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Fig. 1: Document projections of COVID-19 open research articles with gradient-based word explanations. (a) A projection from a
pre-trained BERT model, featuring a spatial word cloud showing key words that impact the document projection. (b) Projection from a
fine-tuned BERT model, refined based on the data domain. The resulting spatial word cloud captures and explains the differences
between the two embedding spaces, and how well the refined model captures the domain. (c) The projection heatmap for a selected
document, illustrating the individual word impact on document 2D positioning. (d) Refined projection heatmap of the same document,
highlighting the word "smoking", which reflects the domain.

Abstract— Dimension reduction (DR) can transform high-dimensional text embeddings into a 2D visual projection facilitating the
exploration of document similarities. However, the projection often lacks connection to the text semantics, due to the opaque nature of
text embeddings and non-linear dimension reductions. To address these problems, we propose a gradient-based method for visualizing
the spatial semantics of dimensionally reduced text embeddings. This method employs gradients to assess the sensitivity of the
projected documents with respect to the underlying words. The method can be applied to existing DR algorithms and text embedding
models. Using these gradients, we designed a visualization system that incorporates spatial word clouds into the document projection
space to illustrate the impactful text features. We further present three usage scenarios that demonstrate the practical applications of
our system to facilitate the discovery and interpretation of underlying semantics in text projections.
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Dimension Reduction (DR) techniques are popular for visualizing and
analyzing collections of text documents. They enable users to explore
patterns, trends, and relationships within the data in a low-dimensional
space, which is more intuitive for human understanding [39]. Recent
advancements in deep learning models have significantly improved
our capacity to process complex textual data. The text embeddings
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extracted from these models capture the contextual relationships be-
tween documents, enabling the projection of documents into a two-
dimensional space for exploratory analysis [3]. The spatial layout in
the projection space naturally aligns with human cognitive processes,
through the visual proximity ≈ similarity metaphor [3,33]. Specifically,
the spatial distance of documents in the projection represents their
relative similarity, providing insights into document relationships.

However, interpreting the projections of text embeddings generated
by DR techniques remains a challenge [39]. They lack an inherent
connection to the semantics of the underlying text. Users often strug-
gle with questions such as "Why is this document positioned here",
or "What causes these documents to form a cluster in the projection
space?". In the absence of methods to help answer these questions,
users often must inspect individual documents to reason about similar-
ities, somewhat defeating the purpose of DR in the first place. Thus,
providing insights into these questions is important for the exploratory
analysis of DR projections.

Recent efforts explored gradient-based explanations for DR projec-
tions. Faust et al. proposed DimReader to use gradients to explain
non-linear projections for structured datasets [19]. By calculating the
gradients of the projection with respect to underlying features, Dim-
Reader generated axis lines that reveal the sensitivities of the projection
to underlying data features [19]. This method shows the impact of
input data features on the DR space, helping users understand the com-
plex projection space. However, DimReader is designed for structured
datasets, where the high-dimensional data features are clearly defined
and interpretable. In contrast, text data is first embedded into high-
dimensional representations, via deep learning embedding models, that
lack interpretable features and are then projected, making analysis and
understanding of the DR space more complicated. Therefore, a DRs of
text embeddings require specialized approaches to capture and illustrate
the semantics of the DR space.

To address these problems, we propose a system to visualize the
spatial semantics of text embedding DRs to enhance the understanding
of document projections, providing users with intuitive and informative
visualizations that assist in reasoning about document placement and
clustering. This system leverages projection gradients derived from the
embedding model to illustrate the influence of underlying text features
on document positioning within the 2D projection spaces. Specifically,
we calculate the projection gradients with respect to individual words to
capture their impacts on the document in the projection space. Addition-
ally, we introduce spatial word clouds to display the words that most
significantly influence documents, aggregating common words across
documents, while respecting the spatial layout of the projection space.
Words are overlayed within the projection space to reflect the layout
of the documents they originate from, enhancing the understanding of
document organization patterns.

The contributions of this paper include:

• A method for calculating gradients in DRs of text embeddings

• A visualization system that integrates gradient impacts into the
projection space via spatial word clouds

• Three usage scenarios to demonstrate the practical applications
of our system in data analysis tasks, showing how they uncover
meaningful insights from text projections.

