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ABSTRACT

The Morse-Smale complex is a standard tool in visual data anal-
ysis. The classic definition is based on a continuous view of the
gradient of a scalar function where its zeros are the critical points.
These points are connected via gradient curves and surfaces em-
anating from saddle points, known as separatrices. In a discrete
setting, the Morse-Smale complex is commonly extracted by con-
structing a combinatorial gradient assuming the steepest descent
direction. Previous works have shown that this method results in a
geometric embedding of the separatrices that can be fundamentally
different from those in the continuous case. To achieve a similar
embedding, different approaches for constructing a combinatorial
gradient were proposed. In this paper, we show that these approaches
generate a different topology, i.e., the connectivity between criti-
cal points changes. Additionally, we demonstrate that the steepest
descent method can compute topologically and geometrically accu-
rate Morse-Smale complexes when applied to certain types of grids.
Based on these observations, we suggest a method to attain both
geometric and topological accuracy for the Morse-Smale complex
of data sampled on a uniform grid.

Index Terms: Discrete Morse theory, Morse-Smale complex,
Topology, Accurate geometry.

1 INTRODUCTION

The Morse-Smale complex [16, 20] has proven to be a powerful
tool for topological data analysis and has found its applications in
many fields such as in material science [11], fluid dynamics [7, 19],
computer graphics [21], or in molecular biology [2].

Forman’s discrete Morse theory [4] gives a formidable setting
for computing the Morse-Smale complex in a combinatorial setting
[5, 12, 18]. The essential component of these algorithms is the
computation of the discrete gradient field, which implicitly encodes
the structure of the Morse-Smale complex. The remarkably efficient
method by Robins et al. [18] can be considered the de facto standard
for the calculation of the discrete gradient field. The method aligns
its discrete vectors locally with the steepest descent direction.

It has been shown by Gyulassy et al. [9] and Reininghaus et
al. [17] that the geometric embedding of the discrete Morse-Smale
complex does not coincide with its continuous counterpart when
using the steepest descent direction in Robins’ method – even when
increasing the resolution of the discretization. This has been inves-
tigated for uniform grids, but not for other types of grids. Instead,
Gyulassy et al. [9] and Reininghaus et al. [17] propose a new method
to compute the discrete gradient field, which replaces the steepest
descent direction in Robins et al. [18] with a probabilistic choice of
descending directions. This achieves a better geometric embedding
of the Morse-Smale complex.

However, as we will show in this paper, moving in directions other
than the steepest descent will lead to a different topology. Specif-
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ically, the connectivity between critical points differs. We show
that these differences can be found in many scenarios, from small
data sets to large ones, from smooth data sets to noisy ones, from
artificial data sets to real-world data sets. We provide a theoretical
discussion that reveals which layers of the cell complex are affected
by the probabilistic approach of Gyulassy et al. [9] and Reininghaus
et al. [17].

To provide solutions, we investigate different types of grids for
their susceptibility to distortions of the geometric embedding. Based
on these observations, we propose a method to convert a uniform
grid to a specific triangle grid that provides as good of a geometric
embedding as the probabilistic approaches of Gyulassy et al. [9]
and Reininghaus et al. [17], but can be used with the steepest de-
scent method of Robins et al. [18], thereby inheriting its topological
guarantees.

Our contributions are as follows:

• We provide a novel, systematic analysis of the differences in
the topology of Morse-Smale complexes produced by various
methods (Section 4). These changes happen across a wide
range of scenarios and can not be removed by the means of
topological simplification.

• We investigate different types of grids and identify empirically
the properties that a grid needs to have such that the geometric
embedding obtained using the steepest descent method aligns
with the continuous case (Section 5).

• We propose a method to achieve both geometric accuracy and
topological consistency for data sampled on a uniform grid by
converting it to a specific type of triangle grid and applying
the steepest descent method (Section 6).

Related work and theoretical background are discussed in the fol-
lowing two sections, with a focus on the topic of accurate geometry
in Section 3.

2 BACKGROUND

We briefly go over the relevant concepts in the following.

2.1 Morse function and Morse-Smale complex
Morse theory [15] allows to analyze the topology of a manifold by
examining a function defined on that manifold. Let f : M → R be
a function defined on a d-manifold with boundary M, p ∈ M is a
critical point of f if ∇ f (p) = 0. If the Hessian of f at p, H(p),
is non-singular, i.e. |H(p)| ̸= 0, then p is called a non-degenerate
critical point. The function f is called a Morse function if all of its
critical points are non-degenerate. Given a Morse function f with a
non-degenerate critical point p, the result of the Morse lemma states
there exists a local coordinate in the neighborhood of p such that
f can take the quadratic form f (x) = f (p)− x2

1 − . . .− x2
γ + x2

γ+1 +

. . .+ x2
d . The value of γ in this formula is called the index of f at p

and can be used to characterize the type of the critical points of f .
In the case of 2 dimensions, the indices 0, 1, and 2 correspond to
the minima, saddle points, and maxima of the function, respectively.
For volumetric data, minima have index 0, 1-saddles have index 1,
2-saddles have index 2, and maxima have index 3.

