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ABSTRACT

Jacobi sets are an important tool to study the relationship between
functions. Defined as the set of all points where the function’s
gradients are linearly dependent, Jacobi sets extend the notion of
critical point to multifields. In practice, Jacobi sets for piecewise-
linear approximations of smooth functions can become very complex
and large due to noise and numerical errors. Existing methods that
simplify Jacobi sets exist, but either do not address how the functions’
values have to change in order to have simpler Jacobi sets or remain
purely theoretical. In this paper, we present a method that modifies
2D bivariate scalar fields such that Jacobi set components that are
due to noise are removed, while preserving the essential structures of
the fields. The method uses the Jacobi set to decompose the domain,
stores the and weighs the resulting regions in a neighborhood graph,
which is then used to determine which regions to join by collapsing
the image of the region’s cells. We investigate the influence of
different tie-breaks when building the neighborhood graphs and the
treatment of collapsed cells. We apply our algorithm to a range of
datasets, both analytical and real-world and compare its performance
to simple data smoothing.

Index Terms: Topological data analysis, bivariate data, Jacobi set,
topological simplification.
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1 INTRODUCTION

The analysis of multivariate data is frequently carried out in science,
and the analysis of bivariate data in particular has established itself
as an important field, for example in climate simulations where
temperature and pressure are jointly investigated. The relationship
between the scalar fields can be examined using Jacobi sets [18] as
a tool for analysis. This mathematical concept originates from the
field of topology and represents a generalization of critical points
to multifields. In topological data analysis, Jacobi sets are used to
extract Ridge-Valley graph in computer vision and image processing
[31], and to track critical points in time [4, 18]. Besides, they are
used to compare scalar fields [19] to study the Reeb space [39] and
to drive fiber surface extraction [34]. They are not only used in
visualization but also in other scientific disciplines [1, 2, 25, 30].
This multifaceted application shows the importance of Jacobi sets
in scientific analysis, which is why these structures must be easy to
understand.

However, noise can be a major problem that makes analysis diffi-
cult for domain experts. For this reason, a work on the simplification
of Jacobi sets [37] has already been carried out, the Reeb graphs cre-
ated and the Jacobi sets simplified with the comparison measure k .
This involves removing loops or Jacobi set components, which occur
in particular in the case of noise and numerical errors. However, only
the representation of the Jacobi sets is simplified, the underlying data
itself is not adjusted, which is unfavorable for further processing. In
contrast, smoothing filters adjust the data globally, but the extent to
which important structures are lost in the process has not been suffi-
ciently investigated. Important structures are regions in the dataset
that lie above a threshold value of a comparison metric and are also
visually separated from the surrounding area , see Fig. 1 in the upper
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left part in the brown region of interest. Subdivision algorithms
can also simplify Jacobi sets and, in particular, remove zig-zag, but
only lead to a better representation of this [27]. However, the visual
evaluation indicates that the number of Jacobi set components of the
dataset increases. Therefore, we will compare these approaches and
our approach to determine how suitable they are for simplifying the
Jacobi sets.

Motivated by the theoretical approach of Bhatia et al. [3], we have
developed a method that aims to change the functions by collapsing
a cell to reduce the complexity of the Jacobi sets while retaining their
important structures by changing the underlying data. The collapse
of a cell means that the area that this cell sets up in the range is
reduced to the value 0, which is also the case with degenerated
cells. This approach simplifies the Jacobi sets and thus also reduces
the Jacobi set components. The idea of collapsing comes from the
1D case, in which 2 critical points can be reduced by mapping the
function values f (x) of the two points of a cell to the same value. In
Fig. 3 this is illustrated for the cell BC. Here you can see that this
change affects at least one neighboring cell. Therefore, the choice
of a suitable value is also crucial to keep the side effects as low as
possible, as otherwise not all critical points can be removed. In the
2D case, this concept is more difficult, as the number of affected
neighboring cells increases. Therefore, a suitable metric must be
used to keep the side effects as low as possible. To identify the
components to be collapsed, we use the neighborhood graph of the
Jacobi set components.

The contributions in this paper are:

• We present an algorithm for simplifying Jacobi sets based on
iteratively collapsing cells while changing the underlying data
and identifying this with the help of a neighborhood graph.

• We investigate the influence of different neighborhood graphs
on this algorithm.

• We present an adapted Jacobi sets visualization that assigns
degenerate cells according to their point neighborhood.

• We demonstrate the effect of smoothing and loop subdivision
on the simplification of Jacobi sets using analytical and real
datasets and compare them with our algorithm.

2 RELATED WORK

An overview of topology-based methods in visualization can be
found in the survey by Heine et al. [21]. He et al. [20] focuses more
on the visualization of multivariate data.

In scalar field topology, the essential features of scalar fields can
be described by contour trees [8, 10, 42], Reeb graphs [33] or the
Morse-Smale complex [16]. With their method, scalar fields can be
topologically simplified and the critical points and their relationships
can be reduced. Carr et al. [9] describe a method for simplifying the
contour tree by suppressing smaller topological features. Bremer
et al. [5] create the Morse-Smale complex of a 2D function and
simplify the topology by canceling pairs of critical points. Luo et al.
[29] simplify critical points based on a point cloud. Edelsbrunner et
al. [17] introduce the idea of persistent homology for the topological
simplification of a point cloud, which was introduced by Cohen-
Steiner et al. [14]. Edelsbrunner et al. [17] introduce the idea of
persistent homology for the topological simplification of a point
cloud, which extended Cohen-Steiner et al. [14] to persistence
diagrams.