2 RELATED WORK

2.1 Visualizing Text Corpora with Projections
DR techniques have been widely applied to text data visualization and
analysis, allowing us to transform complex, high-dimensional data into
more manageable forms [29]. Researchers have developed interactive
visual analytics systems using DR to enhance text analytics. Typo-
graph, for example, offers a multi-scale detailed view of documents
within a single spatial projection [16]. Endert et al. further developed
ForceSPIRE, a system that supports semantic interaction for text visual
analytics, allowing users to interact with the system based on their
interests and domain knowledge. The underlying model learns from
user interactions, updating the projected layout accordingly [17, 18].

Building upon this, StarSPIRE incorporates multi-model semantic inter-
action techniques [4, 5], while SIRIUS [13] provides a dual, symmetric
projection for both attributes and observations, and Cosmos facilitates
sensemaking with large text corpora [14]. Recent work such as DeepSI
integrates deep learning with the human sensemaking loop, allowing
for more efficient semantic interaction inference [2]. However, a lim-
itation of DeepSI and other methods discussed above is their limited
illustration of the spatial semantics of the DR space. Thus, our work
aims to capture and present the semantics of the text projection space.

2.2 Recovering the Semantics of Embeddings
Counterfactual explanation, popular for improving the interpretation
of the machine learning model [45], describes how input features must
change to alter the model’s outcome. This method has been applied by
tools such as What-IF Tool [47], ViCE [20], AdViCE [21], DECE [7],
and Interact [10]. By employing counterfactual explanations for DR
projections, Bian et al. introduced DeepSE to provide semantic expla-
nations of DR [3]. This approach involves generating a counterfactual
projection by removing one feature (e.g. instances of a word) each time
from a document to identify and display the most impactful features.
However, this technique, by removing all instances of the word, could
fundamentally alter the document’s semantic meaning. Moreover, the
semantic meaning of the same word can vary based on its context,
introducing additional complexities.

Feature contribution explanations are another popular approach. It
investigates how the features contribute to the model’s outcome. Tools
such as LIME [38], SHAP [31], and Integrated Gradients [42] have
been widely applied to classification and prediction tasks. These meth-
ods have been adapted to provide explanation in the DR context. Zang
et al. introduced DMT-EV, an explainable deep neural network ap-
proach for DR, integrated within an interactive visual interface [49].
This system supports explanations for feature contributions at global,
local, and transformation levels, and aids in community discovery [49].
Additionally, Marcilio-Jr et al. present ClusterShapley, a visual ana-
lytic system that offers the explanation of clusters in DR projections
using Shapley values, and highlights the feature contribution to cluster
formation [32]. However, the research of understanding DR in text data
remains underexplored, given that the text embedding is abstract and
lacks interpretable features.

Several existing works use gradient-based explanations to enhance
interpretability in machine learning. By analyzing the gradients of the
model output with respect to the input feature, these methods quantify
the features’ contribution to the model’s output. Techniques such as
Integrated Gradients [42], and Grad-CAM [41] are commonly used
in the image explanation, emphasizing the important image features
for classification and prediction tasks [9, 34, 35]. Similarly, these ap-
proaches have been extended to text data, highlighting the keywords
that significantly influence the model output [22, 28]. Recently, Dim-
Reader used gradients to illustrate the impact of input features from
the original dataset on the projection space. It incorporates generalized
axes to visually represent these effects [19]. However, DimReader and
similar gradient-based explanation methods for DR primarily focus
on data with interpretable features [25]. In this paper, we expand on
existing approaches to create gradient-based explanations for DRs of
text embeddings, aiming to visualize and enhance understanding of text
projection spaces. This addresses the critical need for explainability in
the analysis of complex text data in DR.

