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ABSTRACT

Data-driven storytelling serves as a crucial bridge for communicat-
ing ideas in a persuasive way. However, the manual creation of
data stories is a multifaceted, labor-intensive, and case-specific ef-
fort, limiting their broader application. As a result, automating the
creation of data stories has emerged as a significant research thrust.
Despite advances in Artificial Intelligence, the systematic genera-
tion of data stories remains challenging due to their hybrid nature:
they must frame a perspective based on a seed idea in a top-down
manner, similar to traditional storytelling, while coherently ground-
ing insights of given evidence in a bottom-up fashion, akin to data
analysis. These dual requirements necessitate precise constraints
on the permissible space of a data story. In this viewpoint, we pro-
pose integrating constraints into the data story generation process.
Defined upon the hierarchies of interpretation and articulation, con-
straints shape both narrations and illustrations to align with seed
ideas and contextualized evidence. We identify the taxonomy and
required functionalities of these constraints. Although constraints
can be heterogeneous and latent, we explore the potential to rep-
resent them in a computation-friendly fashion via Domain-Specific
Languages. We believe that leveraging constraints will facilitate
both artistic and scientific aspects of data story generation.

Index Terms: Data-driven storytelling, structural representation,
domain-specific language, constraint programming.

1 INTRODUCTION

Data-driven storytelling is a powerful vehicle for conveying ideas
persuasively to target audiences. It has been widely applied in var-
ious scenarios [3, 20, 35, 7], including science education, clinical
diagnosis with therapy interpretation, product popularization, and
public policy advocacy, among others. Creating data stories is a
comprehensive and costly effort that integrates multiple processes:
mining relevant data, interpreting data insights, organizing textual
narratives, and rendering visual illustrations [39, 24]. Hence, the
automatic generation of data stories is crucial for broader applica-
tions, despite its inherent complexity [51, 25, 26].

The major challenge of data-driven storytelling arises from the
dual requirement of communicating subjective knowledge and in-
sights while supporting them with objective evidence. When talking
about a data story, we expect the insights behind the proposed ther-
apy to align with the patterns entailed in clinical data regarding a
healthcare propaganda; we expect the elements of the story to fairly
reflect events happening in the real world regarding a theme-based
news report; we expect to see photorealistic illustration animations
with physically-real rendered ocean currents in an advocacy about
marine pollution; and we expect to derive actionable messages that
meet our realistic requirements when inquiring about government’s
record of export trade data. These twisted expectations reveal the
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hybrid nature of data stories — a blend of the imaginative aspects
of storytelling and the grounded basis of evidence.

Data stories are not pure stories. A conventional story is con-
structed solely based on a core seed idea and is derived from the
seed idea in a top-down manner. Stories make rationalization of
scenarios, characters, and plots for a self-consistent virtual world
with its unique dynamics [12]. In contrast, data stories are required
to be persuasive. Every piece of material used to organize the story
should be grounded in evidence from the real world, thus limiting
the extent of rationalization compared to purely fictional narratives.

At the same time, data stories are not mere summarizations or re-
ports of data. Those evidence-based approaches aim to reflect every
aspect of data in detail, reconstructing the objective material with-
out information loss in a bottom-up fashion. In contrast, data stories
are required to convey specific, and sometimes opinionated, ideas
rather than neutral ones [6]. All the evidence should compactly
support the target idea, and the irrelevant information should be
discarded, thereby refining the interpretation from a uniform one.

Putting together, data-driven storytelling intertwines the method-
ologies of top-down storytelling and bottom-up evidence-based
analysis. If we consider a spectrum indicating the proportion of evi-
dence and rationalization, data stories would lie in the middle of the
two endpoints, mediating the properties of traditional stories and
data reports. While a vast space of reasonable stories can be cre-
ated through the lens of highly diversified perspectives, subjected
to the authors’ personal and societal contexts [17, 5, 6, 23, 22, 31],
there should exist a boundary that restricts the space to a compact
and permissible one, where the dual requirements of data stories,
conveying ideas and grounding evidence, can be both satisfied.

This boundary can take various forms, such as domain-specific
knowledge to ensure the integrity of data analysis, external mem-
ory of key variables to maintain logical coherence in the textual
narrative, or models for model-based generative rendering to cre-
ate physically-real visual illustrations. Regardless of its type, this
boundary excludes the possibility of generating ambiguous or prob-
lematic data stories, thereby enhancing the precision of data story
generation. The bounded permissible space, shaped by both seed
ideas and the boundary, maximizes the flexibility of storytelling
while ensuring that the story remains firmly grounded in evidence.

We refer to such boundaries as the constraints of data stories.
Constraints, in contrast to production sets, determine whether a fi-
nal product is feasible under given requirements rather than defin-
ing the final product itself, which has been introduced to facilitate
effective visualization creation, such as recommendation and verifi-
cation [34, 8, 41, 52, 40]. In the context of data-driven storytelling,
the production set is the seed idea of the story, which shapes the per-
spective to frame, the position to hold, and the context to include.
Accordingly, we have various types of constraints at different hier-
archies to ensure that data stories become what they should be.