In order to apply the methods mentioned to multifield data, an
adaptation is necessary. Methods such as Jacobi sets and Reeb
graphs cannot extended so easily. Besides, Carlsson et al. [6] showed
that a generalization of persistent homology is difficult. Singh et al.
[35] use partial clustering of high-dimensional data and introduce
the idea of the mapper based on this. The Joint Contour Net by Carr

et al. [7] is partly based on this idea, but use joint contour plates
and their topological connectivity. Reeb graphs were introduced
in the works [13] and [36] parallel for multifields. Chattopadhyay
et al. [13] introduce the Jacobi structure for subdividing the Reeb
space, which creates a Reeb skeleton that corresponds to the Reeb
graph. An algorithm for calculating the Reeb space of a bivariate,
piecewise-linear scalar function on a tetrahedral grid is presented by
Tierny et al. [38]. Chattopadhyay et al. [12] use the Joint Contour
Net to further simplify multivariate data and to simplify the Reeb
skeleton.

The simplification of Jacobi sets of multifield data has not seen
much attention so far. The work by Bremer et al. [4] describes
a method that removes noise from the Jacobi sets of time-varying
data. In the work of Hüttenberger et al. [23, 24], a method for
extending topological structures from single scalar fields to multi-
fields using Pareto sets is proposed and the approach for simplifying
Jacobi sets [37] is extended to multivariate data. Suthambhara and
Natarajan [37] use reeb graphs to simplify the calculated Jacobi sets.
Bhatia et al. [3] presented a theoretical approach to simplify Jacobi
sets. In contrast to these works, our method also aims to simplify
the underlying data with a simple approach.

Another approach to simplify the data is to use non-topological
methods based on smoothing. This allows noise to be removed
from the entire data, but this is heavily dependent on the filters used.
Well-known filters are the binomial and Gaussian filters. Tong et al.
[40] decompose the field into 3 parts, smooth them individually, and
then sum them up again. In contrast, our method only processes the
data in areas where noise occurs, which prevents other structures
from being altered.

A completely different approach is presented by Klötzel et al.
[27], they introduce a new method for calculating the Jacobi sets
based on local bilinear interpolation, which implements a gener-
alization of the definition by Edelsbrunner and Harer [18]. This
method smoothes the Jacobi sets by reducing zig-zag patterns and
better-resolving structures. This effect shows better results, espe-
cially at high resolutions. However, this leads to many small Jacobi
set components in very noisy areas of the dataset.

3 BACKGROUND

A scalar field is a function f : D! C, smoothly mapping from a
domain D, which is a compact d-manifold, to a range C⇢R. In this
paper, we only consider domains that are subsets of R2. A critical
point x of f is a point x 2 D, where the gradient, i.e. the vector
of partial derivatives, of f vanishes at x: — f (x) = 0. A bivariate
scalar field can be viewed as two scalar fields f ,g mapping from the
same domain.Edelsbrunner and Harer [18] introduced the Jacobi set
J( f ,g) for a pair of functions f ,g as the set of points x 2 D, where
the gradients — f (x) and —g(y) are linearly dependent:

J( f ,g) := {x 2 D | 9l 2 R : — f (x)+l—g(x) = 0
or l— f (x)+—g(x) = 0}

(1)

Note that the critical points of f and g are trivially part of their Jacobi
set. Edelsbrunner and Harer [18] showed that, if D is a 2-manifold,
J(g, f ) is generically a collection of pairwise disjoint smooth curves,
free of any self-intersections. We will call the connected components
of a Jacobi set the Jacobi set components. Eq. 1 has many equivalent
formulations, for example, Edelsbrunner et al. [19] mention that for
two 2D functions, the Jacobi set is the set of all points where the rank
of the Jacobian, i.e., the matrix comprised of the function’s gradients,
is smaller than 2. They also present a more general criterion: the set
of all points x where the local k measure is 0, where k(x) is defined
as the length of the wedge product of the functions gradients. They
argue that the average of this measure over an area is related to the
amount of effort needed to change the topology of the functions in
that area.



A k-simplex s is the convex hull of k+ 1 affinely independent
points Ps = {x0, . . . ,xk}. 2-simplices are triangles, 1-simplices are
line segments and 0-simplices are points. A simplex t is a face of a
simplex s if Pt ✓ Ps . A simplicial complex is a set of simplices that
are closed under the face relation and any two simplices’ intersection
is either empty or a common face. A piecewise-linear function
assigns a function value to each 0-simplex and extends this to the
other simplices using barycentric interpolation. Edelsbrunner and
Harer [18] presented an algorithm to compute the Jacobi set for
piecewise-linear functions approximating smooth functions, which
we will not repeat here because our algorithm works slightly simpler,
due to a more restricted setting.

4 SIMPLIFICATION OF BIVARIATE 2D SCALAR FIELDS

Our algorithm assumes that the data are given as two piecewise linear
functions f ,g on a compact domain D✓ R2, which we will treat as
a vector-valued function f : D! R2. It first computes a measure for
each triangle and uses it to determine the Jacobi set. It then uses the
Jacobi set to decompose the domain into a set of regions separated
by Jacobi set components and determines a neighborhood graph
where the nodes represent the regions and are connected by an edge
if separated by the same Jacobi set. It then assigns a weight to each
region by suitably aggregating the measures from the first step over
all triangles of this region. The weights are used to determine which
region’s functions values are to be manipulated in order to remove a
Jacobi set component.

4.1 Jacobi Set Computation
If f ,g were smooth, then due to fundamental theorems in linear alge-
bra that relate the determinant of a matrix to the linear dependency
of its rows and columns, Eq. 1 is equivalent to:

J(f) = {x 2 D | det—f(x) = 0} . (2)

Note that, —f(x) is called the Jacobian of f in calculus, and is a
matrix composed of the gradients of f and g. The absolute value
of the Jacobian’s determinant would equal the value of k by Edels-
brunner et al. [19], but by not taking the absolute value, we get an
alternative method to compute the Jacobi set for piecewise-linear
representations of bivariate 2D fields. For piecewise-linear data the
function restricted to the interior of each triangle s can be given as:

f|s (x) = As x+bs . (3)

If one uses a Taylor expansion of f|s at x0 = 0, one will find that
As = —f|s (x), and hence that the determinant of the Jacobian is
constant across the triangle, but is typically discontinuous between
neighboring triangles. Nethertheless, some cells will have a positive
and some a negative determinant, and we determine the Jacobi set
as the list of edges which are faces to triangles with different signs
of the determinant.