The tangent vector of a tangent curve φ : R → M agrees with the
gradient ∇ f at every point along the line. In other words, φ is the



solution of the equation
∂

∂ t
φ(t) = ∇ f (φ(t)), where φ(0) = p. For

each tangent curve, the point lim
t→−∞

φ(t) is called the source or origin

of φ , whereas lim
t→∞

φ(t) is called the destination or sink. The sets of
tangent curves having the same source or sink are called ascending
and descending manifolds, respectively.

A function f fulfills the Morse-Smale condition if its ascending
and descending manifolds intersect transversally for each pair of
critical points. If f satisfies such condition, the intersection of the
ascending and descending manifolds defines a structure known as the
Morse-Smale complex. It segments M into regions with monotone
gradient flow behaviors, i.e., all gradients inside a Morse-Smale
cell share the same source and destination. The boundaries of the
Morse-Smale regions are called separatrices, the unique tangent
curve connecting a pair of critical points with consecutive indices.

2.2 Discrete Morse theory
Discrete Morse theory developed by Forman [4] aims to describe
the concepts and properties of the original Morse theory in a combi-
natorial fashion. It is widely adopted as the foundation for efficient
extraction schema for the Morse-Smale complex. We review only
the necessary concepts that will be mentioned later on.

A d-cell is a topological space that is homeomorphic to the closed
d-ball Bd = {x ∈ Ed |∥x∥≤ 1}, where Ed denotes the d-dimensional
Euclidean space. For instance, a vertex is a 0-cell, an edge that
connects two vertices is a 1-cell, and a polygon of any shape is
a 2-cell. Given a d-cell α(d), we will write this cell as α if the
dimension is not necessary for the context. A cell α(d1) is called a
face of another cell β (d2), denoted by α(d1) ⪯ β (d2), if d1 ≤ d2 and
the 0-cells of α(d1) are a subset of the 0-cells of β (d2). In this case,
we also say that β (d2) is a co-face of α(d1).

A cell complex K is a collection of cells such that the intersection
between any two cells is either empty or a common face of both.
To give some examples, uniform and curvilinear grids as well as
triangle and tetrahedral meshes are cell complexes. The d-skeleton
of K is the collection of all cells whose dimension is not larger than
d. Let f : K → R be a function defined on a cell complex K. For any
face α ∈ K, the lower star of α , denoted by St−(α) = {σ ∈ K|α ⪯
σ ∧ f (σ)≤ f (α)}, is the collection of co-faces of α whose values
are not exceeding that of α .

Let f : K → R be a function that assigns a value to every cell of
K. If for every face α(d) ∈ K the following holds∣∣∣{β

(d+1)|α(d) ⪯ β
(d+1)∧ f (α)≥ f (β )

}∣∣∣≤ 1, (1)∣∣∣{γ
(d−1)|γ(d−1) ⪯ α

(d)∧ f (γ)≥ f (α)
}∣∣∣≤ 1, (2)

then f is called a discrete Morse function. If a cell α(d) satisfies∣∣∣{β
(d+1)|α(d) ⪯ β

(d+1)∧ f (α)≥ f (β )
}∣∣∣= 0, (3)∣∣∣{γ

(d−1)|γ(d−1) ⪯ α
(d)∧ f (γ)≥ f (α)

}∣∣∣= 0, (4)

then α(d) is a critical cell with the index d. A discrete vector is a pair
{α(d),β (d+1)} such that α ⪯ β . The collection V of discrete vectors
where each cell of K appears in at most in one vector is called a
discrete vector field. Given a discrete vector field V , a V -path is an
alternating sequence of cells

α
(d)
0 ,β

(d+1)
0 ,α

(d)
1 ,β

(d+1)
1 ,α

(d)
2 , . . . ,β

(d+1)
ℓ ,α

(d)
ℓ+1 (5)

such that {α,β} ∈ V and αi ̸= αi+1 ⪯ βi. If ℓ ≥ 0 and α0 = αℓ+1
then the path is a non-trival closed path. If the discrete vector field
V does not contain any such closed path, then V is called a discrete

gradient field of f . This is analogous to the continuous gradient of
a function defined on K. Thus, the V -paths are comparable to the
tangent curves in the original Morse theory. A V -path of a discrete
gradient field starts or terminates at critical cells. Hence, we can
define the discrete Morse-Smale complex similarly to the continuous
counterpart.