Given the varied requirements of constraints, we hold the po-
sition that constraints are significant for generating data stories
that are precisely coherent with both the author’s intention and
the grounded evidence. Unfortunately, although various genera-
tive tools have been developed, the efficient representation of con-
straints remains under-researched. This is not a trivial problem —
constraints are heterogeneous and often latent. As aforementioned,
constraints can be first-order rules, higher-order rules, structural
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Figure 1: The architecture of data-driven storytelling with hierarchical constraints. We present intuitive illustrations of the representations
with blocks (see Sec. 3.3). The colors highlighting textual narratives and visual illustrations are encoded according to their respective constraints.

data abstraction, or even more specialized types according to do-
main knowledge. Additionally, constraints such as domain-specific
knowledge and grammar for audience-oriented adaptation can be
tacit knowledge held by domain experts [2], making them difficult
to be represented for computation [44]. With these challenges un-
addressed, we suggest that the integration of constraints for data-
driven storytelling still requires interdisciplinary research efforts.

In this perspective article, we first introduce the architecture of
our cognitively inspired framework of constraint representation for
data-driven storytelling (Sec. 2). Within this framework, we sys-
tematically study the requirements of constraints in different hierar-
chies, demonstrating with running examples (Fig. 1 and Sec. 3). We
also explore the potential of representing constraints with Domain-
Specific Languages (DSLs) (Tab. 1), along with the challenge and
potential solutions for generalization across different domains and
scenarios. Concluding with general discussions (Sec. 4), we hope
this paper provides the data-driven storytelling community with a
fresh perspective on enhancing both the creativity of art and the
preciseness of science in data story generation.

2 FRAMEWORK ARCHITECTURE

Our theoretical framework is grounded in the cognitive foundations
of human perspective framing [43], aligning with the underlying
logic of data-driven storytelling — selectively integrating grounded
supporting information to align with the central objective. Specifi-
cally, the constraints are defined across two hierarchies: interpre-
tation and articulation. These hierarchies can be incorporated
into two bidirectional pathways that characterize human informa-
tion processing. The top-down view begins with a specific seed
idea, moves to the connections between arguments and visualiza-
tions, and finally interprets individual pieces of evidence to sup-
port the arguments. Conversely, the bottom-up view starts with a
piece of quantitative data insight, progresses to the qualitative log-

ical relationships upon the insights, and ultimately returns to the
narrations and illustrations that articulate these insights.

Top-down There are several constraints to incorporate in the
generation process from the seed idea to the arguments. We
need a constraint with second-order rules to structure the narra-
tive and illustrations, such as parallel arguments or progressive ar-
guments [48]. We also require a constraint with first-order rules
to identify the relationships between arguments, such as contrast,
enumeration, or analogy [11]. Additionally, a structural variable
management mechanism is necessary to maintain logical coher-
ence, such as managing a temporally varied key quantity in the data.
Also, a grammar-based constraint is needed to tailor the narrative
organization specifically for the target audience, as the same story
should be told differently in contexts of scientific popularization
versus therapy interpretation. Furthermore, the generation from ar-
guments to evidence should also be constrained. While evidence
itself cannot be “generated”, the context of evidence can be care-
fully selected to support the arguments.

Bottom-up There are several constraints to incorporate in the
extraction process from quantitative data insights to qualitative data
insights. First, we need a constraint with flexible hypothesis spaces,
equipped with composable functions to test arbitrary statistical re-
lationships between arbitrary pairs or groups of variables, such as
condition, correlation, and causality [15]. Upon this layer, we
need a constraint with combinatorial logic functions that abstract
the quantities to relationships, such as opposites, comparisons, and
superlatives. Additionally, we need a constraint that represents
domain-specific knowledge to contextualize the data appropriately
and detect potential insights. For example, in many cases, anomaly
data can be insightful but can only be detected with an understand-
ing of what constitutes normal data. Domain-specific knowledge
also maintains the correctness of both quantitative and qualitative
analyses, minimizing the possibility of misleading or deceptive in-



terpretations. Furthermore, as the narration must be coherently
aligned with the data of interest, the intersection between domain-
specific knowledge and the scope of the selected data should also
serve as a constraint on the grammar of the narration.

3 CONSTRAINT REPRESENTATION

In this section, we specify the taxonomies and functions of the con-
straints targeting precise data-driven storytelling. To ensure the de-
scriptions are understandable, we first introduce a running exam-
ple that goes throughout the remainder of this paper (Sec. 3.1).
Afterwards, we discuss the hierarchies to define the constraints
(Sec. 3.2), and explore their representation approaches (Sec. 3.3).

3.1 An exemplar data story
We carefully select a relatively ideal data story, The Protection of
the Yellow River1, as our running example. The rationale for se-
lecting this piece of work comes in three-fold: (i) all data insights
are properly interpreted in the context of corresponding background
knowledge; (ii) the narrative structure and style are adaptively opti-
mized for both the topic itself and the target audience’s expectations
regarding a data story for education and advocacy; (iii) the visual
illustrations upon the narrations are coherent and the photorealistic
render visualizations are impressive. The story comes as follows.