Eq. 3 also gives a more geometrical intuition useful to understand
the mechanics of our simplification algorithm. Essentially, Eq. 3 can
be interpreted as a linear transformation of a space, i.e., how f maps
the triangle from the domain to the range. Due to this transformation
triangles might get translated, rotated, scaled, and mirrored. If the
determinant of As , i.e. the Jacobian, is negative, the triangle’s image
is mirrored, i.e., the order of the triangle’s vertices switches between
clockwise and counter-clockwise. If the determinant is 0 then the
transformation will collapse the triangle, i.e., its image under f is a
line segment or a point. We will refer to the sign of the determinant
of the Jacobian as the orientation of a triangle. The magnitude of
the determinant furthermore gives the factor by which the area of
the triangle grows or shrinks, indicating how much effort it takes to
change the function values at a triangle’s vertices to collapse it.

(a) Cutout coordinates (-1.27, -0.52) – (-0.67, -0.28)

(b) Neighborhood graph A (c) Neighborhood graph B (d) Neighborhood graph C (e) Neighborhood graph D

Figure 2: Section of the cylinder flow dataset (a) is an example of
applying the different neighborhood graphs. (b) classical neighbor-
hood graph A, (c) neighborhood graph B with connected negative
cells, (d) neighborhood graph C with connected positive cells, and
(e) neighborhood graph A with connected cells corresponding to the
neighborhood.

4.2 Neighborhood graph
A neighborhood graph represents the relationship between objects
through nodes and edges. A node represents a Jacobi set compo-
nent, and an edge represents the geometric spatial proximity in the
domain. We examine four approaches for creating neighborhood
graphs labeled A to D, which differ in the grouping of the cells to the
components. An example of the different of neighborhood graphs
is shown in Fig. 2. This figure shows a section of a domain that is
examined in more detail in Fig. 2a and illustrates all four approaches.
The coloring of the cells represents two properties in the range: the
orientation, where positive oriented triangles are colored red and
negative oriented triangles are colored blue, and the area, where high
saturation means a large area. The Jacobi sets are shown in black.

For the neighborhood graph A, all cells are combined into one
node if they are not separated by a Jacobi set. This results in a
graph with 69 nodes and 108 edges for the domain section under
consideration. In neighborhood graph B, as shown in Fig. 2c, cells
are merged into one node if they fulfill the conditions of graph A.
Besides, two cells are combined into one node if they are connected
via a point and both have a negative orientation. The neighborhood
graph C, shown in Fig. 2d, follows the same approach as graph B,
but here two cells are combined into one node if they are connected
by a point and both have a positive orientation. These adaptations in
graphs B and C are based on the goal of converting the neighborhood
graph into a neighborhood tree. Such a tree can be simplified by
starting to combine nodes at the leaves as long as the range area
of these nodes are smaller than a threshold according to a suitable
metric. A side effect of this adaptation is the reduction of nodes
in the graph. The effects of these adaptations can be seen in the
resulting graphs. The neighborhood graph B has 39 nodes and 38
edges, while the graph C has 33 nodes and 32 edges. The different
orientations lead to significantly different graphs.

Finally, we consider the neighborhood graph D. Here, all cells
are combined into one node if they are not separated by a Jacobi set.
Besides, two cells are connected if they are connected by a point,
have the same orientation and the summed orientation of all point
neighbors is also the same. The goal of this approach is to minimize
the imbalance that arises in the neighborhood graphs B and C and
produce a more analyzable neighborhood tree. The resulting graph
for this approach is shown in Fig. 2e and has 23 nodes and 22 edges.
This graph shows a compact structure that may be well-suited for



further analysis.
To investigate the effect of the different neighborhood graphs

on the simplification of the Jacobi sets, all four approaches are
combined with the method developed, and the results are compared
visually.

4.3 Metrics to select Jacobi set components
In this study, the goal is to collapse a selection of Jacobi set com-
ponents to simplify the data. A suitable metric has to be chosen to
select a Jacobi set component. There are geometric and topological
metrics, and we have chosen a topological metric in this work. Based
on the neighborhood graph, we now decide which of the Jacobi set
components should be collapsed. Different measures can be used to
choose the components:

• The Jacobi set component’s domain area:

AD =
n

Â
i=0

Ai (4)

• The Jacobi set components range area:

A0
C =

n

Â
i=0

A0
i (5)

• The hypervolume, which is the product of the Jacobi set com-
ponents domain and range area:

HV =
n

Â
i=0

Ai ·A0
i (6)

Here i is a cell in a region. We chose hypervolume, which takes
into account both the area of Jacobi set components in the domain
and the range. Furthermore, the other two metrics pose problems,
especially if the Jacobi set components areas are very different. This
could lead to important structures being lost. Another possibility
would be the automatic determination of this variable depending on
the neighborhood. However, this method was not implemented in
this work.

4.4 Collapse of Regions
To collapse a region, we use a greedy algorithm that shrinks the
regions starting from the cells at the Jacobi set and collapses them
first until the entire region is collapsed. The collapse a cell in the 2D
case is a complex problem due to its influence on the neighborhood.
In the 1D case, all values at the vertices of a cell can simply be set
to the same value in the range, see Fig. 3. This collapses the line
cell to a point in the 1D case. In the 2D case, Fig. 4a shows that V 1
maps all values at the vertices of a triangle cell to one value and thus
collapses the cell in the range. in Fig. 4a V 2 collapsed the cell to
a line in the range. The difference between these two variants is
that collapsing to a point affects more neighboring cells compared
to collapsing to a line. Therefore, we prefer collapsing to a line in
this work. Since only one edge of the triangle cell needs to collapse
to collapse the entire cell, we decide which of the edges to select
depending on the neighborhood. In this way, side effects can be
reduced, and places where several small Jacobi set components will
be removed are collapsed from the outside. Since we know at this
point which cells should be collapsed, we check whether there are
cells in the neighborhood that should also be collapsed, which we
can then divide into four cases:

1. No cell to be collapsed in the neighborhood Fig. 4a,

2. One cell to be collapsed in the neighborhood Fig. 4b,

x

f(x)

x

f’(x)

A
B

C

D

A
B C

D

B’ C’

Figure 3: Example of collapsing a cell in 1D. Left before collapsing
the cell BC, right after collapsing. The dashed line shows when the
neighborhood is not taken into account. The solid line shows when it
is taken into account. The red color shows a positive and the blue a
negative orientation.
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Figure 4: Example for the collapse of a triangle cell in the range for
all 4 cases to be considered: V1 shows the collapse to a point, and
V2 shows the collapse to a line. The green dashed edges connect
the cell with a cell to be collapsed. The orange dashed lines are the
edges to be scrambled.