2.3 Visualizing Semantics of Text
Many popular approaches for visualizing the semantics of text use
word clouds to illustrate key topics. These have been used to create
spatial illustrations of text semantics in individual documents [40, 44],
time-varying text data [8], contrastive analysis of multiple texts [27,30].
Some of these methods aim to spatially organize the words in the
cloud by topic [6, 15, 26, 46, 48]. Paulovich et al. presented ProjCloud,
a method for creating word clouds in DRs based on the document
keywords in clusters of documents [36]. Our system adopts a word-
cloud based approach to present the impactful words in a projection
while grounding them in the spatial organization of the DR. While



Fig. 2: The pipeline for our system. In a forward pass, we first embed the documents into an high-dimensional (HD) space and then we project them
to two dimensions with DR. Next, we perform a backward pass using Autodiff through the pipeline that calculates the gradients of the 2D embeddings
with respect to the document words. Finally, the 2D embeddings and gradients are passed to the visualization system to create the visualizations.

our approach is similar to ProjCloud, ProjCloud, like other keyword
approaches, will not capture the semantics of the DR space itself, but
rather the semantics of groups of documents analyzed independent of
this space.

3 METHODOLOGY

In this section, we describe our methodology for projecting documents
and calculating their projection gradients. Figure 2 presents an overview
of this process.

3.1 Text Embedding and Projection
Our method begins by processing the text documents with an embed-
ding model, as seen in the pipeline in Fig. 2. For our examples, we
will use the BERT (Bidirectional Encoder Representations from Trans-
formers) [12] model but, as is discussed below, any embedding model
compatible with popular deep learning libraries can be substituted. The
embedding model transforms the documents into high-dimensional
(HD) embedding vectors. These embeddings preserve the contextual
relationships within the corpus, thereby enabling a meaningful projec-
tion through DR. Following this, we use DR to project the embeddings
into low-dimensional space. For examples in this paper, we use MDS
and t-SNE but other DRs can easily be substituted.

3.2 Calculating Gradients of Text Embedding Projections
To effectively illustrate the semantics of the projection space, we must
identify the the text features that most influence this space. In past work,
DimReader demonstrated how gradients of projected coordinates with
respect to data features offer us insight into how these features impact
the projection space, enabling people to more effectively interpret the
generated DR space [19]. However, this approach assumes that the data
input into the DR has interpretable data features (e.g. named columns
in a table). For projections of text embeddings, the data features passed
into the DR are abstract features generated by an embedding model with
no human-interpretable meaning. Though these embeddings encode the
semantics of documents and capture contextual relationships between
documents, they do not provide insight into the text features they
encode. Thus, to recover this context, we must calculate the gradients
through both the projection and the embedding mode, back down to the
underlying text features (i.e. individual words).

3.2.1 Notation
To calculate the impact of individual words on the projected location,
we calculate the gradients of the projected coordinates with respect to
the individual words in the corresponding document. We then organize
these into a structure called a tangent map M, such that for a document
(organized as an ordered list of words) pi the gradients of the x and y
projected coordinates are given by

Mi =

 ∂vi,x
∂ pi, f1

. . .
∂vi,x

∂ pi, fd
∂vi,y

∂ pi, f1
. . .

∂vi,y
∂ pi, fd

 (1)

where Pi = {pi, f1 . . . pi, fd} is the document with d words f1 . . . fd
and Vi = {vi,x,vi,y} is the low-dimensional projected representation.

Thus, for a document containing d words, the impact of the j-th
word on the projection point vi in the 2D space is given by the partial
derivatives of the coordinates of vi with respect to f j. This partial
derivative, captured in the gradient of vi, is denoted as Mi, f j and given
by:

Mi, f j =

[
∂vi,x

∂ f j
,

∂vi,y

∂ f j

]
(2)

The partial derivative, as defined in Eq. (2), can be considered as a
vector, where its direction within the project space indicates where the
word tends to "pull" the projected point. The magnitude of this vector
represents the word’s relative impact on the document’s positioning
within the 2D projection space and is calculated as follows:

Magnitude = ∥Mi, f j∥=

√(
∂vi,x

∂ f j

)2
+

(
∂vi,y

∂ f j

)2
(3)

This approach allows us to evaluate the impact of individual words
on the spatial arrangement of documents in the projection, enhancing
understanding of the semantic relationships in the data.

Note, for simplicity, in the remainder of this paper, we refer to the
partial derivatives of the projected points with respect to a given feature
(i.e. Eq. (2)) as the “gradient impact” of that feature.

