
Generating Analytic Specifications for Data Visualization from Natural
Language Queries using Large Language Models

Subham Sahπ * Rishab Mitraπ † Arpit Narechaniaπ ‡

UNC Charlotte Georgia Institute of Technology Georgia Institute of Technology

Alex Endert§ John Stasko¶ Wenwen Dou||

Georgia Institute of Technology Georgia Institute of Technology UNC Charlotte

ABSTRACT

Recently, large language models (LLMs) have shown great promise
in translating natural language (NL) queries into visualizations, but
their “black-box” nature often limits explainability and debuggabil-
ity. In response, we present a comprehensive text prompt that, given
a tabular dataset and an NL query about the dataset, generates an
analytic specification including (detected) data attributes, (inferred)
analytic tasks, and (recommended) visualizations. This specifica-
tion captures key aspects of the query translation process, afford-
ing both explainability and debuggability. For instance, it provides
mappings from the detected entities to the corresponding phrases
in the input query, as well as the specific visual design principles
that determined the visualization recommendations. Moreover, un-
like prior LLM-based approaches, our prompt supports conversa-
tional interaction and ambiguity detection capabilities. In this pa-
per, we detail the iterative process of curating our prompt, present
a preliminary performance evaluation using GPT-4, and discuss the
strengths and limitations of LLMs at various stages of query transla-
tion. The prompt is open-source and integrated into NL4DV, a pop-
ular Python-based natural language toolkit for visualization, which
can be accessed at https://nl4dv.github.io.

Index Terms: Large language models; Natural language inter-
faces; Visualization; Prompt engineering;

1 INTRODUCTION AND BACKGROUND

Data visualization is an important component of data-driven sto-
rytelling [17]. However, existing tools for creating visualizations
often require specialized knowledge, either through programming
or using a graphical user interface (GUI), which limits authoring,
customization, and analysis capabilities to experts.

One way to overcome this limitation and increase user ac-
cess is by using natural language (NL) to create visualizations.
Cox et al. [7] first introduced the concept of creating visualiza-
tions from structured NL commands (NL2VIS). Since then, many
natural language interfaces (NLIs) and toolkits for visualization
have emerged that use keyword-based or semantic parsing-based
approaches to interpret queries [11, 43, 29, 26, 16, 36, 35, 37, 39].
NL4DV [29, 26] is one such toolkit that utilizes a rules-based ap-
proach, employing dependency parsers like CoreNLP [24] to pro-
vide an analytic specification that includes detected attributes, in-
ferred tasks, and visualization recommendations from an NL query

*e-mail: ssah1@uncc.edu
†e-mail: rmitra34@gatech.edu
‡e-mail: arpitnarechania@gatech.edu
§e-mail: endert@gatech.edu
¶e-mail: stasko@cc.gatech.edu
||e-mail: wdou1@uncc.edu

π authors contributed equally

and dataset. However, approaches like NL4DV require developers
to create complex rules, which can limit the range and flexibility
of input NL queries. Advancements in natural language processing
(NLP) and deep learning have further improved NL2VIS systems,
which utilize transformers to interpret queries [21, 20].

More recently, large language models (LLMs) like GPT-4 [33],
Claude [3], and Gemini [12] have been shown to effectively an-
alyze and extract meaningful information, key concepts, relation-
ships, and trends from unstructured textual data [25]. These ca-
pabilities have since been utilized for creative writing [13], code
generation [5, 15], dataset curation [18], and visualization cre-
ation [6, 34, 9, 41]. One notable LLM-based visualization sys-
tem, chartGPT [41], has outperformed a parsing-based system
(NL4DV [29]) and a deep-learning based system (ncNet [21]). In
spite of their superior performance, LLM-based systems have cer-
tain documented limitations, such as providing insufficient expla-
nations for the system’s generated output [8] and being inconsistent
in generating visualizations [23]. These unexplainable, uncertain
systems impact transparency and trust, making it difficult for users
to find and fix errors. In the NL to SQL domain, several explain-
able systems have already helped users identify and fix errors in the
generated SQL queries [30, 10, 27], motivating this work for more
explainable NL2VIS scenarios.