3. Two cells to be collapsed in the neighborhood Fig. 4c,

4. Three cells to be collapsed in the neighborhood Fig. 4d.

In the first case, all edges of the triangle can be selected for
collapsing. In the second case, the edges that connect the cell to
a cell that is not to be collapsed should be retained. In the third
case, only the edges that connect the cell to a cell to be collapsed
can be collapsed. We skip the fourth case, as the collapsing of the
neighboring cells means that after several iterations they are also
on the edge of the Jacobi set component and can then be treated
according to one of the other cases.

4.5 Method
The entire method is presented as pseudocode in Algorithm 1.
Our algorithm uses a 2D bivariate scalar field defined on an un-
structured grid. For these, a neighborhood graph is created in
ComputeNeighborhoodGraph(F). In this graph, the nodes repre-
sent individual Jacobi set components, while the edges represent the
relationships between the different components. There are various
ways in which the Jacobi set components can be composed in the
neighborhood graph. These ways and their specifics are described
in detail in Sec. 4.2.

This neighborhood graph is used in our method to select Jacobi
set components. This is done in FindCollapsibleCells(NG,t),
which uses the hypervolume from Sec. 4.3 and an appropriate thresh-
old to identify nodes that are considered irrelevant. The algorithm
is cell-based and therefore returns all cells in a list (CL) that be-
long to the irrelevant nodes in a list. The algorithm now begins
to process the list CL. For each cell, it calculates whether it lies
on the border of a Jacobi set component to be collapsed. To do
this, CalculateCellNeighborhood(CL,c) returns for a given
cell how many neighboring cells are connected to it and are not
contained in CL. This number is used to sort cells and skip cells
that are not on the border. For the remaining cells, the list (CV) is
returned that contains all possibility variants of how the cell can be
collapsed. These variant are described in more detail in Sec. 4.4.
This list is now used to select the best variant for collapsing the



Algorithm 1: Collapse Algorithm
Input :2D Bivariate Scalar Field F ,

Threshold t
Output :Updated 2D Bivariate Scalar Field F ,

Neighborhood Graph NG
1 begin

2 NG := ComputeNeighborhoodGraph(F)
3 CL := FindCollapsibleCells(NG, t)
4 while CL 6= /0 do

5 for c 2CL do

6 nc := CalculateCellNeighborhood(CL,c)
7 if nc = 0 then

8 continue
9 CV := PossibleCollapseVariants(nc)

10 bcv := FindBestCollapseVariant(F,CV,c)
11 ApplyCollapseVariant(F,c,bcv)
12

13 CL := CL\{c}
14 CL := CL[FlippedCellNeighbors(NG,c)
15 if CellsOscillated(CL) then

16 break

cell. For this purpose, a metric is used that decides which variant
has the least side effects based on the direct point neighborhood of
the cell. This metric counts how many neighboring cells are nega-
tively affected when the different options are applied. A negative
influence occurs when cells change their orientation in the range,
as shown by the dashed line in Fig. 3 for the 1D case. Besides, the
area in the range in the neighborhood is also taken into account,
and changes are preferred if the total area in the range becomes
smaller. After selecting the best variant, the bivariate scalar field in
ApplyCollapseVariant(F,c,bcv) is adjusted. This means that
the values of the cell vertices are set to the same value according
to the cases from Sec. 4.4. The cell is then removed from the list
CL. Since the algorithm cannot always select a variant in which
no side effects occur, FlippedCellNeighbors(NG,c) recognizes
negatively influenced cells and then adds them to the list CL.

To prevent the algorithm from oscillating, the
CellsOscillated(CL) function checks this and terminates
the algorithm in this case. The result of this method is a modified
bivariate scalar field whose neighborhood graph is greatly reduced
and the Jacobi sets are also simplified.

4.6 Jacobi set Visualization
The calculation of Jacobi sets, which separate cells according to
their range, poses a challenge when a cell is degenerate or collapsed,
because a degenerate cell cannot be assigned to one of the two area
orientations to be separated. A possible solution to this problem is
to assign degenerate cells based on their neighborhood.

The Jacobi sets are calculated as described in Sec. 4.1. Besides,
degenerate cells are assigned based on their point neighborhood of
the Jacobi set components that predominate in the neighborhood.
This means that the cell is assigned to the orientation that is larger
when the neighboring cell orientations are summed up. If there are
only degenerated cells in the direct neighborhood, the neighbors
of the degenerated cells are considered recursively until a clear
assignment is possible.

When applying this method to the four possible neighborhood
graphs from Sec. 4.2, this leads to slightly different results when
dealing with degenerated cells. For the neighborhood graph A and
the neighborhood graph D, which are mapped in Fig. 2b, 2e, col-
lapsed cells are assigned to the Jacobi set component as described.

In neighborhood graph B, shown in Fig. 2c, degenerated cells are
assigned to a negative component as long as a negative cell exists in
their neighborhood regardless of what the summed neighbor cell ori-
entation is. For neighborhood graph C, which is mapped in Fig. 2d,
the procedure is identical to that for the neighborhood graph B,
except that it applies to positive cells.

These adjustments ensure a clear assignment of degenerated cells,
which is important for further analysis and interpretation of the
Jacobi sets. However, it cannot be guaranteed that the length of the
Jacobi set is always the shortest.