Using discrete Morse theory provides a framework to design algo-
rithms to extract the Morse-Smale complex with higher robustness
and reliability. The combinatorial nature of this theory enables han-
dling degenerate cases such as plateau regions that can appear when
dealing with data.

2.3 Topological Simplification

The goal of topological simplification is to remove small-scale,
spurious features, thereby enabling a meaningful analysis of the data.
In the context of Forman’s discrete Morse theory, simplification of a
discrete Morse function can be done by removing a pair of connected
critical points and updating the connections of the neighbors of these
two critical points. Alternatively, Forman [4] suggests simplification
by reversing the gradient vector field along the path connecting two
critical cells. This approach implicitly cancels the two mentioned
critical cells while resulting in a new valid discrete Morse function.
One can use the height difference between two critical cells, which
is the absolute difference in the value of these cells, to guide the
simplification. The use of the height difference is closely related to
the concept of persistence [3]. See Günther et al. [6] for a detailed
discussion.

3 ACCURATE GEOMETRY FOR MORSE-SMALE COMPLEXES

The term accurate geometry was coined by Gyulassy et al. [9] to
refer to discrepancies between the geometric embeddings of the
continuous and the discrete Morse-Smale complex. The underlying
idea is that the geometric embedding of the discrete Morse-Smale
complex should converge to its continuous counterpart, if the dis-
cretization of the domain becomes infinitely fine. This is not always
the case [9, 17], but quite desirable in a number of applications, e.g.,
where separatrices are the main features of interest. We will discuss
the previous work on this topic in the following.

Given a discrete gradient field, the Morse-Smale complex can
be constructed straightforwardly using an alternating breadth-first
search [18]. The main challenge is rather to compute the discrete gra-
dient field itself from image or volumetric data such that the discrete
Morse-Smale complex will align with its continuous counterpart.
Several methods have been proposed on this subject [8, 14, 18]. The
first provably correct method proposed by Robins et al. [18] solves
the problem efficiently and is regarded as the de facto standard for
this task: given an image or volume data that can be thought of as a
complex, this algorithm grows from the vertices to every cell of the
complex by partitioning the whole domain into disjoint lower stars
of the vertex. For each lower star, the first gradient vector is chosen
from the possible vectors based on the steepest descent direction.
The rest of the vectors in this lower star will be constructed via
a procedure called simple homotopy expansion by collecting cells
with exactly one uncovered face and choosing the first possible pair
according to an order. This procedure will be performed until such
cells can no longer be found. If the expansion is not possible, a cell
will be recorded as critical and the expansion continues to proceed
from this cell until every cell in the lower star either belongs to a
vector or is critical.

However, Gyulassy et al. [9] and Reininghaus et al. [17] show
independently that the choice of the steepest descent direction leads
to a non-convergent geometric embedding of the separatrices, i.e.,
inaccurate geometry. This is due to the local and greedy nature of the
approach. Consider the following analytic function f : [0,2]2 → R



(a) Continuous topology. (b) Steepest descent method [18] on the uniform grid. (c) Probabilistic method [9, 17] on the uniform grid.

(d) Steepest descent method [18] on a triangle grid ob-
tained by diagonally dividing each cell of a uniform grid
once as shown in Figure 8b.

(e) Steepest descent method [18] on a triangle grid with
random vertex positions and Delaunay triangulation as
shown in Figure 8c.

(f) Steepest descent method [18] on a triangle grid derived
from the uniform grid following our suggestion, as illus-
trated in Figure 8d and discussed in Section 6.

Figure 1: The function from Equation (6) has been sampled on different types of grids and the Morse-Smale complex has been extracted using
different methods. The goal of accurate geometry is to achieve a geometric embedding that is similar to the one from continuous topology.
While it is well-known that the steepest descent method is not able to achieve this on uniform grids, we show that it can achieve accurate
geometry on certain grid types and provide a suggestion of how to convert uniform grids accordingly.

from Reininghaus et al. [17]

f (x,y) = exp(−2(
√

x2 + y2 −1)2)−0.3(x+ y). (6)

It represents a circle engraved in a tilted plane. The continuous
Morse-Smale complex reveals this shape in Figure 1a. To extract
the discrete counterpart, we sampled this function on a 1024×1024
uniform lattice grid and applied the method of Robins et al. [18]
using the steepest descent approach. As Figure 1b shows, the result
does not capture the circular shape, neither for this nor any other
sampling resolution.