In 1997/98, 163 Chinese Academy of Sciences Fellows
came together to advocate for the protection of Yellow
River, when it failed to flow into the sea for nearly two-
thirds of the year. At its worst, 90% of the lower reaches
of the river dried up completely. The Yellow River, with
millions of years’ history, is now extremely fatigued.

Compared to the Yang-Tze River, the Yellow River’s sit-
uation is even more dire. The drainage basin is signifi-
cantly small, the tributaries are significantly inferior, and
the average annual runoff is a mere 58Bm3, compared to
the Yang-Tze River’s 975.5Bm3, a ratio of just 1/17.

A significant portion of the Yellow River’s water, about
60%, comes from just 28% of the drainage basin above
Lanzhou. The large water demand of 69.6Bm3 for in-
dustry further strain the river, against its 58Bm3 runoff.

Consequently, the first flow cutoff occurred in 1972 and
became frequent over the next two decades. By 1997,
the flow cutoff problem had become increasingly severe,
culminating in an unprecedented 226 days without flow.

[Measures have been implemented ...] From 1999 to
2022, China’s GDP increased by more than 7 times, and
the Yellow River has not ceased flowing.

However, the serious water and soil erosion of the Loess
Plateau has made the Yellow River the river with the
highest sediment content in the world.

[Measures have been implemented ...] By 2022, com-
pared to 1949, the vegetation coverage of the Loess
Plateau had increased by 59% to 65%, and the amount
of sediment entering the Yellow River had decreased by
nearly 88%, from 1.6B tons to 193M tons.

Despite these efforts, four of the nine provinces in the
Yellow River drainage basin still suffer from extreme or
severe water shortages, suggesting that the protection of
the Yellow River still demands continuous effort.

The data story is compressed due to space limits. We keep all
narrations based on data insights and discard pure descriptive text
for succinctness, e.g., the descriptions of measures and actions.

1Please refer to the original video posted at https://youtu.be/jq_
74a58wtA?si=9LXODKpOipbmpWsS (with English and Chinese captions)

3.2 The hierarchies of constraints

We define the constraints across the hierarchies of data-driven sto-
rytelling as the primary taxonomy. The hierarchical structure is in-
trinsically in line with the current consensus of the community [9].

3.2.1 Seed idea to articulation

The seed idea is the starting point and the overall guidance of a data
story. The seed idea reflects the internal factors, such as societal
background, motivation, position, and perspective of the author re-
garding the topic [29]. For a high-quality data story, the narratives
should be coherently subjected to the seed idea. Additionally, the
narratives should also be adapted to external factors, such as the re-
quirements of the presenter, the requirements of the target audience,
the context of the presentation, and the objective of the presentation.

In our example, the seed idea is likely to be “To profile the
past, the present, and the future of the Yellow River’s protection”,
thus the narrative structure is organized as a sequence of problem-
measure-result triplets along the temporal dimension, within linear
logic. If the seed idea changes to “The current problems of the Yel-
low River’s protection”, “The achievements in the Yellow River’s
protection”, or “Methodologies for the Yellow River’s protection”,
the narrative structure would vary accordingly. We refer to this con-
straint as the theme-oriented constraint.

Our exemplar data story is a video for popularization education,
thus the narrative comes in a teaching style. If the presentation sce-
nario changes to official propaganda or professional interpretation,
the narrative style will vary accordingly. We refer to this constraint
as the audience-oriented constraint.

As the topic covers disciplines such as geography, natural envi-
ronment protection, climate, ecology, and economy, the visual illus-
trations are expected to be photorealistic. Specifically, data stories
regarding geography and environment are also expected to visualize
the data insights on 2D maps, 3D terrain models, or 3D globe mod-
els, and the visualization elements should come in a scientific style,
i.e., the animations are physically real. For videos illustrating data
stories of other topics, such as operational process instructions, his-
torical event interpretations, or public policy advocacy videos, the
languages of visual expression vary accordingly. We refer to this
constraint as the visual content generation constraint.

3.2.2 Articulation to interpretation

Derived from and constrained by the seed idea, arguments are or-
ganized following a narrative structure. The arguments are not iso-
lated at all — instead, they are supported by the interpretations of
evidence, and also, are then articulated in the global structure to fit
with the context of each other [43]. Similar to the former hierarchy,
this hierarchy also only cares about the constraints derived from the
high-level internal and external factors, rather than the data.

The connections between arguments specify the narrative struc-
ture. Different narrative structures determine distinct styles of artic-
ulation between arguments. In our example, the relationship “con-
trasting” is a representative use case. To emphasize the severe
condition the Yellow River was facing around 1997, by contrasting
with the condition of the Yang-Tze River; and also, to highlight the
achievements made by the protection actions, by contrasting key in-
dicators before and after the treatments. We refer to this constraint
as the inter-argument relational constraint.