5 RESULTS

To evaluate how much smoothing filter and loop subdivision as
well as the developed collapse algorithm (CA) in all 4 variants
simplify the Jacobi sets, we apply these algorithms to three datasets
and compare them with the original data. To do this, we compare
visually and with two measures whose results for all datasets in
Tab. 1. These measures are the number of Jacobi set components, and
the length of all Jacobi sets in the domain. The number of Jacobi set
components is a good measure to investigate a simplification since
this quantity can be derived directly from the neighborhood graph
and can be considered both visually and as a quantity. However, this
quantity alone could lead to misinterpretations if many Jacobi sets
are connected to a large closed edge, which reduces the components
but has a negative effect on the length of the Jacobi sets. Therefore,
we also consider the length of all Jacobi sets as a second parameter
to evaluate to what extent the structure could also be simplified.

In all figures, the color in the domain shows the orientation of the
cell in the range, while at the same time, the range area is visualized
via saturation. The demonstrations were run on a MacBook Pro (14-
inch, 2021) with a Apple M1 Max, and 64 GB Ram. Implemented
is the algorithm inside our framework with C++.

5.1 Simple Smoothing Approaches
For our evaluations, we use known smoothing methods on the one
hand and loop subdivision on the other. These are classic smoothing
filters to reduce noise and remove irregularities. More precisely, we
use the Gaussian filter and the binomial filter. Loop subdivision
is a method from computer graphics for smooth subdivision of
triangular grids. This method, developed by Loop [28], has become
a fundamental tool in computer graphics. For all comparisons we
use s = 1000 for the Gaussian filter, r = 1 for the binomial filter,
and 4 subdivision steps in the loop subdivision. In the appendix,
there are further comparisons with other s settings for the Gaussian
filter.

5.2 Cylinder Flow (Synthetic)
First, we consider the analytical Cylinder Flow [26] dataset, which
is freely available on the ETH Zürich website [11]. The dataset is a
regular 2D grid with a resolution of 450⇥200 and 500 time steps,
on which a synthetic vector field is defined. This vector field was
used as a co-gradient to a stream function of Jung et al. [26] and
represents a simplified model of a Kármán vortex street. We use
time step 1 for the comparisons and triangulate the grid.

The aim of the analysis of this dataset is to show the effect of the
CA in all variants, the smoothing filters and the loop subdivision
on the simplification of the Jacobi sets and to find out which CA
variant has the greatest effect and to use this for the other datasets.
The original data serves as a reference. The resulting datasets and
the corresponding Jacobi sets are shown in Fig. 1 and Fig. 5.

When observing the datasets, three regions of interest (ROI) can
be identified that are relevant for the comparison because they are
noisier or the structures are complex. Nevertheless, the rest of the
dataset is not uninteresting as important structures should not or
only minimally be changed. The first ROI is marked green in the
datasets and contains the two right corners where many small Jacobi



(a) Loop Subdivision (b) Binomial filter (c) Gaussian filter

(d) Collapse Algorithm Variant B (e) Collapse Algorithm Variant C (f) Collapse Algorithm Variant D

Figure 5: Comparison of the calculated Jacobi sets in the Cylinder Flow dataset for the Loop Subdivision (a), the Binomial filter (b), the Gaussian
filter (c), the Collapse Algorithm variant B with t = 0.0001 (d), Collapse Algorithm variant C with t = 0.0001 (e), and Collapse Algorithm variant D
with t = 0.0001 (f). Three regions of interest (ROI) are highlighted in color for visual comparison.

set components can be recognized in Fig. 1 of the original data.
These are due to noise, as the range area is very small, which can
also be seen from the saturation of the colors.In the loop subdivi-
sion, the Jacobi set components can still be recognized very well;
a simplification of the Jacobi sets is therefore not possible. After
smoothing with the binomial filter, a reduction of the Jacobi set
components can already be recognized. The smoothing is further
intensified with the Gaussian filter, which even leads to the removal
of all Jacobi set components in this ROI. A similar result is obtained
after applying the CA variants. Here, all Jacobi set components can
also be removed, which can be seen in Fig. 5d, e, f. Only in variant
A do individual Jacobi set components remain. The second ROI
is marked in brown in the top center of the original data. A larger
reddish Jacobi set component can be seen here, with several smaller
components adjacent to it , which should be removed. After apply-
ing the loop subdivision, the large Jacobi set component is visible
and the small ones are no longer recognizable. When smoothing
with the binomial filter, there is hardly any effect in Fig. 5b and the
large and small Jacobi set components are still present. In contrast,
the effect of smoothing by the Gaussian filter is too large and all
components are removed, which is visible in Fig. 5c. When using
the CA variant D, the result is similar to the binomial filter, and all
components are still present. CA variants B and C do better here,
where the large Jacobi set component remains and almost all small
components disappear. In CA variant A, only the large component
remains, as can be seen in Fig. 1 at the bottom left. The third ROI is
marked in yellow in the center of the original data. In this ROI, sev-
eral small Jacobi set components can be recognized in the original
data. In the loop subdivision, several large Jacobi set components are
separated from each other as can be seen in Fig. 5a. This indicates
that the small components are caused by noise or numerical errors
and should disappear. With the smoothing filters, the result is similar
to before. The binomial filter smoothes too little and the Gaussian
filter too much, whereby in this ROI the Gaussian filter does not
remove all the small Jacobi set components, but even creates many
new ones. Using the CA variants produces very different results
here. In variant C, for example, the Jacobi set components are not
separated but connected. In variants B and D, the larger components
are separated from each other, but many small components remain.
In variant A, the large components of the Jacobi set are completely
separated and almost all small components disappear so that the
results of the loop subdivision are very similar.