Gyulassy et al. [9] and Reininghaus et al. [17] tackle this prob-
lem using a probabilistic approach: instead of always choosing the
steepest-descent vector, any descending vector can be chosen follow-
ing a probability that relates back to the continuous gradient. This
means, the vectors in the discrete gradient field are more likely to
be aligned with the continuous tangent curves. This rather small
modification to the original method of Robins et al. [18] produces
Morse-Smale complexes which will converge to the continuous ver-
sion as the sampling resolution increases. The result can be seen in
Figure 1c.

Gyulassy et al. [9] introduced a second approach to geometric

accuracy that takes into account a larger region when constructing
the gradient vector field. It is of global nature and comes with a
substantial computational effort. Gyulassy et al. [10, 12] propose
methods to create conforming Morse-Smale complexes: they are
not just based on the input scalar data, but additional information
can be supplied by the user to influence the output. Specifically, a
discrete vector will be created between two cells, if these cells have
equal value with respect to a map L. Using this map, one can encode
extra information for the computation or even modification of the
Morse-Smale complex, according to the needs of the application.
Since a strict adherence to the original Morse-Smale complex is
not desired when applying these methods, we will not discuss them
further in this paper, but rather leave it to future work to investigate
the similarities and differences to the steepest descent method.

4 TOPOLOGICAL INCONSISTENCIES

We can use the probabilistic methods [9, 17] from Section 3 to
achieve geometrical accuracy. However, these methods come with a
significant drawback that has not been reported before: the resulting
Morse-Smale complex differs topologically from the one obtained
using steepest descent. Most importantly, the connectivity of the
separatrices differs, meaning, different critical points are connected



with each other. This holds true for 2D and 3D data sets, and
the topological differences have a high persistence, i.e., they can
be observed even after radical topological simplification. Besides
these topological differences, the geometric embedding of the saddle
points changes as well.

For simplicity, we limit our discussions to simplicial and cubi-
cal complexes, but they can be extended to the more general cell
complex as well.

4.1 Identical Parts
First, we identify which parts of the Morse-Smale complex will not
differ between different methods. Specifically, we show that any
gradient vector field computed based on the lower star has a constant
number of critical cells for each dimension and the positions of
certain types of critical cells are fixed, independent of the order in
which cells are chosen to proceed.

To simplify the discussion, we take advantage of a useful concept
introduced by Robins et al. [18]. The reduced lower star of a
vertex v, denoted by R(v), is the intersection of the lower star of v
with the sphere centered at v with a small radius r, that is R(v) =
St−(v)∩S(v,r). The lower star can be thought of as projecting the
cells in St−(v)\v onto the sphere centered at v. With this map, for
d > 0, a d-cell in St−(v)\v is mapped bijectively to a (d−1)-cell in
R(v). This map also transforms the algorithm by Robins et al. [18]
to an analogous algorithm processing on the reduced lower stars,
performing homotopy expansion starting from the steepest edge.

From the definition of the reduced lower star, we can see that it is
closed, i.e. every face of a simplex σ of R(v) is also in R(v). Thus,
the number of d-cells of R(v) is constant. It was shown by Robins
et al. [18] that every critical (d −1)-cells processed from R(v) is a
critical d-cell in the original complex, except for the initial 0-cell
of R(v). It follows that the number of critical d-cells produced by
the lower star-based methods is constant for d > 0, independent of
the order in the expansion step. Furthermore, for any vertices of a
complex K, the number of elements in its lower star is constant, and
a vertex v is marked as a minimum if St−(v) =∅. This implies that
the number and the position of the minima are fixed.

Moving to higher dimensional cells, we break the results into
smaller pieces. In the following, we say that a simplex is covered
if it belongs to a discrete vector or is marked as critical during the
homotopy expansion process, and uncovered otherwise. We stay in
the language of reduced lower stars and show that using homotopy
expansion in a 1-skeleton of this structure resulting in a same set of
covered 0- and 1-simplices through the following lemmas.

Lemma 1. The homotopy expansion of the 1-skeleton of each R(v)
covers all of its 0-simplices.

Proof. Assuming that there exists one uncovered 0-simplex α dur-
ing the expansion process. Then this uncovered simplex connects to
a covered 0-simplex via a 1-simplex β . The homotopy expansion
will pair {α,β} during the process.

Lemma 2. Given R(v), the set of all 1-simplices covered by the
homotopy expansion in R(v) is the same, independent of the starting
point of the process.

Proof. A 1-simplex would not be paired during the homotopy expan-
sion if its two 0-simplices have been paired with other 1-simplices.
This behavior can only happen if that 1-simplex is a part of a cy-
cle. Two intersecting cycles would prevent the pairing of their last
1-simplices, marking them as critical cells. All other 1-simplices
will be paired during this homotopy expansion as it covers all of
the 0-simiplices owing to the result of Lemma 1. It implies that a
1-simplex is unpaired if and only if it is maximal in a cycle. This
defines the fixed set of covered 1-simplex by homotopy expansion
of the 1-skeleton of R(v).