Each argument must be supported by a piece of evidence. Ar-
gument and evidence are bridged by interpretations [21], which
selectively construct different contexts as a premise, thus drawing
distinct conclusions given the same set of observations. Most trick-
ily, all aspects of the conclusions can be logically self-consistent.
A typical case comes in the last sentence of our exemplar story
— given the same observation, which can be objectively described
as “among the 9 provinces in the Yellow River drainage basin, 5

https://youtu.be/jq_74a58wtA?si=9LXODKpOipbmpWsS
https://youtu.be/jq_74a58wtA?si=9LXODKpOipbmpWsS


provinces are free from water shortage while 4 provinces are suffer-
ing extreme or severe water shortages”. Interestingly, in the story,
the context “despite these efforts, 4 of 9 provinces are suffering...”
modifies the audience’s uniform prior on water shortage and con-
structs a context to increase their expectation of water shortage, thus
enhancing the significance to the continuously protect the Yellow
River. Through this frame of perspective, the interpretation of a
piece of evidence becomes subjective, and it is logically correct.
Let us consider another context, where we say “5 of 9 provinces
are free from water shortages”, the interpretation can be totally dif-
ferent — we may be relieved that more than half of the provinces in
the Yellow River drainage basin do not have the problem of water
shortage. Thus, such interpretation is subjected to the arguments’
roles, which is further determined by the author’s perspective. We
refer to this constraint as the interpretation framing constraint.

Along the development horizon of the story, some key concepts,
patterns, and illustrations can be referenced by different arguments.
They are thought to be invariant throughout the development pro-
cess of the story, or they should be manipulated in a closure way,
where each modification is coherent to its interaction with other
concepts or patterns in the story. In our example, two distinct argu-
ments call the concept “annual runoff of the Yellow River”, which
are required to keep in mind that these two concepts are identical
without any variants, sharing the same quantity. We refer to this
constraint as the spatial-temporal structural constraint.

3.2.3 Evidence to interpretation

Interpretation from evidence is the foundation of a data story. In
contrast with the former two hierarchies, which are defined from
the top-down view, this hierarchy is defined from the bottom-up
view, where we are detecting insights from the data, and only from
the data, regardless of the high-level factors.

Elementary data insights are entailed in quantities. However,
the absolute quantities of individual variables may not be insight-
ful. Insights come from the combinations of and the associations
between different variables. In our example, the fact that “the av-
erage annual runoff of the Yellow River is 58Bm3” is not insightful
at all, since it is sufficiently a large number for ordinary people.
However, contextualizing this piece of data together with “the av-
erage annual runoff of the Yang-Tze River is 975.5Bm3” makes the
analysis insightful — although people cannot make precise percep-
tion of the absolute quantities of 58B and 975.5B, i.e., “how large
they are”, the distinction between the two distributions is trivial —
significantly, the former is much smaller than the latter, conveying
the idea of the Yellow River’s inferior condition to the audience.
Such insights come from the appropriate construction of hypothe-
sis spaces over statistics variables, which are subjected to the fea-
sible combinatorial spaces of individual variables. We refer to this
constraint as the quantitative hypothesis space constraint.

Logical insights are built upon the data insights and come from
reasoning over logical relationships between variables for reason-
ing, which take a further step from evidence to interpretation. In our
example, “the annual water demand for industry is 69.6Bm3, larger
than the annual runoff of the Yellow River” entails a logic propo-
sition “Industry is extremely water demanding”. Given another
proposition “Beijing-Tianjin-Hebei metropolitan area is a major
industry area of China and relies on the Yellow River for water”
and the general commonsense “Industry is the major driving force
of GDP”, we can easily find the outcome “China’s GDP increased
by more than 7 times while the Yellow River has not ceased flow-
ing” quite interesting and persuasive, demonstrating the effect of
practical measurements such as optimizing water allocation pol-
icy. These insights come from multiple-step logical deduction, in-
duction, and abduction, which are subjected to feasible hypothesis
spaces spanned by logic operators. We refer to this constraint as the
qualitative hypothesis space constraint.

In addition to those insights that can be detected by contextual-
ization, another family of insights seems not insightful even in the
context of associated variables or logic chains. They usually come
from anomaly. Although seeming normal, those data or logic may
become abnormal when contextualized in domain-specific knowl-
edge, which is sometimes not as trivial as general commonsense. In
our example, “60% water of the Yellow River comes from just 28%
of the drainage basin above Lanzhou” is insightful only given the
background knowledge of the positive correlation between water
runoff and the area of drainage basin. Similarly, in “163 Chinese
Academy of Sciences (CAS) Fellows came together to advocate for
the protection”, the quantity 163 will seem insightful only with the
background knowledge that there were about 300 CAS Fellows in
total by 1998. Such insights, coming without intrinsic statistical or
logical patterns of interest themselves, can only be detected under
the constraint of background knowledge. We refer to this constraint
as the domain-specific knowledge constraint.

These constraints for interpretation we have analyzed will be in-
tegrated into the narrations ultimately. Thus, along with the high-
level factors, the ontology extracted from the data also constrains
the generation of narrations. Specifically, ontology defines the ter-
minologies and the relationships between them, according to the
domain reflecting the data. Our example comes with the domain-
specific terminologies, such as “drainage basin area”, “the number
and length of tributaries”, “average annual runoff”, and “days of
flow cutoff”, and also the relationships between them, such as “the
significant positive correlation between the scale of tributaries and
average annual runoff”, “the weak negative correlation between
average annual runoff and days of flow cutoff”, and “a tributary is
counted in the drainage basin of its mainstream”. This ontology is
then integrated into the grammar of narratives to ensure that there
are neither missing nor redundant terminologies and relationships
regarding the source domain. Namely, the grammar thereby com-
pactly tailors the knowledge and insights behind the evidence. We
refer to this constraint as the narration ontology constraint.