3.2.2 Calculating Projection Gradients of Text Embeddings
In past work, DimReader demonstrated a method for calculating the
gradients of projected coordinates, with respect to underlying data
features. They employed a method called automatic differentiation
(autodiff) to calculate the partial derivatives of the projected coordinates
with respect to each feature, during the execution of a DR, generating
the gradient [24] and compiled them into a tangent map (see Eq. (1)).

DimReader uses “forward mode” autodiff to automate gradient cal-
culations as the algorithm executes [19]. This approach employs an
extended that captures both the value and derivative of the current vari-
able, with respect to a specified value. Each variable x is replaced by a
dual number x = (a,b), where a represents the actual value of x and b
represents the partial derivative of x with respect to a specific variable
of interest. As the DR calculates the projected coordinates, it simultane-
ously calculates the specified partial derivative. However, DimReader
implements this number system through operator overloading, which
many existing methods do not allow as input. This limits DimReader’s
generalizability and compatibility with existing methods. Additionally,
the extended number system only calculates partial derivatives with
respect to a single variable in each execution. This means that, to
generate the gradients for each point, we must execute the DR nd times
where n is the number of points in the dataset, and d is the number of
high-dimensional features. In large datasets and complex algorithms,
this becomes prohibitively expensive. This inhibits the applicability of
DimReader to text embeddings as (1) dual numbers are not compatible
with the deep learning libraries used to build embedding models and (2)
even if it were compatible, documents are very high dimensional (i.e.
they have many words) making DimReader prohibitively expensive for
text embedding projections. Thus, we must overcome these limitations
to capture gradients in text embedding projections.



To do so, our method uses a different autodiff mode - “backward
mode”, which constructs a computation graph that traces all operations
from a given starting point, in this case the original data point (pi), to a
final value, i.e., the projected coordinates (vi), thereby enabling back-
ward propagation to calculate the gradient [ ∂vi

∂ pi,0
, ..., ∂vi

∂ pi,d
]. "Backward

mode" has two key advantages. Firstly, it allows us to compute the
gradients that define Mi in just 2 passes (one for vx and one for vy).
Therefore, for a document with d features, this results in 2d backward
passes in "backward mode", compared with dn passes (one forward
pass per feature per point) required in the “forward mode”. Secondly
and importantly, “backward-mode” autodiff is supported by common
deep learning libraries, such as the Torch [11] (via autograd) and Tensor-
flow [1]. Thus, we enable gradient calculations in embedding models
built in Torch.

By leveraging the built-in capabilities of deep learning libraries, we
enable the calculation of gradients through the embedding model. Now,
to capture the gradients throughout the entire process (from words to
projected coordinates), we must also adapt our projection methods to be
compatible with Torch tensors. For most methods, this simply means
creating an implementation compatible with library, e.g. compatible
with Torch tensors. For example, for MDS, we extracted the MDS
algorithm from the Sklearn library [37] and made minor modifications
to make it compatible with Torch. SImilarly, for t-SNE, we simply
adapated the implementiation published by Van der Maaten [43]. This
allows us to use the built-in autodiff capabilities of Torch to calculate
the tangent map of the projection through the entire pipeline, back
down to the individual words in the document.

4 VISUALIZATION DESIGN

This section introduces the visualization design of our system. Though
the gradient calculation gives us a vector indicating the direction a word
pulls the document, we found the directions to be less consistent and
instance dependent. Thus, we opt to use the magnitude of the gradients
to explain the projection of documents. We have the following design
goals:

DG1: Detailed Word Impact Analysis for Each Document: En-
able users to learn how individual words impact the positioning of a
document within the 2D projection space. This supports a detailed,
document-by-document exploration of word significance.

DG2: Overview of the Most Impactful Words for Each Doc-
ument within the Projection Space. Provide an immediate, clear
visualization of the words that most significantly influence the posi-
tioning of each document in the projection space. It offers a direct
understanding of what influences document position, enabling users to
discover patterns and identify connections.

DG3: Aggregated Words to Enhance Spatial Understanding of
Document Clusters. Using spatial analysis to aggregate words, this
goal allows users to quickly identify the key words that impact the
projection location of documents. It also provides a comprehensive
overview of document clustering and the significant words associated
with the entire dataset affecting the document projection. The place-
ment of aggregated words in the projection space correlated with the
locations of projected documents, aiming to enhance user comprehen-
sion of document clustering patterns.