In this work, we present a new LLM-based text prompt (NL4DV-
LLM) that, like NL4DV [29, 26], returns an analytic specification
containing data attributes, analytic tasks, and relevant visualiza-
tions. This specification, presented as a structured JSON object
(preferred by developers) or a step-by-step natural language expla-
nation (preferred by users), affords explainability and debuggabil-
ity by documenting key aspects of the query translation process.
For example, it provides the mappings between the detected enti-
ties and the corresponding phrases in the input query as well as the
specific visual design principles that determined the visualization
recommendation. Furthermore, this prompt offers conversational
interaction and ambiguity detection functionalities which are cur-
rently unsupported in other LLM-based NL2VIS systems. Essen-
tially, users can ask follow-up queries to alter previously generated
analytic specification(s) based on their evolving needs. If a query
also contains ambiguities (e.g. a query phrase that can map to multi-
ple data attributes), the prompt outputs multiple visualizations, one
for each ambiguous entity. However, the prompt does not support
query resolution since it is a programmatic capability outside the
scope of query translation [26]. Figure 1 highlights this key differ-
ence in the capabilities of NL4DV and NL4DV-LLM.

We also conducted a preliminary evaluation of NL4DV-LLM
against NL4DV using the NLVCorpus dataset [38] and GPT-4 [33]
as the prompt’s engine. We found that in our corpus of 740 queries
across three datasets, our prompt achieved an accuracy of 87.02%
compared to NL4DV’s accuracy of 64.05%. However, on average,
the LLM took around 25 seconds to generate analytic specifica-
tions, which can be a potentially unreasonable wait time for users.
We discuss the tradeoffs and strengths of this prompt, which we
hope guides future developments in natural language to visualiza-

https://nl4dv.github.io

Attribute
Identifier

Task
Identifier

Visualization Spec.
Generator

Query
Parser

“Input
Query”

Output
JSON

Aliases

Parsing rules
& Keywords

Query Resolver

Conversation Manager

Query Processor

Figure 1: Architecture diagram of NL4DV [29, 26] highlighting the
modules supported by NL4DV-LLM (in orange), with arrows indicat-
ing the flow of information.

tion interfaces. Our primary contributions are the following:
• An LLM-based NL2VIS text prompt (NL4DV-LLM) that

translates NL queries about a tabular dataset into a compre-
hensive analytic specification that includes detected attributes,
analytic tasks, and a recommended visualization.

• Description of our iterative process to curate the prompt.
• Findings from a preliminary evaluation of NL4DV-LLM

against NL4DV and a discussion on the prompt’s strengths
and tradeoffs.

2 DEVELOPING THE NL4DV-LLM PROMPT

To make LLM-based NL2VIS systems more explainable, we cu-
rated a text prompt, NL4DV-LLM. Given a tabular dataset and a
natural language query about the dataset, this prompt produces a
detailed analytic specification, including data attributes, analytic
tasks, visualizations, and additional metadata explaining the trans-
lation process. NL4DV-LLM’s analytic specification essentially
tries to replicate the output of NL4DV [29], a popular semantic
parsing-based toolkit. In this section, we describe the components
of our prompt and the iterative process of engineering it.

2.1 Prompt Components
Figure 2 illustrates the various components of NL4DV-LLM along
with several example visualization outputs on different kinds of in-
put queries. We describe each component below.

2.1.1 Analytic Tasks & Visualization Design Knowledge
NL4DV’s output analytic specification includes Amar et al.’s [1]
low-level components of analytic activity (i.e. “analytic tasks”) as
inferred from the input query. To include these analytic tasks as
part of NL4DV-LLM’s output, we first probed GPT-4 to check if
it has ‘learnt’ the theory about these analytic tasks during its train-
ing. Upon finding GPT-4 has not yet learnt about analytic tasks, we
decided to supply this knowledge in the prompt. Specifically, we
curated a structured JSON comprising the Name, Description, a
Pro Forma Abstract, Examples, Attribute Data Types and Vi-
sual Encodings, Attributes and Visual Encodings Description,
and Recommended Visualization for seven analytic tasks (Corre-
lation, Distribution, Derived Value, Trend, Filter, Sort, and Find Ex-
tremum). The Attribute Data Types and Visual Encodings prop-
erty details the preferred visual encodings (e.g., “X axis”) and the
datatypes (e.g., “Quantitative”) that can be mapped to them; the At-
tributes and Visual Encodings Description provides instructions
on how to encode these visual encodings and datatypes in Vega-
Lite. The Recommended Visualization property specifies the vi-
sualization types most suitable for the given task, according to the
design heuristics in NL4DV [29].