3.3 DSL as constraint representation
Given the taxonomy of the constraints w.r.t. their requirements, we
explore how to represent these constraints. Summarizing the prop-
erties and requirements of the ten constraints, we suggest that struc-
tural representations tailored for the constraints’ definitions, namely
DSLs, may become the appropriate approaches. We also showcase
the utilities of DSL-based constraints in our exemplar (Tab. 1).

3.3.1 The rationale of DSL-based constraints

The constraints we have discussed indeed share some commonal-
ities: they are required to be complete when verifying the gener-
ated content, avoiding open-ended cases; they must be consistent
as the story progresses, avoiding “magical modifications”; they are
also expected to precisely encode knowledge of various granular-
ity. These properties — completeness, consistency, and multiple-
granularity — naturally fit the advantages of symbolic representa-
tion, in particular through programming languages, the symbolic
representation with the highest expressive capacity [47, 10, 18, 38].

Unfortunately, a major part of programming languages, the
General-Purpose Languages (GPLs) such as C/C++, Python, and
Java, may not be the best candidates to represent the constraints —
programs written in those languages can become extremely compli-
cated, thus hindering both machine program generation and human
understanding [33, 14]. As GPLs maintain a general set of syntactic
and semantic features to cover all aspects of usage, GPL programs
for a narrower set of usage are also built from those features from a
relatively low level of abstraction. In contrast, DSLs that consider
a specific set of usage only introduce features tailored for the tar-
get domain, thus enjoying a higher level of abstraction. This results
in simple programs only with features echoing the domain-specific



Table 1: Demonstrations of constraint representations

Constraint Showcase in our exemplar DSL-based constraint representation

Theme-oriented The motivational seed idea of the data story is to
profile the past, the present, and the future of the
Yellow River’s protection.

time_linear(P, Q, R) :- past(P),
present(Q), future(R).
protection(X, Y, Z) :-
problem(X), measure(Y),
result(Z).
nested(time_linear, protection).

Audience-oriented The data story comes for popularization educa-
tion, thus the narrative should come in a teaching
style, targeting for specialized audience group.

teaching_narrative ::= engage |
explore | explain | ...
engage ::= "Let us" | ...
...

Visual content generation The topic is about geography, natural environment
protection, climate, ecology, and economy, the vi-
sual illustration is expected to be photorealistic.

3D_terrain = SurfaceModeling(
size = [L: 100, W: 100, H: 50],
camera = [X: 20, Y: 30, Z: 45],
base_model = "YellowRiver.asm",
...)

Inter-argument relational Compared to the Yang-Tze River, the Yellow
River’s drainage basin is significantly smaller, the
tributaries are significantly inferior, and the aver-
age annual runoff is significantly lower.

YR_vs_YT(X, Y) :-
duplicate(contrast(X, Y)).
YR_vs_YT(YR, YT) :-
smaller_basin(YR, YT),
inferior_tributary(YR, YT),
lower_runoff(YR, YT).

Interpretation framing Despite these efforts, four of the nine provinces in
the Yellow River drainage basin still suffer from
extreme or severe water shortages.

water_supplying ::= sufficient |
shortage | severe_shortage
interpret(water_supplying ->
!sufficient).

Spatial-temporal structural The average annual runoff is a mere 58Bm3... The
large water demand for industry further strain the
river, against its 58Bm3 runoff.

YR_runoff = new memory slot X.
...
YR_industry = new memory slot Y.
cmp(YR_runoff, YR_industry) :-
cmp(call(X), call(Y)).

Quantitative hypothesis space The average annual runoff is a mere 58Bm3, com-
pared to the Yang-Tze River’s 975.5Bm3, a ratio of
just 1/17.

dyadic_relation(X, Y) ->
stat_prop(X, Y).
YR_runoff = [], YT_runoff = [].
stat_prop(YR_runoff, YT_runoff).

Qualitative hypothesis space From 1999 to 2022, China’s GDP increased by
more than 7 times, and the Yellow River has not
ceased flowing.

corr(GDP, YR_industry).
corr(YR_industry, YR_cutoff).
map([GDP.pre, GDP.post] ->
[YR_cutoff.pre, YR_cutoff.post]).

Domain-specific knowledge A significant portion of the Yellow River’s water,
about 60%, comes from just 28% of the drainage
basin above Lanzhou.
In 1997/98, 163 Chinese Academy of Sciences Fel-
lows came together to advocate for the protection
of Yellow River.

corr(water_pc, basin_pc).
water_pc = 60, basin_pc = 28.
abnormal(corr(water_pc,
basin_pc)).
num_Fellow = 300.
abnormal(!significance(num_Fellow,
163)).