The result of Lemma 2 concerns only up to the coverage of the
1-simplices. The following lemma ensures that after performing
the homotopy expansion on the 1-skeleton of a complex, the result
gradient field of that complex is fixed.

Lemma 3. For each R(v), the homotopy expansion of its 1-skeleton
can be done before expanding into 2-simplices without changing the
result gradient field.

Proof. Supposing that we completed expanding in the 1-skeleton
of R(v). Assigning the first vector {α(1),β (2)} requires that α(1)

is the only face of β (2) that is unpaired during the expansion of
the 1-skeleton. Thus, no vector {γ(0),α(1)} is chosen during the
first expansion since this would imply the expansion had not been
finished.

From Lemma 3, mapping to the original lower star, we get the
following result.

Theorem 1. For any vertex v of a complex K, the gradient vector
fields between the d- and (d +1)-cells in St−(v) are fixed for d ≥ 2,
independent of the order of processing the cells.

In the arguments for Lemma 2, we can see that the critical 1-
simplices which are unpaired during the homotopy expansion of the
1-skeleton will also not be paired during the expansion of 2-skeleton
of R(v), and their positions will also be fixed. From Theorem 1, we
can conclude the same for higher dimensional cells. The following
results summarize our observations.

Corollary 1. For d ≥ 2, the position of critical d-cells in St−(v), for
every vertex v, are independent of the chosen order in the computing
process of the gradient vector field.

Corollary 2. For d ≥ 2, each separatrix connecting a pair of d-
and (d +1)-critical cells retains its connectivity, independent of the
chosen order in the computing process of the gradient vector field.

We conclude that the positions of the minima and maxima in 2D
and 3D data sets are identical between the different methods. The
same holds for the 2-saddle points in 3D data sets. We further con-
clude that the connectivity of the separatrices between 2-saddles and
maxima in 3D data sets is identical between the different methods.

4.2 Different Parts
The saddle points (1-saddle points in the case of three dimensions)
did not appear in the results of Section 4.1. Indeed, with different
ways of choosing the first vector in the computation (steepest descent
or probabilistically), they can have different positions. We demon-
strate this behavior by applying the steepest descent method and the
probabilistic method on a scalar field given by a small randomly
generated 4×4 matrix

A =

 9 8 7 13
1 6 10 0

12 14 2 4
3 11 5 15

 . (7)

The differences in the positions of the saddle points are shown in
Figure 2. We can see from the two figures that the positions of the
minima and the maximum are fixed whereas three saddle points
changed their positions. This is in agreement with the theoretical
results stated earlier. It should be noted that while the saddle points
can move in different iterations of the probabilistic approach, their
movements are restricted to their respective lower stars.

The changes in the position of the saddle points further cause
separatrices to connect to different critical points as illustrated in
Figure 3. We can easily see the top-most saddle connects to a



(a) Steepest descent [18] (b) Probabilistically chosen [9, 17]

Figure 2: Given the same input data from Equation (7), the two
different methods for computing the discrete gradient field can result
in different positions for saddle points as indicated by the red circles.
The white spheres, white lines, and squares represent the 0-cells,
1-cells, and 2-cells. The blue and red segments illustrate the pairings
between the 0- and 1-cells as well as the 1- and 2-cells, respectively.

(a) Steepest descent [18] (b) Probabilistically chosen [9, 17]

Figure 3: Given the same input data from Equation (7), the two
different methods for computing the discrete gradient field can re-
sult in a different connectivity of the separatrices. The separatrices
connecting to the same critical points are colored black. The separa-
trices connecting to different minima are highlighted in yellow. The
red separatrix only presents for the steepest descent method, and is
missing from the output of the probabilistic method.

different minimum, and that another saddle looses its connection to
a maximum. This observation can be explained by the difference
in the gradient vector fields. Notably, the result of Corollary 2
only holds for separatrices in higher layers, whereas this example
shows separatrices between 0-cells, 1-cells, and 2-cells, for which
Corollary 2 does not hold.

As the changes already happen in two dimensions, it is straightfor-
ward that these changes can also appear in three dimensions. Indeed,
consider the scalar field given by the small randomly generated
tensor

B =

14 18 9
6 24 15
23 4 7

 ,

10 20 0
21 1 11
2 26 25

 ,

12 13 8
19 22 3
17 5 16

 .

(8)

The inconsistencies of the positions of the 1-saddles (green) together
with the connectivity of the separatrices are illustrated in Figure 4.

Next, we show that these issues also appear in larger and smooth
data sets. We constructed a data set of size 40×40 from Equation (7)
using bilinear interpolation. We can see in Figure 5 that the connec-
tivity between critical points is different as highlighted in the figure.