Using an “in-context-learning” [19] approach, we include this
structured Task JSON as part of the main prompt. We format this

taxonomy as a JSON for succinctness and clarity, and to remove
any potential ambiguities that may arise when utilizing NL.

2.1.2 Conversational Interaction
Similar to NL4DV [29], NL4DV-LLM supports modifications to
previously generated visualizations via follow-up queries. NL4DV
utilizes a unique follow-up taxonomy that classifies follow-up
queries as one of three types: add, remove, replace for one or more
components (specifically attributes, tasks, visualization types) of an
analytic specification. We replicate this taxonomy through a JSON
array, shown in Figure 2, that contains its resultant permutations
(e.g. add + analytic task), instructions describing the necessary
steps to perform each operation, and follow-up query examples to
provide context for each permutation.

2.1.3 Instructions Based on Query Type
The key instruction in our prompt to output an analytic specification
is as follows:

“...classify the below natural language queries into the respec-
tive analytic tasks they map to. There can be one or more analytic
tasks detected in the input natural language query. Return the visu-
alization type in the form of a Vega-Lite specification where it reads
data from the url above.”

The instructions included in this component specify explicit
steps on handling common NL query types: ambiguous queries,
fully specified queries, underspecified queries, and follow-up
queries. Figure 2 illustrates an example of each query type and
its corresponding visualization.

Underspecified Queries: We utilize NL4DV’s concept of un-
derspecified queries, which is defined as queries that “implicitly re-
fer to tasks and visualizations [29]. If the query does not contain
explicit references to tasks or visualizations, then the prompt in-
structs the LLM to utilize the design guidelines posited by the Ana-
lytic Task JSON, “infer the task that is best suited with the detected
attributes’ datatypes”, and “generate a visualization specification
using this inferred task and detected attributes”.

Fully Specified Queries: We also define fully specified queries
like NL4DV, where the NL query makes explicit references to at
least one attribute, task, and visualization type [29]. The key in-
struction described previously is sufficient to ensure coverage of
fully specified queries; no other instructions are required.

Ambiguous Queries: The prompt defines ambiguous queries as
queries “with partial references to multiple data attributes.” In such
cases, the prompt instructs outputting multiple visualizations, one
for every attribute that a keyword potentially refers to, to maximally
cover the user’s intent.

Follow-up Queries: Since follow-up queries alter components
(tasks, attributes, or visualization types) of a previously generated
analytic specification rather than creating an entirely new one, the
prompt includes another set of instructions to handle follow-up
queries. For this query type, users must append a previously gen-
erated analytic specification to the end of the prompt. With this
previously generated analytic specification, the primary instruction
to handle follow-up queries is as follows:

“...classify the below natural language query into the respec-
tive follow-up operations they map to. Utilize the previous ana-
lytic specification (including the attributeMap, taskMap, and vis-
List) and modify this specification to reflect the changes specified
and requested in the natural language query. Return the visualiza-
tion type in the form of a Vega-Lite specification where it reads data
from the url above.”

2.1.4 Response JSON
As shown in Figure 2, NL4DV-LLM’s output replicates NL4DV’s,
and contains an attributeMap that is composed of the dataset at-
tributes inferred from the natural language query, a taskMap com-

Figure 2: NL4DV-LLM prompt for Visualization Generation

posed of the inferred analytic tasks, and a visList that includes the
Vega-Lite specifications relevant to the query [29]. An example of
this response is provided in the prompt itself, along with the instruc-
tion, “Here is the JSON object that the response should be returned
as”. Also shown in Figure 2, the example JSON object includes
explicit instructions for each property, which constrains the output
as much as possible, thereby increasing the prompt’s consistency.

We provide an additional constraint in NL4DV-LLM’s prompt
by stating, “Do not include any additional prose in your response.
I only want to see the JSON.” This instruction ensures that the LLM
only outputs the response JSON object, suitable for developers who
are building NL2VIS applications on top of the prompt. Without
this instruction, the LLM provides natural language explanations
for its steps in formulating the response JSON for a given NL query.
Users can opt to delete this sentence from the prompt if they would
like to view additional explainable behavior from the LLM.