Narration ontology The terminologies and the relationships between
them, according to the domain reflecting the data,
should be integrated into the narratives ultimately.

terminology ::= drainage_basin |
basin_area | annual_runoff | ...
relationship ::=
corr(basin_area, annual_runoff)
| in_drainage_basin_of(tributary,
mainstream) | ...

requirements, such as domain knowledge, which are easy to syn-
thesize by machines, and are also easy to learn, understand, and use
by domain experts without programming experience.

The constraints for data-driven storytelling are heterogeneous,
such as representing structures, knowledge, models, and calcula-
tions, respectively. In addition, some of them are tacit knowledge
of domain experts, which requires fine-grained domain-specific

knowledge injection. Consequently, they are appropriate to be rep-
resented with DSLs — one DSL for one specific type and one spe-
cific domain. Such considerations are generally acknowledged. For
example, there is a variety of DSLs developed for creating diverse
visualizations targeting specific domains efficiently [32].

In the following paragraphs, we discuss the utilities of DSL-
based constraints, according to the abstraction levels they are work-



ing on [1]: (i) syntax-level constraints care about the structures
of structural representations, such as trees, graphs, and cycles, and
also the mechanisms of symbolic calculation, such as unary, dyadic,
and multiple operators; (ii) semantics-level constraints consider
the exact meanings of variables, operators, and functions, echoing
the ontology of the reference model from the source domain; (iii)
execution-level constraints synthesize and interpret programs dy-
namically, namely linking and contextualizing unit components in
the programs and verifying their global consistency.

3.3.2 Syntax-level constraint

Among the ten constraints, theme-oriented constraint and inter-
argument relational constraint are working on the syntax level.
Their major utilities are generating meta-level templates, a.k.a.
metarules [13], for defining a feasible space and permissible op-
erations upon the space. Afterwards, the narrations are generated
by grounding the space without conflicts with the constraint.

Theme-oriented constraint shapes the narration structures, which
are usually tree-based or graph-based. For different seed ideas, we
may exploit different narrative structures to maximize their commu-
nication bandwidths. According to the theories of arguments [48],
we may use linear structure for temporal-related contents, multi-
headed structure for spatial-related contents, and non-monotonic
logical structure for contents with subjective judgments. We can
also locally nest different types of logic for mixed purposes. Sim-
ilarly, inter-argument relational constraint implements the narra-
tion structures. There are sequences for progressive arguments,
branches for alternative arguments, recursions for repeatedly up-
dating arguments, and parallels for contrasting arguments.

3.3.3 Semantics-level constraint

Among the ten constraints, audience-oriented constraint, visual
content generation constraint, interpretation framing constraint, and
narration ontology constraint are working on the semantics level.
Their major utilities are ensuring the specific meanings of the gen-
erated content to be consistent with general commonsense and
domain-specific knowledge, and also to be complete for use.

Audience-oriented constraint and narration ontology constraint
both shape the generation space of textual narrations. The former
comes from a higher level, i.e., external factors of the data story,
while the latter comes from a lower level, i.e., the given evidence.
These two constraints are usually represented as deterministic or
probabilistic Context-Free Grammars (CFGs), controlling the style
and scope of the narratives [18]. To constrain the style, we leverage
the combination rules of specialized keywords, sentence structures,
and transitions between sentences. For example, we use engaging
transitions like “... Now it is the turn to do it together ...” in data
stories for education; we exploit keywords with sense-of-belonging,
such as “our community” in data stories for advocacy; and we em-
ploy sentences with superlative statements, such as “... is the high-
est/ best of ...” in data stories for propaganda. To constrain the
scope, we map the ontology from the corresponding domain of the
evidence to the abstract grammar of narratives, both completing the
concepts inside the scope and removing those out of the scope.

Interpretation framing constraint can be viewed as a probabilis-
tic CFG, which is a tree with intermediate nodes spanning the
world, i.e., all possible candidate meanings, of specific concepts
or events [37]. The world is the context for interpretation, mostly
coming from the general commonsense. The process of framing is
reweighing the candidates belonging to the same world.

Visual content generation constraint is the model for model-
based generation. For data stories on topics related to natural sci-
ences, clinical practices, and engineering, visual illustrations are
often required to be physically real. Despite the current advance-
ments of Artificial Intelligence Generated Content (AIGC) tech-
niques, generating photorealistic videos that are physically real is

still challenging because elementary physical properties, such as
the spatial-temporal dynamics, are latent and long-tail distributed
in datasets, implying that they may not be correctly extracted dur-
ing training. Instead, they may be induced as shortcuts. This is
the drawback of model-free generation by nature. Consequently,
we may leverage the physical constraints provided by DSLs for 3D
modeling, such as Blender2 — we can synthesize Blender code for
programs rendering a 3D model, precisely edit the model by modi-
fying the program, and explicitly constraint the model with physical
properties from the first principle. Furthermore, for data stories on
topics related to history, public policy, and business, visual illus-
trations are usually expected to be animated drawings rather than
photorealistic videos. However, those animations can be a sophis-
ticated combination of components, such as spatially articulated
objects and temporally varied scenes, where the similar-sample-
based end-to-end generative models may be struggling [45]. The
straightforward solution also leverages a rule-based model gener-
ating local states, layout and rendering configurations, topological
relationships, and temporal state transitions of the components.