Overall, the visual comparison of the cylinder flow shows that the
CA variant A is the best variant. This is also shown in the Tab. 1. To

(a) (b)

Figure 6: The datasets from Fig. 1 are mapped into the range. The
border of the domain is shown in green, the Jacobi sets in black,
and the grid in orange for the original data (a) and the dataset after
applying CA variant A (b) in orange.

confirm this, the Fig. 1 on the right shows the neighborhood graphs
of the Jacobi set components for the original data and for the dataset
after applying CA variant A. Here we can see that the algorithm
greatly simplifies the Jacobi set components. Besides, the range
of the original data is compared with the dataset after applying the
CA variant A in Fig. 6 to examine the effects of modifying the data.
Despite the differences in the domain, there is hardly any visual
difference between the two datasets. The simplification from the
Jacobi set components from 679 to 17 using the CA variant A takes
0.2 s.

5.3 Tensile Bar
Next, we look at a collection of real-world datasets, the Tensile bars
[43, 44, 32]. Various notches or holes are made in these specimens,
as shown in Fig. 7, to create different loading conditions and test
the material properties. The tensile bars were simulated using the
commercial software package Abaqus/Standard CAE [15]. The
datasets are unstructured 3D datasets on which 3D symmetric tensor
fields of second order are defined. This datasets have a dimension of
the volume of the dataset of 120⇥30⇥3. Since the tensile forces
are mainly in one plane, we were able to use a single layer from the
datasets and triangulate the grid. Here, the 3D tensor is mapped to a
2D tensor from which we derive an invariant set for the comparison.
For this comparison, we use the principal invariants I which are
the coefficients of the characteristic polynomial. They are defined
for 2D tensor fields as I1 = trT = l1 +l2, and I2 = detT = l1 ·l2,
where trT denotes the trace and detT the determinant of T for
the eigenvalues l . A detailed description of these and other stress



Table 1: The results for the length of the Jacobi sets, and the number
of Jacobi set components can be seen for all datasets and methods
tested, with the bolded values being the best. CA is short for Collapse
Algorithm.

Dataset / Method Length of # of Jacobi
Cells Jacobi sets set components

Cylinder Flow Original Data 92.4614 679
Fig. 1, and Binomial filter 64.9239 448

Fig. 5 Gaussian filter 40.0536 101
178’702 Loop subdivision 82.9961 6’311

CA Variant A 44.056 17

CA Variant B 48.8755 41
CA Variant C 50.2173 42
CA Variant D 49.8907 23

Tensile Bar A Original Data 1382.95 817
Fig. 8a / Loop subdivision 1845.95 17’858
30’960 CA Variant A 615.601 19

Tensile Bar B Original Data 1476.09 800
Fig. 8b / Loop subdivision 2200.9 23’625
22’360 CA Variant A 767.146 50

Tensile Bar C Original Data 1503.17 883
Fig. 8c / Loop subdivision 2068.83 21’529
29’560 CA Variant A 675.679 18

Tensile Bar D Original Data 963.471 519
Fig. 8d / Loop subdivision 1010.44 7’164
26’850 CA Variant A 465.583 40

Tensile Bar E Original Data 1004.65 490
Fig. 8e / Loop subdivision 1238.53 9’442
36’336 CA Variant A 535.383 38

Tensile Bar F Original Data 791.891 329
Fig. 8f / Loop subdivision 1004.82 7’259
27’210 CA Variant A 478.767 24

Tensile Bar G Original Data 815.444 326
Fig. 8g / Loop subdivision 1094.49 6’827
34’012 CA Variant A 514.535 36

Tensile Bar H Original Data 782.771 322
Fig. 8h / Loop subdivision 846.473 4’484
28’226 CA Variant A 447.887 28

Hurricane Original Data 915’064 43’838
Isabel Binomial filter 662’059 27’344
Fig. 9 / Gaussian filter 122’871 4’832
498’002 Loop subdivision 801’508 336’823

CA Variant A 393’343 2’657

tensors can be found in Holzapfel’s textbook [22].
In Fig. 8 we visually compare the extracted Jacobi sets in the

original data as seen in the upper Fig. 8a–h with the datasets after
applying the CA variant A as seen in the Fig. 8i–p. The range area
is displayed using color coding, with the saturation indicating how
high the stresses in the dataset are. The first thing to recognize is that
the Jacobi sets in all datasets are visually simplified after applying
the CA variant A and parts with small Jacobi set components could
be greatly reduced. Differences can be seen in the datasets with
notches and the datasets with holes. For example, Fig. 8a, i shows
that the Jacobi sets are simplified at the notches and the structure
becomes more recognizable for domain experts. In Fig. 8c, k, it
can be seen that in parts where a high density of small Jacobi set
components occurs, the Jacobi sets are simplified, but the symmetry
of the dataset is partially broken. For example, in Fig. 8e, m, it can
be seen that the Jacobi sets are simplified in the part around the hole.
In Fig. 8f, n it can also be seen that the Jacobi sets can be simplified

Figure 7: Example of the 3D tensile bar F geometry.

at the upper and lower end of the tie rod where low stress values also
appear in the dataset, which can also be seen from the white color.
In the Tab. 1 it can be seen that CA variant A can greatly reduce
all two measures. The results of the loop subdivision can also be
seen here. It is noticeable that the length of all Jacobi sets increases
significantly compared to the original data. For the smoothing filters,
we have no results for these datasets, as the used filters only work
on structured grids. Overall, you can see in the figures that the noise
in the datasets can be greatly reduced. The simplification from the
Jacobi set components for the tensile bar D from 519 to 40 using the
CA variant A takes 0.085 s. All the other tensile bars need less time.

5.4 Hurricane Isabel
Another real-world dataset from the field of meteorology is Hur-
ricane Isabel[41, 27] , which was published as a freely available
dataset as part of the 2004 SciVis contest. This modeled hurri-
cane is based on Hurricane Isabel which caused severe destruc-
tion in September 2003. It is a 3D dataset with a resolution of
500⇥500⇥100 and 48 time steps and contains 13 scalar variables,
such as velocity, at each data point. We use a layer from the dataset
at height 50 at time step 30 and triangulate the grid.