2.1.5 Data Subset
For the LLM to detect references to attributes and records in the
input query, it needs access to the entire dataset. However, due to a
token limit imposed by the GPT-4 API, it is not possible to include
the entire dataset as part of the prompt. Consequently, we select all
dataset headers (columns) and randomly subset ten records (rows)
for the prompt. While this choice alleviates the token-limit con-
cern, it still has two limitations. First, for really wide datasets, the
large number of columns may still exceed the token limit; and sec-
ond, the ten sample rows may not be representative of the entire
dataset and may result in false negatives in the query translating
process. To resolve cases where the amount of dataset columns
exceeds the prompt’s token limit, users can leverage methods in ex-
ploratory data analysis such as Linear Discriminant Analysis [40]
that only includes the most relevant columns as part of the prompt.

2.1.6 NL Queries
We finally conclude our prompt by including a list of one or more
input natural language queries for processing.

2.2 Prompt Iterations

Included a JSON object
describing analytic tasks
(fundamental operations that
users perform when interacting
with data visualizations).

Added recommended
visualizations and examples for
each task in the analytic Task
JSON. Included a complete
response analytic specification
that contained an example of the
attributeMap, taskMap, and
visList. Detailed descriptions were
provided for properties within the
attributeMap, taskMap, and visList
to match NL4DV’s output
structure.

Added support for new tasks:
Sort, Filter, and Find Extremum
to the analytic task JSON. Also
included descriptions of
Attributes and Visual Encodings
to guide how to map attributes to
visual elements and specify
constraints for generating the
analytic specification.

Added instructions to support
ambiguous and underspecified
queries.

Version 2

Version 1
Version 3

Version 4

Added a conversational
interaction JSON describing low-
level operations for
conversational interaction queries
and another set of instructions to
handle such queries.

Version 5

Figure 3: Illustration of our iterative prompt development process.

Figure 3 illustrates how our prompt underwent multiple itera-
tions to improve its performance in analytic specification genera-

tion and support a wide variety of NL queries. The initial version
of the prompt contained a JSON object describing a subset of an-
alytic tasks found in Amar et al. [1]: Correlation, Derived Value,
Distribution, and Trend. However, our prompt was often unable
to detect the correct tasks for a given NL query. In addition, the
prompt only outputted a Vega-Lite specification with no explana-
tions whatsoever, affording limited explainability to the user. In
Version 2, we augmented each task in the analytics task JSON
object with example queries and recommended visualizations. In
addition, we also included a sample analytic specification, simi-
lar to NL4DV’s [29], including an attributeMap and a taskMap,
to enhance the prompt’s explainability to the user. For example,
users could now view the mappings between the detected dataset
attributes and the corresponding phrase in the input NL query.

Next, in Version 3, we enhanced the analytic task JSON by in-
troducing support for other analytic tasks, namely Sort, Filter, and
Find Extremum. An Attributes and Visual Encodings Description
property was also included for each task, providing the LLM heuris-
tics on task inference for underspecified queries. Version 4 pro-
vided additional instructions to handle ambiguous and underspeci-
fied queries since earlier prompt versions were unable to generate
accurate visualizations for such query types.

Finally, in version 5, we introduced a conversational interac-
tion JSON describing the low-level taxonomy introduced in Mi-
tra et al. [26] and a distinct set of instructions to process follow-up
queries. With this version, we ensure coverage of all natural lan-
guage query types supported by NL4DV [29].

3 PRELIMINARY EVALUATION

3.1 Setup and Design

To study our prompt’s performance across different NL2VIS sce-
narios, we conducted a preliminary evaluation using GPT-4 as
our prompt engine and NLVCorpus [38] as our dataset benchmark
(query corpus). We chose GPT-4 as it was considered as the state-
of-the-art LLM during the time of evaluation (February - March
2024). We chose NLVCorpus for its human-generated utterance
sets, which provide a realistic and robust representation of NL
queries across three dataset domains: movies, cars, and superstore.

To evaluate our prompt’s conversational interaction capabilities,
we included follow-up queries from the NL4DV website [31]. We
did not use NLVCorpus’ sequential queries, as many requested un-
supported aesthetic changes (e.g., Use major gridlines). Our com-
posite dataset comprised 740 queries. We executed all 740 queries
via our prompt on GPT-4 and evaluated the outputs for correctness.
We defined a query to be correct if the generated analytic specifi-
cation accurately captured the query intent and the resultant visual-
ization included everything asked for in the query.