(a) Steepest descent [18] (b) Probabilistically chosen [9, 17]

Figure 4: Morse-Smale complexes of the simple 3D data set from
Equation (8) computed using different methods. Many 1-saddle
points (green) have different positions (marked by the orange circles).
This also leads to a different connectivity of the separatrices (marked
by the red circle).

Data set # cases with
positional change

# cases with
connectivity change

Random 4×4 603 235
Random 8×8 996 942
Random 16×16 1000 1000
Interpolated 8×8 567 533
Interpolated 16×16 581 555

Table 1: Number of cases with differences in the positions of the
saddle points and in the connectivity of the separatrices between
the two methods when applied to 1000 randomly generated 2D data
sets.

This shows that topological changes appear in smooth data sets as
well.

These differences do not only happen in a few selected scalar
fields. We randomly generated 1000 2D data sets of size 4× 4,
8× 8, and 16× 16. Then we counted for how many of those data
sets we can observe a positional change of at least one saddle, and
a connectivity change of at least one separatrix. The results are
summarized in Table 1. We can see that these changes appear in
almost all data sets of size 8× 8 and larger, and in many smaller
data sets as well, even after interpolating the 4×4 data sets to higher
resolutions. Automatically detecting a connectivity change of a
separatrix can be done as follows: for each separatrix in a Morse-
Smale complex, identify the two lower stars where it originates/ends.
Then try to find a separatrix in the other Morse-Smale complex
which originates/ends in the same pair of lower stars. If it cannot be
found, we record a connectivity change. This procedure is rooted in
the fact that the positional change of a saddle point is restricted to the
respective lower star and hence its separatrices need to originate/end
there.

We repeat this experiment on a noisy data set, which we obtained
by adding noise to the previous data set. We find 909 critical points in
this data set. We apply a topological simplification with a persistence
threshold of 45% of the data range. The simplified Morse-Smale
complexes then have 17 critical points. We can see in Figure 6 that
connectivity changes still persist under these conditions – even at
this very high level of persistence.

To show that these differences also exist in real-life data sets, we
performed our experiments on the Hurricane Isabel data set.1 The
data set represents different atmospheric variables over different

1This data set can be downloaded at https://www.earthsystemgrid.
org/dataset/isabeldata.html

https://www.earthsystemgrid.org/dataset/isabeldata.html
https://www.earthsystemgrid.org/dataset/isabeldata.html


(a) Steepest descent [18] (b) Probabilistically chosen [9, 17]

Figure 5: The data set from Equation (7) has been bilinearly inter-
polated on a 40× 40 uniform grid. The Morse-Smale complexes
have been extracted using the different methods and we observe
connectivity changes for some separatrices (highlighted in red and
yellow).

(a) Steepest descent [18] (b) Probabilistically chosen [9, 17]

Figure 6: Noise has been added to the data set from Figure 5. The
Morse-Smale complexes produced by the two methods show differ-
ences in separatrix connectivity (red and yellow) even at a very high
level of topological simplification corresponding to 45% of the data
range.

(a) Steepest descent [18] (b) Probabilistically chosen [9, 17]

Figure 7: The Morse-Smale complex of the Hurricane Isabel data
set has been extracted using the two different methods. Only the
separatrices with differences in connectivity are shown together with
their endpoints. This is about 10% of all separatrices.

time steps. We chose the 41-st time step and the total cloud variable.
Further, we extracted the 50-th slice in z-direction and use it as a
2D data set with a 500×500 uniform grid. The differences in the
results of the two methods can be seen in Figure 7. A total of 2087

(a) Uniform grid. (b) Triangle grid obtained by diagonally
dividing each cell of a uniform grid once.

(c) Triangle grid with random vertex posi-
tions and Delaunay triangulation.

(d) Triangle grid obtained by dividing
each cell of a uniform grid into several
triangles, including additional vertices ob-
tained through bilinear interpolation.

Figure 8: Different grid types as used in this paper.

out of 20159 separatrices with different connectivity were found.
Additionally, 10135 critical points were detected, among them, 983
out of 5067 saddle points have different positions.

Summary We have shown that the probabilistic methods of
Gyulassy et al. [9] and Reininghaus et al. [17] are successful in
producing accurate geometry, but fail at faithfully reproducing the
topology of the method by Robins et al. [18], which follows the steep-
est descent and is regarded as the de facto standard for computing
discrete gradient fields. These discrepancies arise in many different
scenarios and may affect the conclusions drawn from topological
analyses of data sets.

This leads us in the following to investigating alternatives to the
probabilistic methods in order to find solutions that provide accurate
geometry and consistent topology at the same time.