To do this, we look at the scalar fields for pressure and temperature
for the corresponding visual analysis in Fig. 9. This figure shows the
algorithms to be compared, and the original data. An overall view
of the dataset can be seen in Fig. 9c, 9d, 9i, and Fig. 9j. Visually, it
can be seen that all 3 algorithms simplify the Jacobi sets compared
to the original data. In Fig. 9a, 9e, 9g and Fig. 9k a cutout of the
center of the hurricane is shown. It is easy to see that CA variant
A and the loop subdivision simplify the Jacobi sets but still retain
the structures. In contrast, the Gaussian filter simplifies the center
so much that it looks completely different compared to the original
data. A visual comparison in Fig. 9j shows that the Gaussian filter
greatly simplifies many large structures. A second cutout of the
edge of the hurricane can be seen in Fig. 9b, 9f, 9h, and Fig. 9l.
Here it can be seen in the original data that many small Jacobi set
components occur in the part where the difference between the range
areas is small. Visually, these small Jacobi set components have
decreased in the loop subdivision as well as in the CA variant A.
This also shows that the Gaussian filter greases the data too much.
Tab. 1 clearly shows that the CA variant A reduces the components
of the Jacobi set the most and that the loop subdivision leads to more
Jacobi set components despite an optical simplification. For the
Gaussian filter, it can be seen that it reduces the components of the
Jacobi sets and even reduces the length of the Jacobi sets the most,
but this is at the expense of important structures. Simplifying the
Jacobi set components from 430344 to 20657 using the CA variant A
takes 5.5 s.

6 DISCUSSION

In this study, we compared the collapse algorithm (CA) variants,
smoothing filters, and a loop subdivision with the original data
using different datasets to investigate the effect on the Jacobi set
simplification. Besides, we visually examined the influence of the
different neighborhood graphs on the result and compared the best
variant with the smoothing filters and the loop subdivision.



(a) Tensile Bar A (b) Tensile Bar B (c) Tensile Bar C (d) Tensile Bar D (e) Tensile Bar E (f) Tensile Bar F (g) Tensile Bar G (h) Tensile Bar H

(i) t = 0.001 (j) t = 0.001 (k) t = 0.001 (l) t = 0.01 (m) t = 0.001 (n) t = 0.001 (o) t = 0.0001 (p) t = 0.001

Figure 8: Comparison of the calculated Jacobi sets in the Tensile Bar datasets for the original data in the upper figures and the Collapse Algorithm
Variant A with the corresponding t values shown in the lower figures.

Our investigations have shown that the structure of the neigh-
borhood graph is of great importance, as the results differed from
one another. The idea of converting the neighborhood graph into a
neighborhood tree had certain advantages, as this made it possible to
assign an orientation direction in particularly noisy parts. However,
the decision as to whether the negative (variant B) or the positive
orientation (variant C) was preferred led to very different results.
Therefore, the choice of variant varies depending on the case. The
assignment of the cells according to their local neighborhood (vari-
ant D) could already solve this problem better but led to the fact
that many small Jacobi set components were still not simplified be-
cause they were assigned according to their neighborhood. For this
reason, the neighborhood graph was used in CA variant A without
further adjustments. This has the advantage that the structure is
simpler and in the examples considered, the results were not worse,
but even better. However, there were small noisy parts in Fig. 1 at
the bottom left where not all the noise could be removed. Com-
pared to the original data, the results of the CA variant A are very
good. The neighborhood graphs can be greatly simplified, which is
particularly beneficial for domain experts, as the analysis becomes
more difficult as the data gets larger and larger. This can also be
seen when looking at all datasets together, whereby CA variant A
was able to reduce the number of Jacobi set components by more
than an order of magnitude on average compared to the original
data. The length of the Jacobi sets and the number of Jacobi set
components were reduced by more than half on average with CA
variant A. The visual results also show that the dataset provides a
significantly better overview. The comparison of the CA variant A
with the loop subdivision showed that the CA does not affect the

essential structures in the dataset and can simplify the datasets at
the same time. However, there were still deficits, particularly in the
case of data with high symmetry and very noisy parts. Here, the CA
should be further optimized to deliver even better results. Although
the loop subdivision can visually provide very good results, the ac-
tual problem of noisy small Jacobi set components is not solved, but
the triangles where this occurs become smaller, as already shown in
the work of Klötzel et al. [27] can be seen. The comparison with
the Gaussian filter, showed that although it removes common noise
in the green regions of interest very well, the essential structures
are also changed and thus the content is lost. This can also be seen
in Fig. 9k where the Gaussian filter can simplify very noisy parts,
leaving many small Jacobi set components. Further comparative
tests with different smoothing filters can be found in the appendix.

Overall, it can be seen that the CA variant A can greatly simplify
the Jacobi sets without removing essential structures and achieves
better results compared to the other algorithms. Since the algorithm
collapses cells, this can lead to the fact that a component cannot be
completely removed if the algorithm runs into an oscillation, and
at this point, the neighborhood graph cannot be simplified further.
Examining the runtime in all datasets, it can be seen that for CA
variant A it depends on the number of Jacobi set components to be
reduced and requires an average of 13.80ṁs to reduce 100 Jacobi
set components.

7 CONCLUSION & FUTURE WORK

In this study, an algorithm for simplifying Jacobi sets for bivariate
2D scalar fields in unstructured triangulated grids was presented
by adjusting the underlying data. This algorithm is based on the



(a) original Cutout 1

(b) original Cutout 2 (c) original (d) CA Variant A

(e) CA Variant A Cutout 1

(f) CA Variant A Cutout 2

(g) Loop Subdivision Cutout 1

(h) Loop Subdivision Cutout 2 (i) Loop Subdivision (j) Gaussian filter

(k) Gaussian filter Cutout 1

(l) Gaussian filter Cutout 2

Figure 9: Comparison of the calculated Jacobi sets in the Hurricane Isabel dataset for the original dataset (c), the Collapse Algorithm (CA) Variant
A with t = 200 (d), the Loop Subdivision (i), and the Gaussian filter (j). Additional comparison of the four methods in detail for cutout 1 (coordinates
(772, 683) – (1278, 1122)) (a) (e) (g) (k) and cutout 2 (coordinates (1572, 1382) – (2077, 1822)) (b) (f) (h) (l).