3.3.4 Execution-level constraint
Among the ten constraints, spatial-temporal structural constraint,
quantitative hypothesis space constraint, qualitative hypothesis
space constraint, and domain-specific knowledge constraint are
working on the execution level. Their major utilities are generat-
ing hypothesis spaces dynamically and verifying them in real-time.

Quantitative and qualitative hypothesis space constraints are dy-
namically generating hypothesis spaces to detect any possible data
insights, i.e., evidence of interest. A piece of interesting evidence
with insight comes from the shift from one way of explanation to
another, akin to the moment of representation shift in problem-
solving [4, 19, 36]. Analogous to the representation of a problem,
which determines selecting what information of the problem into
solving it, our hypothesis spaces consider putting which pieces of
evidence together to explain them. For example, the data on “the
Yellow River’s annual runoff in 1998” possesses multiple contexts,
such as the 1998 annual runoff of other rivers in China, the Yellow
River’s annual runoff in other years, the industry water demand of
the Yellow River drainage basin in 1998, and the annual runoff of
the upper Lanzhou part of the Yellow River. The hypothesis space
indicates the structure of observable variables, e.g., dyadic or tri-
adic, and the type of verification, e.g., statistical testing functions
or logical reasoning functions. Thereby insights can be detected
at the shifting from isolated data to contextualized data. Domain-
specific knowledge constraint works with quantitative and qualita-
tive hypothesis space constraints. While the latter two put evidence
together in different frames, the former puts grounded background
knowledge, either procedural or declarative knowledge, together
with evidence, to create insightful context shifting.

Spatial-temporal structural constraint is a robust infrastructure
for demonstrating the detected insights in the narrations. The vari-
ables are called in distinct parts and by various means, necessitating
the maintenance of numerical integrity and logical consistency. On
the temporal dimension, the lifecycles of the invariant are tracked to
avoid inconsistency between different calls. Also, variables being
modified with specific calculations are constrained with precondi-
tions and postconditions for state transition tracing. On the spatial
dimension, the relative changes of variables are tracked, such as
duplication of variables, chaining among triple variables, inversion
between dual variables, and recursion on multiple variables.

4 GENERAL DISCUSSIONS

In this perspective, we propose integrating constraints into the au-
tomatic generation of data stories to facilitate the creativity in sto-
rytelling alongside the preciseness in data analysis. We investigate

2https://www.blender.org/
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the requirements of these constraints and explore the possibility of
representing them through DSLs based on a realistic example. It
is important to note that the proposed taxonomy of constraints may
not be entirely mutually exclusive and collectively exhaustive —
there may be other specific constraints that are significant in dif-
ferent data stories and cannot be perfectly categorized within our
definition of constraints. Our primary aim is to provide a structured
framework for the data-driven storytelling community, which may,
in turn, inspire the development of a fine-grained taxonomy of con-
straints and their corresponding implementation techniques.

4.1 Integrating constraints into the current workflow

The data-driven storytelling community has made significant efforts
in developing powerful tools for creating data stories. Currently,
there are two schools of thought on the generative models — multi-
stage pipelines and end-to-end approaches. We propose that con-
straints should be incorporated into both approaches, through im-
plicit and explicit methods, respectively. In multi-stage pipelines,
different categories of constraints can be mapped to corresponding
stages [26] — such as analysis [50], planning [54], implementa-
tion [49], and communication [16] — and the modules within these
pipelines can be modified according to these constraints. Addi-
tionally, the generated content of different modules can be verified
against the relevant constraints, thereby implicitly integrating con-
straints into the workflow. For end-to-end approaches, which fea-
ture a higher degree of integration across the entire workflow [30],
constraints can be explicitly added by appending a constraint layer
to the final output of the tools and verifying the generated con-
tent against these constraints. In this way, we outline a framework
for integrating constraints into the generation workflow, which may
inspire further research on refining the individual tools within the
workflow with constraints at a more granular level.

4.2 Automating the entire workflow with constraints

Our ultimate goal is to automate the entire workflow of generat-
ing data stories, necessitating the automatic synthesis of constraints
rather than manual specification. Code generation techniques facil-
itate the automatic synthesis of constraint programs [53, 27], given
simple instructions, requirements, or textual narrations to be veri-
fied. Subsequently, the satisfaction of these constraints is verified
through language features, such as answer set planning over logic
programs [28], which has been applied to constrain visualizations
with design theories [34]. Although this is a rudimentary approach
to utilizing constraints, it treats constraint program verification as
“first-class citizens”, ensuring determinism. All uncertainties, am-
biguities, and factual errors introduced by generative models with
non-deterministic nature, such as the hallucination of Large Lan-
guage Models (LLMs), are subject to the top-level constraints.