We provide the dataset corpus (used for evaluation), text prompt
(NL4DV-LLM), annotations on the prompt’s outputs, and a gallery
of sample visualization outputs which can be accessed at https:
//github.com/nl4dv/NL4DV-LLM-supplemental-material.

3.2 Data Annotation Procedure

We process all the queries in our evaluation corpus through NL4DV
and NL4DV-LLM and record the response times for each query.
We assess whether the output for each query should be deemed as
“accurate,” signifying if the visualization matched the query’s in-
tent and included all analytic tasks and attributes requested by the
query. If the output failed to meet these requirements, we marked
the visualization as “inaccurate” and specified factors that caused
the visualization’s inaccuracy. Common reasons for inaccuracies
were that the visualization was missing an analytic task, attribute,
or encoded incorrect attribute(s). Furthermore, the systems some-
times did not generate outputs for certain queries. The outputs, in
these cases, were marked as wholly inaccurate.

https://github.com/nl4dv/NL4DV-LLM-supplemental-material
https://github.com/nl4dv/NL4DV-LLM-supplemental-material

The first two co-authors served as annotators to evaluate the ac-
curacy of the resulting visualizations. They first analyzed small
subsets of the dataset to ensure that their analyses were fully cali-
brated with each other, creating a consistent standard in their anal-
ysis. Then they went through the systems’ responses for the en-
tire corpus of queries and determined if the responses precisely an-
swered the queries. They compared their annotations with each
other and discussed any discrepancies in their results to come to a
consensus. In cases where the first two co-authors remained split
in their decision, the third co-author would use their decision as the
tiebreaker for the analysis.

Since many of the input queries in the evaluation dataset could
be considered as underspecified or ambiguous, multiple visualiza-
tions can be regarded as “accurate” for these types of queries. For
example, in the movies’ dataset, there can be multiple viable visual-
izations for the query “Correlate budget, gross, and rating”, where
the keyword “rating” can refer to the attributes “Content Rating”,
“Rotten Tomatoes Rating”, or “IMDb Rating”. For such cases, the
annotators assessed if the output contained any valid interpretation
of the query. Therefore, the annotators opted not to refer to the
ground truth provided for each query in NLVCorpus for the major-
ity of their annotations, and instead only referred to the ground truth
for any discrepancies in their results.

3.3 Results and Discussion

By manually analyzing and annotating every visualization gener-
ated by each NL4DV-LLM & NL4DV, we discover that NL4DV-
LLM with GPT-4 outperforms the NL4DV in accuracy but has sig-
nificantly longer response times.

Out of the 740 queries, NL4DV-LLM generated 644 accurate
responses, resulting in an accuracy rate of 87.02%. NL4DV gen-
erated 474 accurate responses, resulting in an accuracy rate of
64.05%. The prompt’s accuracy was mostly consistent across the
three test datasets: 84.98% on the cars’ dataset, 89.89% accuracy
on the movies’ dataset, and 86.5% on the superstore dataset. How-
ever, NL4DV’s accuracies on the movies’ dataset (75.49%) and
cars dataset (70.73%) were significantly higher than the superstore
dataset (40%), potentially due to the superstore dataset’s complex-
ity and high syntactic similarity among its attributes. A previous
evaluation reported that learning-based NL2VIS system ncNet [21]
had an accuracy of about 45% and another LLM-based system
chartGPT [41] had an accuracy of about 79%, albeit on the nvBench
dataset and a subtle distinction in its definition of accuracy [41].
These findings suggest that our prompt’s accuracy is comparable
to, if not slightly higher than, previous systems.

Notably, our prompt handled a wide range of query structures
and forms, including underspecified and ambiguous queries. For
example, our prompt was able to apply transformations and com-
putations to dataset values to create new “derived” attributes (e.g.
creating a new attribute Profit from Production Budget and World-
wide Gross in the movies dataset), which semantic parsing-based
approaches cannot generally support. However, there were a few
queries that resulted in inaccurate outputs. Common reasons for
inaccuracy were malformed response JSON objects or well-formed
JSON objects with incorrect Vega-Lite syntax. Such occurrences
can undermine user trust, highlighting the need for future systems to
implement appropriate safeguards. In addition, certain outputs were
misleading due to incorrect associations between the data attributes
and the visual encodings. For example, for the query, “Show to-
tal profit across genres,” the y-axis might be labeled “Total profit”
but actually use “Worldwide Gross” as the data field, making the
visualization confusing to the user.