To address these goals, our system presents three visual designs:
impact heatmaps, projections overlayed with impactful words for indi-
vidual documents, and projections overlayed with spatial word clouds.
In the following, we describe each visualization in greater detail.

4.1 Impact Heatmap
To address DG1, our system creates an impact heatmap. When a user
selects a document by clicking the document dot in the projection
space, the system shows a heatmap representation of the document.
This heatmap, as seen in Fig. 1 (c) and (d), visualizes the magnitude
of each word’s impact and provides direct contextual insights. The
color intensity of each word’s background correlates with its gradient
magnitude. This provides a visual indicator of how much each word
impacts the document’s location in the projection space. The words

Algorithm 1 Generate Spatial Word Clouds.

Input: Documents D, WordImpactScores T
Output: SpatialWordClouds

1: Initialize WordGroups as an empty map
2: for each document d in D do
3: impactfulWords← IdentifyImpactfulWords(d, T )
4: for each word t in impactfulWords do
5: if t not in WordGroups then
6: Initialize WordGroups[t] as an empty list
7: end if
8: Append d to WordGroups[t]
9: end for

10: end for
11: Initialize WordClouds as an empty list
12: for each groupKey in WordGroups.keys() do
13: G←WordGroups[groupKey]
14: centroid← CalculateCentroid(G) ▷ Centroid Calculation:

Cx = (Σx∈G xi/n), Cy = (Σx∈G yi/n)
15: wordCloud← Create a new WordCloud for G with centroid
16: Append wordCloud to WordClouds
17: end for
18: return WordClouds

themselves offer contextual information about the document, thus by
enabling the user to quickly identify the most impactful words, the
heatmap helps users understand what impacts the document’s position.

4.2 Impactful Words for Individual Documents
For a concise overview of the space, our system overlays impactful
words (addressing DG2) for individual documents on the projection to
display the most significant words that influence the document posi-
tioning within the projection space. Each document in the projection
space is associated with a marker representing its most impactful word.
The size of the marker indicates the relative magnitude of the word
impact. This allows people to quickly identify the most impactful word
for individual documents, as well as look for patterns among similar
documents (those placed in close proximity).

4.3 Spatial Word Clouds
To enhance the understanding of how words impact the document’s po-
sitioning within the projection space, we introduce spatial word clouds
(addressing DG3). Spatial word clouds use spatial analysis to create
word clouds where word positions are constrained by the spatial orga-
nization of the projected documents. This provides an intuitive visual
representation to display words that significantly influence document
placement. The word clouds aggregate words that appear in multiple
documents to reduce visual clutter from label overlap. It strategically
places aggregated words in the projection space to align with the spatial
distribution of documents impacted by that word, facilitating visualiza-
tion of document clustering trends. The key, high-level steps of this
process are outlined below, with Algorithm 1 providing more detail.

Step 1. Group Documents by Impactful Words: First, we group
documents based on their most impactful words (i.e. by default, words
with top twenty gradient impacts), and form word groups of documents
containing that word.

Step 2. Centroid Calculation: For each word group, we determine
the centroid to denote the spatial location of the aggregated words.
This calculation applies a weighted approach, where the frequency of a
word’s occurrence in each document influences its contribution to the
centroids’ location. For example, if a word appears m times in docu-
ment A, and n times in document B within a cluster, then the centroid’s
position, C, is calculated to reflect these occurrences proportionately.
This approach provides a representative spatial summary of the global
word distribution.

Note, currently we use spatial word clouds to illustrate the global
distribution of words, such that each word only appears once in the
visualization. However, an additional step could be added between 1
and 2 to spatially subdivide word groups based on proximity, displaying
the word at the centroid for each sub-group.