5 EFFECT OF SAMPLING METHODS

In this section, we delve into the improvement in geometry that can
be achieved by employing the steepest descent method of Robins et
al. [18] on different grid types. To this end, we refer the reader to
Figure 8 where we illustrate the types of grids that will be discussed
in this and the following section.

The pre-assumption of the probabilistic methods [9, 17] is that
the data is given on a uniform grid. With a uniform grid, a cell has a
limited number of higher dimensional cells to pair with during the
calculation of the gradient vector field: a maximum of 4 choices for
the 2D case, and a maximum of 6 choices for the 3D case. These
numbers remain constant even when we increase the resolution of
the grid. Furthermore, due to the nature of the grid, the directions
of the grid edges are either vertical or horizontal, which limits the
geometric expression of the separatrices drastically. Hence, the
steepest descent method [18] is not able to capture the geometry of
the tangent curves on such grid.
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(a) Uniform grid.
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(b) Triangle grid obtained by diagonally dividing each cell of a uniform grid once as
shown in Figure 8b.
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(c) Triangle grid with random vertex positions and Delaunay triangulation as shown in
Figure 8c.
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(d) Triangle grid derived from the uniform grid following our suggestion, as illustrated
in Figure 8d and discussed in Section 6.

Figure 9: Statistics of different grids. Shown are the histogram of
the grid edge directions (left) and the histogram of the vertex degrees
(right).

It is interesting to investigate the output of the steepest descent
method on other types of grids. Specifically, we want to investigate
triangle grids as they allow for a wider variety in the directions of
the grid edges as well as a higher degree of the vertices.

A straightforward approach is to divide each cell of a uniform grid
into two triangles. This fairly common choice of grid is illustrated
in Figure 8b. It allows all non-boundary vertices to have 6 possible
choices of direction instead of just 4. Furthermore, it introduces
diagonal grid edges. Figure 9b shows the distributions of the vertex
degrees and of the grid edge directions of a 1024× 1024 grid of
this kind. The grid edge directions are measured as the angle to
the x-axis. We used such a triangle grid to sample the function of
Equation (6) and applied the steepest descent method. The result
is shown in Figure 1d. We observe a slightly rounder shape for
the circular part, but overall the geometric embedding is still quite
different compared to the continuous case from Figure 1a.

Next, we investigate a triangle grid with randomly placed vertices
as shown in Figure 8c. It is built by uniformly placing vertices
at the boundary and then randomly placing the remaining vertices
inside using a Poisson disc sampling. A Delaunay triangulation
is then applied to obtain the mesh. The statistics of this grid are
shown in Figure 9c and reveal a high diversity in terms of grid edge
directions and vertex degrees. Again, we sampled Equation (6) onto
a 1024×1024 version of this grid and computed the discrete gradient
using the steepest descent method. The resulting Morse-Smale
complex (Figure 1e) comes remarkably close to the continuous
version (Figure 1a). In fact, in all our experiments, this type of grid
exhibited the most accurate geometry of all grid types.

We repeated our experiments with another function g sampled in
the domain [−2,2]2

g(x,y) = sin(xy)cos(x+ y). (9)

The results are shown in Figure 11. Our previous observation is con-
firmed: the steepest descent method does produce accurate geometry
on grids with high diversity of the grid edge directions and vertex
degrees.

We conclude that when extracting the Morse-Smale complex in
certain applications, if possible, a grid should be chosen that allows
for a higher “degree of freedom” for the edge directions and vertex
degrees. The method by Robins et al. [18] will then be able to extract
accurate geometry.

6 SUGGESTION FOR UNIFORM GRIDS

It is not always possible to choose a type of grid for an application.
Most applications come with pre-defined grids and some of those
will be uniform grids, or very similar to uniform grids. In this section,
we propose a simple solution to achieve acceptable geometry for the
Morse-Smale complex given data sampled on a uniform grid while
preserving its topology through the steepest descent direction.

Our proposal draws inspiration from the observations in Section 5:
better geometry can be achieved by allowing a higher number of
options to choose from during the computation of the discrete vector.
Thus, given a data set sampled on a uniform grid, we create a triangle
mesh using well-chosen auxiliary vertices to obtain the desired grid
characteristics.

Our goal is to convert each uniform grid cell into more than two
triangles. To do so, we add one auxiliary vertex in the middle of each
grid edge, and another auxiliary vertex randomly into the interior of
each grid cell. The data values for these new vertices are obtained
using bilinear interpolation. A Delaunay triangulation within each
grid cell then yields the final triangle mesh. An example is shown
in Figure 8d. Due to the random nature of the new points, spurious
features can be created. We apply an ε-simplification to cancel these
unwanted features. In our experiments, a persistence threshold of at
most 0.001% of the data range is applied.