Lastly, NL4DV-LLM’s average response time across all 740
queries was 25 seconds, significantly longer than NL4DV’s aver-
age response time of 3 seconds [29]. Such a long wait time can
impact the prompt’s usability. We attribute this high response time

to our prompt’s extensive size. However, initial testing with another
LLM (GPT-4o mini) demonstrated improved response times.

4 LIMITATIONS AND FUTURE WORK

We aimed to make our prompt as explainable as possible by mod-
eling the query interpretation process into the analytic specification
JSON. This approach helped us explain system behavior across dif-
ferent datasets and queries. However, in the prompt, we also looked
to incorporate confidence scores for the detected attributes, tasks,
and visualization types in the response JSON, much like the con-
fidence scores in NL4DV [29]. The confidence scores in NL4DV
measure the semantic and syntactic similarity between the detected
entities and the query phrases that they map to through functions
like cosine similarity and Wu-Palmer scoring [42]. However, whilst
implementing this feature, we found that GPT-4 was unable to prop-
erly calculate token similarity scores or produce confidence scores
meaningful to the user. This shows a limitation in our prompt’s
explainability absent in parsing-based NL2VIS systems.

Next, we conducted our preliminary evaluation during February
2024 and March 2024. At the time, OpenAI’s GPT-4 was con-
sidered as the state-of-the-art LLM. Since then, there have been
a number of other LLMs released, like Claude-3.5 [4] and GPT-
4o [32] that have reported outperforming GPT-4 in a number of
benchmarking tasks. Furthermore, GPT-4 itself may have under-
gone updates and changes, potentially affecting consistency, output
accuracy, and response time. Future work is planned to conduct
evaluations across different LLMs.

Finally, we conducted our preliminary evaluation using the NLV-
Corpus dataset, which only contains queries for three datasets. For
a more thorough evaluation, we plan to utilize more diverse and
comprehensive dataset benchmarks such as nvBench [22], which
contains over 25,000 queries for 105 datasets.

5 CONCLUSION

We presented NL4DV-LLM, an LLM-based prompt that generates
analytic specifications from a dataset subset and a natural language
query, supporting traditional NL2VIS capabilities. Preliminary
evaluation shows promise but also highlights limitations affecting
trust and usability. We share our prompt curation experiences to
guide future developers in NL2VIS tasks.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF CNS-2323795.
We thank members of the Georgia Tech Visualization Lab and the
Charlotte Visualization Center for their helpful feedback at different
stages of this work. We used Google Scholar [14], vitaLITy [28],
and vitaLITy 2 [2] to assist us during our literature review.

REFERENCES

[1] R. A. Amar, J. R. Eagan, and J. T. Stasko. Low-level components
of analytic activity in information visualization. IEEE Symposium on
Information Visualization, 2005. INFOVIS 2005., pp. 111–117, 2005.
2, 4

[2] H. An, A. Narechania, E. Wall, and K. Xu. vitaLITy 2: Reviewing
Academic Literature Using Large Language Models. NLVIZ Work-
shop (IEEE VIS), 2024. 5

[3] Anthropic. Model card and evaluations for claude models. 2023. 1
[4] Anthropic. Claude 3.5 Sonnet. https://www.anthropic.com/
news/claude-3-5-sonnet, Year accessed. Accessed: 2024-07-19.
5

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374,
2021. 1

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

[6] Q. Chen, S. Pailoor, C. Barnaby, A. Criswell, C. Wang, G. Durrett, and
I. Dillig. Type-directed synthesis of visualizations from natural lan-
guage queries. Proc. ACM Program. Lang., 6(OOPSLA2), oct 2022.
doi: 10.1145/3563307 1

[7] K. Cox, R. E. Grinter, S. L. Hibino, L. J. Jagadeesan, and D. Man-
tilla. A multi-modal natural language interface to an information vi-
sualization environment. International Journal of Speech Technology,
4:297–314, 2001. 1

[8] V. Dibia. LIDA: A Tool for Automatic Generation of Grammar-
Agnostic Visualizations and Infographics using Large Language Mod-
els”. In D. Bollegala, R. Huang, and A. Ritter, eds., Proceedings of
the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 3: System Demonstrations), pp. 113–126. Associa-
tion for Computational Linguistics, Toronto, Canada, July 2023. doi:
10.18653/v1/2023.acl-demo.11 1