collapsing of cells which changes the underlying data, whereby the
collapsing cells are identified using a neighborhood graph. This
resulted in four algorithm variants. How well the algorithm variants,
smoothing filters, and loop subdivision can simplify the Jacobi sets
was then studied with the original data using three datasets from the
literature. The best of the four variants was determined, which is the
collapse algorithm variant A, especially with regard to the number
of components of the Jacobi set, which was an order of magnitude
lower than in the original data. The Gaussian filter, on the other
hand, was able to reduce the length of the Jacobi sets the most, but
changed the dataset too much. However, the collapse algorithm was
also able to reduce the length of the Jacobi sets by half. The results
of the collapse algorithm are promising, although some adjustments
are still needed for symmetric data such as the tension rods to better
preserve symmetry. Besides, an adapted Jacobi set visualization was
presented to account for degenerate cells and assign them to a Jacobi
set component according to their neighborhood.

As indicated at various points in the paper, there is still a lot of
potential for future work: Currently, a threshold is used to select
Jacobi set components to be collapsed, here an automatic selection
that works over the neighborhood could be a possible extension.
Furthermore, the presented collapse algorithm has the potential for
accelerating the extraction of fiber surfaces or lines, especially if
the extraction is done using Jacobi sets, as in the work of Sharma
et al. [34]. This further development would not only increase the
extraction speed but also simplify the visual analysis of the range.
Symmetrical datasets show optimization possibilities for the algo-
rithm at various points, as the assignment of collapsed cells cannot
always be unambiguous. One approach would be to adapt the algo-

rithm so that cells do not collapse directly, but collapse gradually.
This could achieve a smooth transition between the cells of the re-
gions to be collapsed. An obvious next step is to adapt the algorithm
to work with 3D bivariate datasets, as the domain still consists of
triangles. However, this requires further investigation and evaluation
of different datasets to investigate the influence on the domain. Espe-
cially the selection of the Jacobi set components to be collapsed can
be difficult. Furthermore, the focus is on extending the algorithm
for 3D case. Here, it would first have to be investigated how the
collapsing of tetrahedra can be realized and what effects this has on
the dataset. This would introduce a new dimension of complexity
and require careful investigation and testing with different datasets.
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terium für Wissenschaft, Kultur und Tourismus in the programme
Center of Excellence for AI-research “Center for Scalable Data
Analytics and Artificial Intelligence Dresden/Leipzig”, project iden-
tification number: SCADS24B.



REFERENCES

[1] I. V. Artamonova, V. V. Alekseev, and N. G. Makarenko. Gradient mea-
sure and jacobi sets for estimation of interrelationship between geophys-
ical multifields. Journal of Physics: Conference Series, 798(1):012040,
jan 2017. doi: 10.1088/1742-6596/798/1/012040 1

[2] T. P. Barnett, D. W. Pierce, and R. Schnur. Detection of anthropogenic
climate change in the world’s oceans. Science, 292(5515):270–274,
2001. doi: 10.1126/science.1058304 1

[3] H. Bhatia, B. Wang, G. Norgard, V. Pascucci, and P.-T. Bremer. Lo-
cal, smooth, and consistent jacobi set simplification. Computational
Geometry, 48(4):311–332, 2015. doi: 10.1016/j.comgeo.2014.10.009
2

[4] P. Bremer, E. Bringa, M. Duchaineau, A. Gyulassy, D. Laney, A. Mas-
carenhas, and V. Pascucci. Topological feature extraction and tracking.
Journal of Physics: Conference Series, 78(1):012007, 2007. doi: 10.
1088/1742-6596/78/1/012007 1, 2

[5] P.-T. Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci. A topolog-
ical hierarchy for functions on triangulated surfaces. IEEE Transactions
on Visualization and Computer Graphics, 10(4):385–396, 2004. doi:
10.1109/TVCG.2004.3 2

[6] G. Carlsson and A. Zomorodian. The theory of multidimensional
persistence. In Proceedings of the twenty-third annual symposium on
Computational geometry, pp. 184–193, 2007. doi: 10.1007/s00454
-009-9176-0 2

[7] H. Carr and D. Duke. Joint contour nets. IEEE Transactions on
Visualization and Computer Graphics, 20(8):1100–1113, 2013. doi: 10
.1109/PacificVis.2013.6596141 2

[8] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Computational Geometry, 24(2):75–94, 2003. doi: 10.
1016/S0925-7721(02)00093-7 2

[9] H. Carr, J. Snoeyink, and M. Van De Panne. Simplifying flexible
isosurfaces using local geometric measures. In IEEE Visualization
2004, pp. 497–504. IEEE, 2004. doi: 10.1109/VISUAL.2004.96 2

[10] H. Carr, J. Snoeyink, and M. Van De Panne. Flexible isosurfaces:
Simplifying and displaying scalar topology using the contour tree.
Computational Geometry, 43(1):42–58, 2010. doi: 10.1016/j.comgeo.
2006.05.009 2

[11] CGL, ETH Zurich. CGL @ ETHZ - Data. https://cgl.ethz.ch/
research/visualization/data.php. Accessed: 2024-01-01. 5

[12] A. Chattopadhyay, H. Carr, D. Duke, Z. Geng, and O. Saeki. Multivari-
ate topology simplification. Computational Geometry, 58:1–24, 2016.
doi: 10.1016/j.comgeo.2016.05.006 2

[13] A. Chattopadhyay, H. A. Carr, D. J. Duke, and Z. Geng. Extracting
jacobi structures in reeb spaces. In EuroVis (Short Papers), 2014. doi:
10.2312/eurovisshort.20141156 2

[14] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persis-
tence diagrams. In Proceedings of the twenty-first annual symposium
on Computational geometry, pp. 263–271, 2005. doi: 10.1007/s00454
-006-1276-5 2
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