Consequently, this framework preserves inherent freedom of
the random creativity characteristic of AIGC, while simultane-
ously ensuring that this creativity operates within a secure envi-
ronment. We hope this straightforward yet self-consistent frame-
work can serve as an accessible starting point for exploring the
synthesis of constraints through active interaction with generative
models. Indeed, the framework includes objective, subjective, and
context-dependent constraints. Quantitative and qualitative hypoth-
esis space constraints, spatial-temporal structural constraint, and vi-
sual content generation constraint are exactly objetive constraints,
reflecting data and the physical world. In contrast, theme-oriented
constraint, audience-oriented constraint, and interpretation framing
constraint are relatively subjective, influenced by human prefer-
ence. Additionally, domain-specific knowledge constraint and nar-
ration ontology constraint are context-dependent, sensitive to the
exact scope of the evidence and the target story. We would like to
clarify that the implementation of those heterogeneous constraints
according to different requirements, such as transforming domain-

specific knowledge into corresponding constraints, is beyond the
scope of this perspective article. Nonetheless, explicitly disen-
tangling objective, subjective, and context-dependent constraints
within our proposed framework and exploring their respective im-
plementations represents a significant direction for future research.

4.3 On the generality of constraints
While it is theoretically possible to automate the entire workflow
for generating data stories, a crucial challenge remains: full au-
tomation is contingent upon the availability of predefined constraint
sets, i.e., the DSLs for constraint representation. However, the ori-
gin of these DSLs poses a problem, as they are not readily avail-
able like off-the-shelf programming languages. In current practices,
most DSLs are manually designed through the collaborative efforts
of computer scientists and domain experts, a process that is both
time-consuming and costly. This may be acceptable for specific
applications requiring only a single DSL library, as DSL design is
a once-and-for-all endeavor there. Unfortunately, DSLs for repre-
senting constraints in data stories span multiple categories, diverse
requirements, and an ever-expanding range of domains. For in-
stance, within the ten constraint categories, there exist a vast array
of potential DSL instances. For the audience-oriented constraint,
the DSL syntax must be tailored to one specific audience group;
for the domain-specific knowledge constraint, the DSL semantics
must encode the background knowledge of a particular domain of
expertise; and let alone the narration constraint, the grammar of the
DSL must be designed on-the-fly based on the available evidence.
Although it is conceivable that we derive a comprehensive set of
constraints covering all potential domains, namely the so-called
“one-size-fits-all general constraint”, such an endeavor would re-
sult in a constraint system of prohibitively complexity, rendering it
intractable for both machine and human end-users.

The highly varied and frequently evolving demands for DSLs are
difficult to meet through human effort alone. Even if we manage to
manually craft these DSLs, the progress in automated data story
generation would be undermined — we would merely be shifting
human labor from one part of the workflow to another, even po-
tentially increasing the overall labor required. Consequently, we
find ourselves in a dilemma: GPLs, which easily accessible, are
unsuitable for representing constraints due to their overwhelming
complexity, whereas DSLs, which simplify specialized language
features, inherently lack generalizability across different domains.
To address this dilemma, rather than waiting for a universally appli-
cable constraint to emerge, a more practical solution might involve
automating the design of DSL-based constraints.

This solution is both feasible and evaluable. By adopting the
AutoDSL approach [42], which combines bottom-up data-driven
approaches and top-down principle-derived methods, we can auto-
matically create DSL-based constraints for data-driven storytelling
based on relevant materials and design principles [46]. The re-
sulting DSLs can be evaluated both quantitatively and qualita-
tively [14]. Quantitative evaluation checks the mapping from on-
tology elements in the reference model, i.e., concepts and relations
in the domain corpus, to DSL constructs of constraints; while qual-
itative evaluation takes the design guidelines of DSL as questions
for assessing the DSL-based constraints, from a user-centric per-
spective. This joint pipeline of design and evaluation leads to a
promising future where DSL-based constraints are designed auto-
matically, AIGC tools produce the necessary content and assets for
data stories, and the constraints are synthesized and verified auto-
matically. The integration of these approaches will enable content
creators to script and implement their data stories more seamlessly.

4.4 Valuing humans in data-driven storytelling
Concerns may arise regarding the fully automation of data story
generation and its potential severe impact on the content creation



ecosystem. It appears that integrating constraints with generators
could bridge the gap between creativity and preciseness, poten-
tially marginalizing content creators. However, humans remain in-
dispensable even in a future where constraints are fully realized.
Firstly, constraints are not generators. While constraints define a
feasible space for generation, generators determine which specific
points within the space are sampled as the generated content. This
indicates that the output space of AIGC tools remains significantly
larger than the ideal output space that aligns with content creators
on latent dimensions, such as aesthetic and ideological considera-
tions. This disparity underscores the necessity for human-machine
collaboration tools [26]. Moreover, constraints can be latent. Even
with automated DSL design tools, not all constraints can be spec-
ified purely based on domain corpora. Some constraints require
tacit knowledge from domain experts, necessitating a human-in-
the-loop approach. Lastly, neither generators nor constraints can
substitute for higher-level cognitive processes involving human fac-
tors, such as comprehensing, interpreting, and evolving the mean-
ing of data stories for humanity, and consequently, the metaphysical
planning of seed ideas. Indeed, AIGC tools with constraints may
merely alleviate human content creators from elementary technical
tasks, thereby allowing them to concentrate on intention alignment,
knowledge externalization, and metaphysical thinking.
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