Figure 9d shows the characteristics of this grid. We can see that
this grid covers all possible grid directions, albeit to a varying degree.
Some directions clearly dominate, which stems from the fact that this
triangle grid inherits the large number of vertical and horizontal grid



edges from the original uniform grid. Nevertheless, the histograms
show a vast improvement over the uniform grid.

We applied this procedure to the uniform grids of size 1024×
1024 that had been originally used to sample Equations (6) and (9).
The resulting triangle meshes have then be used to compute the
Morse-Smale complexes via the steepest descent method. The re-
sults are shown in Figures 1f and 11f, respectively. Note how the
geometric embedding is much more aligned with the continuous
case in comparison to the steepest descent method applied to the
uniform grid. In particular, the circle in Figure 1f is well repre-
sented. However, we can also see that the diagonal separatrix in the
lower-left corner of the same figure does not end at the corner of the
domain, but only nearby.

It remains to see whether this new type of grid gives rise to a
Morse-Smale complex that is equivalent to the one obtained from the
uniform grid – at least after an ε-simplification. We have reason to
believe that this is true, since we apply the steepest descent method
in both cases. Further, the original vertices are kept in the new
grid, and the bilinearly interpolated values of the new vertices will
always fall within the range of the original values. Thus, the original
minima remain the same, the saddle points and maxima are in the
now refined lower star of the original vertex. Although spurious
minima, saddles, or maxima can be created due to the randomness
of our suggestion, they tend to be short-lived and can be canceled at
a very low persistence threshold as mentioned. With more carefully
chosen and optimized methods, new points can be added without
creating new criticals.

An experimental validation is shown in Figure 10, where we show
the Morse-Smale complexes obtained using our suggested method
and using the continuous approach. These should be compared also
to Figure 5 where the steepest descent and the probabilistic method
have been applied to the original uniform grid. We can clearly see
that our method avoids the topological issues of the probabilistic
method, while achieving a good geometric embedding.

Our discussion in this section is limited to 2D cases. Given a
cubical grid, we suspect that a face-centered subdivision, similar to
the one by Carr et al. [1], could achieve similar results to ours. We
left this for further investigations.

Increased computational effort Our suggestion leads to in-
creased memory requirements and computation times. Suppose that
we add a points at each edge and b points inside each cell. For
a grid of size n× n, we added 2a(n− 1)n points at the edges and
b(n−1)2 points in the cells, a total of (n−1)((2a+b)n−b) points
in addition to the original n2 points, which is a substantial memory
cost, especially considering that the newly created unstructured grid
requires explicit handling of the connectivity whereas this could be
handled implicitly for the original structured grid. The computation
time required to create such a triangulation is also non-negligible: it
takes in the order of tens of seconds for larger grids such as 20482.

Despite having higher computation time and memory require-
ments, our method is able to provide Morse-Smale complexes with
accurate geometry and topology while being algorithmically less
involved than the probabilistic variants.

7 CONCLUSION

We discussed the different aspects that can affect the quality of the
Morse-Smale complex in terms of geometry and topology. We have
shown that the undesired shape of the Morse-Smale complex using
the traditional methods comes from the low number of choices for
the vector paring during the computation. By allowing a higher
number of options for the vectors through a more optimized grid
structure, we can attain a Morse-Smale complex that closely resem-
bles its continuous version. It is thus encouraged, if possible, to take
this into account when sampling the data.

However, not all applications allow such sampling methods and
we need to employ methods for accurate geometry. While it is

(a) Steepest descent method applied to our
suggested triangle grid.

(b) Continuous Morse-Smale complex.

Figure 10: The discrete Morse-Smale complex obtained using the
steepest descent method applied to our suggested triangle grid in
comparison to the continuous Morse-Smale complex. The latter
has a slightly different handling of the cases at the boundary, but
otherwise the topologies coincide. Compare these results to Figure 5.

known that the existing methods produce geometrically different
embeddings for the separatrices, we have shown that there are also
unintended consequences in terms of topological changes. We have
shown that the 1-saddles can take different positions, which can lead
to significant alterations in the overall structure of the Morse-Smale
complex. However, we did not investigate all methods that fall under
the category of accurate geometry, e.g., the work by Gyulassy et
al. [10]. We leave this to future work.

We also proposed a method to achieve better geometry for the
Morse-Smale complex given data sampled on a uniform grid, draw-
ing inspiration from our observations. Compared to the other meth-
ods aimed at tackling the geometry problem, our suggestion is signif-
icantly less complicated. This method required no modification on
the algorithm side, as we only added more information to the given
data. Therefore, our suggestion does not increase the complexity of
these methods, albeit it does increase the memory requirements and
computation times. Despite its simplicity, our method produced com-
parable results in terms of geometry while retaining the topological
features inherited from the steepest descent method.
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