[9] V. Dibia and Çağatay Demiralp. Data2Vis: Automatic Generation
of Data Visualizations Using Sequence to Sequence Recurrent Neural
Networks, 2018. 1

[10] A. Elgohary, C. Meek, M. Richardson, A. Fourney, G. Ramos, and
A. H. Awadallah. NL-EDIT: Correcting semantic parse errors through
natural language interaction. arXiv preprint arXiv:2103.14540, 2021.
1

[11] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. Data-
tone: Managing ambiguity in natural language interfaces for data vi-
sualization. In Proceedings of the 28th annual acm symposium on user
interface software & technology, pp. 489–500, 2015. 1

[12] Gemini. https://gemini.google.com/. Accessed: July 18, 2024.
1

[13] C. Gómez-Rodrı́guez and P. Williams. A confederacy of models: A
comprehensive evaluation of LLMs on creative writing. arXiv preprint
arXiv:2310.08433, 2023. 1

[14] Google Scholar. https://scholar.google.com, 2024. 5
[15] Z. Gu, J. Fan, N. Tang, S. Zhang, Y. Zhang, Z. Chen, L. Cao, G. Li,

S. Madden, and X. Du. Interleaving Pre-Trained Language Mod-
els and Large Language Models for Zero-Shot NL2SQL Generation.
arXiv preprint, 2023. 1

[16] J.-F. Kassel and M. Rohs. Valletto: A multimodal interface for ubiq-
uitous visual analytics. In Extended abstracts of the 2018 CHI confer-
ence on human factors in computing systems, pp. 1–6, 2018. 1

[17] C. N. Knaflic. Choosing an Effective Visual, chap. 2, pp. 35–69. John
Wiley & Sons, Ltd, 2015. doi: 10.1002/9781119055259.ch2 1

[18] H.-K. Ko, H. Jeon, G. Park, D. H. Kim, N. W. Kim, J. Kim, and
J. Seo. Natural language dataset generation framework for visualiza-
tions powered by large language models. In Proceedings of the CHI
Conference on Human Factors in Computing Systems, pp. 1–22, 2024.
1

[19] G. Li, X. Wang, G. Aodeng, S. Zheng, Y. Zhang, C. Ou, S. Wang, and
C. H. Liu. Visualization Generation with Large Language Models: An
Evaluation. arXiv preprint arXiv:2401.11255, 2024. 2

[20] C. Liu, Y. Han, R. Jiang, and X. Yuan. Advisor: Automatic visual-
ization answer for natural-language question on tabular data. In 2021
IEEE 14th Pacific Visualization Symposium (PacificVis), pp. 11–20.
IEEE, 2021. 1

[21] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin. Natural Lan-
guage to Visualization by Neural Machine Translation. IEEE Trans-
actions on Visualization and Computer Graphics, pp. 1–1, 2021. doi:
10.1109/TVCG.2021.3114848 1, 5

[22] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin. Natural language
to visualization by neural machine translation. IEEE Transactions on
Visualization and Computer Graphics, 28(1):217–226, 2021. 5

[23] P. Maddigan and T. Susnjak. Chat2VIS: Generating Data Visualiza-
tions via Natural Language Using ChatGPT, Codex and GPT-3 Large
Language Models. IEEE Access, 11:45181–45193, 2023. doi: 10.
1109/ACCESS.2023.3274199 1

[24] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky. ”The Stanford CoreNLP Natural Language Processing
Toolkit”. In K. Bontcheva and J. Zhu, eds., Proceedings of 52nd An-
nual Meeting of the Association for Computational Linguistics: Sys-
tem Demonstrations, pp. 55–60. Association for Computational Lin-
guistics, Baltimore, Maryland, June 2014. doi: 10.3115/v1/P14-5010

1
[25] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Am-

atriain, and J. Gao. Large Language Models: A Survey, 2024. 1
[26] R. Mitra, A. Narechania, A. Endert, and J. Stasko. Facilitating conver-

sational interaction in natural language interfaces for visualization. In
2022 IEEE Visualization and Visual Analytics (VIS), pp. 6–10. IEEE,
2022. 1, 2, 4

[27] A. Narechania, A. Fourney, B. Lee, and G. Ramos. DIY: Assessing
the correctness of natural language to SQL systems. In Proceedings of
the 26th International Conference on Intelligent User Interfaces, pp.
597–607, 2021. 1