Fig. 3: Comparing DR algorithms on a collection of news articles about sports and tech. (a) shows the spatial word cloud for the DR space generated
by MDS. (b) shows the spatial word cloud for the DR space generated by t-SNE. We see that t-SNE identifies a strong central topic for the sports
articles (“tennis”). MDS still picks up on this central topic but shows increased focus on subtopics within the sports articles, e.g. “champion”

Visualization of Word Clouds: As seen in Fig. 1, the size of each
word within the cloud corresponds to its aggregated gradient magni-
tude. For documents with predefined labels, the words are colored to
match the class of documents they impact, provided that all impacted
documents have the same label. Otherwise, they are colored purple.
For documents without predefined labels, we can first compute labels,
and then color the words similarly. This involves using a clustering
algorithm, such as KNN, to assign labels based on the document pro-
jection. To maintain clarity, after grouping documents in Step 1, we
filter out word instances that appear only once within a specific doc-
ument. These instances might either be unique to a single document
and not appear in others or present in several documents but not form
part of the aggregated clusters. We use the predefined ε range to man-
age this aggregation, detailed further in Sec. 5.2. Furthermore, when
multiple words share the same centroid-often because they present mul-
tiple times within a single document but don’t aggregate with nearby
documents-we display only the word with the highest gradient impact.
This strategy helps enhance readability and also ensures that visualiza-
tion highlights the most impactful information. Importantly, the spatial
placement of words correlates with the location of related documents
within the 2D space, offering a direct visual mapping between word
significance and document layout.

The visualization design of our system incorporates impact heatmap,
impactful words of individual documents, and Spatial Word Clouds
to offer visual tools for interpreting document projections. It provides
multiple layers of insights, from a detailed impact analysis of individual
words on a single document to a broader analysis across the document
collections, which facilitates a deeper understanding of textual data.

5 USAGE SCENARIOS

In this section, we present three usage scenarios that illustrate how our
visual system enhances understanding of document projections.

5.1 Comparing Embedding Models
In this first scenario, we illustrate the application of our system to
compare the embedding spaces of two different embedding models:
a pre-trained BERT model and a fine-tuned BERT model, refined to
capture the data domain. We use the dataset of COVID-19 open re-
search articles. This dataset categorizes documents into four different
risk factors: cancer, chronic kidney disease, smoking status, and neu-
rological disorders. This example shows how our system illustrates
the differences between different embedding spaces, projected with the
same DR algorithm.

Fig. 1 (a) shows the spatial word clouds generated for the projection
of the per-trained embedding space. Because we have labels for each

document, the risk factor, each point is colored by the risk factor
(cancer: blue, chronic kidney disease: green, neurological disorders:
orange, and smoking status: pink). Additionally, the impactful words
are colored by the risk factor of the documents they impact, provided
that all occurrences come from documents of the same risk factor.
Words that impact documents of multiple risk factors are colored purple.
We immediately notice that the pre-trained embedding space does
not effectively capture the four underlying categories of documents.
The projection lacks a clear separation of the risk factors, which is
emphasized by the lack of any pattern among the impactful words.
Despite some medical-related words identified on the projection, there
isn’t a clear pattern relative to the risk factors.

In contrast, Fig. 1 (b) uses the pre-trained BERT model fine-tuned to
separate these four categories. Now, the projection forms four clusters,
each corresponding to a specific risk factor. The spatial word clouds
illustrate the semantics of the refined projection space, highlighting the
most impactful words that reflect the topic of each category. The words
’smoking", "neurological", "kidney", and "cancer" directly correspond
to document categories, and have a significant impact on the current
projection of documents. The placement of these words is consistent
with the layout of corresponding documents in the projection space. We
also see a set of general medical words shared among documents from
different topics, such as "patients", "virus", "mortality", and "symp-
toms". Additionally, the larger size of words in the refined embedding
space indicates a higher aggregation level of instances for these high-
lighted words, suggesting their frequent occurrence across documents
and significant influence on clustering within the projection space.

The impact heatmap offers further insights into the differences be-
tween the embeddings. In the pre-trained embedding, as seen in Fig. 1
(c), the words "religion" and "COVID" are the most impactful to the
projection space for the document outlined in the black box. In the
fine-tuned embedding space, the highlighted words for that specific
document change to align with the risk factor, including "smoking",
and "smoke". It indicates that the words identified by gradient methods
successfully capture the data’s domain.

