared to global methods that rely on native Spark DataFrame oper-
ations. This optimized design of locally computing groups of rela-
tions also greatly benefits subsequent algorithm executions.

We have experimentally demonstrated the efficiency and scala-
bility of Tetra-Spark compared to a vanilla Spark system. With the
pre-computed VT relation available, Tetra-Spark exhibits substan-
tial performance enhancements: it achieves up to a 42x speedup
and uses up to 57% less memory for deriving boundary relations.
For coboundary relations, it offers up to a 78 x speedup while sav-
ing up to 80% of memory. Moreover, in computing adjacency re-
lations, Tetra-Spark reaches up to a 33 x speedup with comparable
memory usage. The memory efficiency in deriving relations signif-
icantly enhances the performance of subsequent algorithm compu-
tations, leading to speedups ranging from 1.2x to 47.7x. Overall,
Tetra-Spark achieves a 1.3 x to 55.6x speedup across the entire al-
gorithmic process for computing topological features.

Our future work involves expanding Tetra-Spark to include the
computation of topological abstractions that require heavy inter-
node communications. This includes the computation of Morse
complexes by leveraging the navigation of the Forman gradient
[45], merge trees [28], and persistent homology [16]. Addition-
ally, implementing geometry-aware partitioning for the input data
is a promising direction, which could reduce inter-node communi-
cation during the extraction of connectivity relations. Furthermore,
we aim to adapt Tetra-Spark for use with higher dimensional sim-
plicial complexes or cell (CW) complexes to increase its versatility
and applicability [18, 21].



SUPPLEMENTAL MATERIALS

The source code for Tetra-Spark library (TSL) is avail-
able on GitHub?. All supplemental materials are avail-
able on OSF at https://osf.io/68hwe/?view_only=
088db835e5e341d88b350c2071df66bd, which include (1) a
thorough introduction to the extraction of all connectivity relations,
(2) detailed descriptions of three algorithms used for computing
different topological features, (3) the experimental results from
pilot tests used for tuning Spark parameters, (4) the experimental
results focused on computing all connectivity relations, and
(5) experimental figures to evaluate the node scalability using
remaining five datasets.
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