[28] A. Narechania, A. Karduni, R. Wesslen, and E. Wall. vitaLITy: Pro-
moting Serendipitous Discovery of Academic Literature with Trans-
formers & Visual Analytics. IEEE Transactions on Visualization and
Computer Graphics, 28(1):486–496, 2022. doi: 10.1109/TVCG.2021
.3114820 5

[29] A. Narechania, A. Srinivasan, and J. Stasko. NL4DV: A toolkit for
generating analytic specifications for data visualization from natural
language queries. IEEE Transactions on Visualization and Computer
Graphics, 27(2):369–379, 2020. 1, 2, 4, 5

[30] Z. Ning, Y. Tian, Z. Zhang, T. Zhang, and T. J.-J. Li. Insights into
Natural Language Database Query Errors: From Attention Misalign-
ment to User Handling Strategies. ACM Transactions on Interactive
Intelligent Systems, 2024. 1

[31] Sample Queries: NL4DV Showcase. https://nl4dv.github.io/
nl4dv/showcase.html. Accessed: July 18, 2024. 4

[32] OpenAI. GPT-4o Contributions. https://openai.com/

gpt-4o-contributions/, 2024. Accessed: 2024-07-19. 5
[33] OpenAI et al. GPT-4 Technical Report, 2024. 1
[34] G. Poesia, O. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and

S. Gulwani. Synchromesh: Reliable code generation from pre-trained
language models, 2022. 1

[35] V. Setlur, M. Tory, and A. Djalali. Inferencing underspecified natural
language utterances in visual analysis. In Proceedings of the 24th
International Conference on Intelligent User Interfaces, IUI ’19, p.
40–51. Association for Computing Machinery, New York, NY, USA,
2019. doi: 10.1145/3301275.3302270 1

[36] A. Srinivasan, B. Lee, N. Henry Riche, S. M. Drucker, and K. Hinck-
ley. InChorus: Designing consistent multimodal interactions for data
visualization on tablet devices. In Proceedings of the 2020 CHI con-
ference on human factors in computing systems, pp. 1–13, 2020. 1

[37] A. Srinivasan, B. Lee, and J. Stasko. Interweaving Multi-
modal Interaction With Flexible Unit Visualizations for Data Explo-
ration. IEEE Transactions on Visualization and Computer Graphics,
27(8):3519–3533, Aug. 2021. doi: 10.1109/tvcg.2020.2978050 1

[38] A. Srinivasan, N. Nyapathy, B. Lee, S. M. Drucker, and J. Stasko. Col-
lecting and characterizing natural language utterances for specifying
data visualizations. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–10, 2021. 1, 4

[39] A. Srinivasan and J. Stasko. Orko: Facilitating Multimodal Interaction
for Visual Exploration and Analysis of Networks. IEEE Transactions
on Visualization and Computer Graphics, 24(1):511–521, 2018. doi:
10.1109/TVCG.2017.2745219 1

[40] A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien. Linear dis-
criminant analysis: A detailed tutorial. AI Commun., 30(2):169–190,
jan 2017. doi: 10.3233/AIC-170729 4

[41] Y. Tian, W. Cui, D. Deng, X. Yi, Y. Yang, H. Zhang, and Y. Wu.
ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natu-
ral Language, 2023. 1, 5

[42] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In ACL
’94: Proceedings of the 32nd annual meeting on Association for Com-
putational Linguistics, ACL ’94, p. 133–138. Association for Compu-
tational Linguistics, USA, 1994. doi: 10.3115/981732.981751 5

[43] B. Yu and C. T. Silva. FlowSense: A natural language interface for
visual data exploration within a dataflow system. IEEE transactions
on visualization and computer graphics, 26(1):1–11, 2019. 1

https://gemini.google.com/
https://scholar.google.com
https://nl4dv.github.io/nl4dv/showcase.html
https://nl4dv.github.io/nl4dv/showcase.html
https://openai.com/gpt-4o-contributions/
https://openai.com/gpt-4o-contributions/

	Introduction and Background
	Developing the NL4DV-LLM Prompt
	Prompt Components
	Analytic Tasks & Visualization Design Knowledge
	Conversational Interaction
	Instructions Based on Query Type
	Response JSON
	Data Subset
	NL Queries

	Prompt Iterations

	Preliminary Evaluation
	Setup and Design
	Data Annotation Procedure
	Results and Discussion

	Limitations and Future Work
	Conclusion