5.2 Comparing DR Algorithms

In this user scenario, we illustrate the application of our system to com-
pare the projection spaces generated by two different DR algorithms,
MDS and t-SNE. In this example, we use a dataset of BBC news articles
containing articles about sports and technology [23]. Fig. 3 (a) shows
the spatial word cloud for the space generated by MDS while Fig. 3 (b)
shows the spatial word cloud for t-SNE. We see that both algorithms
identify the same central topics - tennis for sports and Microsoft for
tech. However, we see that t-SNE more strongly identifies "tennis"



Fig. 4: Spatial word clouds generated with attention values. (a) shows the attention-based cloud for the DR space generated by MDS. (b) shows the
attention-based cloud for the DR space generated by t-SNE. Unlike the gradient-based clouds in Fig. 3, the impactful words identified by attention
remain constant between DR algorithms, failing to explain the impact of the DR on the space.

as a key topic in the dataset’s sports news, as seen by the larger size
of "tennis" than other words in the word cloud. In contrast, MDS
captures more local features within the sports articles, demonstrated by
the heavy impact of words such as “slovakia” and “champion”. Thus,
gradient-based cloud demonstrates the differences in the information
prioritized by different DR algorithms.

5.3 Gradient vs Attention-based Spatial Word Clouds
Our approach goes beyond traditional keyword extraction methods,
which typically focus on the frequency or importance of terms in the
document using post-hoc analysis. Instead, we analyze the impact of
each word on the spatial representation of a document in the projection
space, using gradient tracking methods that are contextualized within
the DR and embedding algorithms. Thus, our method is grounded in the
semantics of the projection and the underlying embedding. Therefore,
our method more directly explains the semantics of the space and what
words influenced the computation of the space. To demonstrate this, we
apply our spatial word clouds to an alternative method for quantifying
the impact of individual words - attention values in the BERT model.
For each document, we extract the attention values for each word and
input those into the spatial word clouds, rather than the gradients.

Fig. 4 shows the spatial word clouds generated using the attention
values. These are generated from the same projections as in Sec. 5.2
and are comparable to the gradient-based clouds in Fig. 3. While the
spatial word clouds using attention values identify some contextual in-
formation relevant to the embedding model, they fail to demonstrate the
information impactful to the DR, presenting the same set of impactful
words regardless of the DR algorithm. In contrast, gradients capture
the impacts of individual words through the entire pipeline - from the
document words, through the embedding model and to the DR space.

6 DISCUSSION

Advantages Over Counterfactual Methods Our approach introduces
a more effective way of understanding text projections compared with
the existing method presented by Bian et al., which relies on generating
counterfactuals for each document [3]. It does so by removing all
instances of a word, re-generating the embedding, and projecting it
out-of-sample into the 2D space. While the resulting explanations are
similar to ours, our system has three benefits over counterfactuals. First,
our system calculates the impact of individual instances of words rather
than the combined impact of all instances. This can be important as
the contextual meaning of individual instances can vary depending on
the context words around them. Furthermore, removing all instances
of a word fundamentally changes the meaning of the document when
generating the counterfactual embedding. Second, the counterfactual

embedding is projected out-of-sample into the MDS space after the rest
of the documents have been placed. Because MDS organizes points
based on pairwise distances, this may not reflect the true placement of
the counterfactual embedding. In contrast, our method calculates the
gradients directly from the projection computation, without altering the
meaning of the document. Thus, it more accurately reflects the impact
of the underlying words on the projection. Third, counterfactuals are
costly to compute due to combinatorial runs, whereas our method only
requires 2 backwards passes per document.

Generalizability Our approach can be applied to a broader range of
analytical pipelines. By adapting the algorithm to support automatic
differentiation, our system is applicable across pipelines of projections,
interactive analyses, and intermediate processing stages.

Scalability Our visualization techniques, such as spatial word clouds,
enhance the system’s scalability by efficiently aggregating datasets with
a large number of words. By taking into account the spatial distribu-
tion of words with the associated documents in the projection space,
our system ensures the visualization remains intuitive and insightful.
However, we observed that some areas within the visualization become
word-dense, resulting in some overlap. Therefore, developing improved
visualization strategies is needed to handle such complexities in future
work, especially for very large datasets.

Performance In terms of performance time, an advantage of our
approach is that the gradients are computed as a by-product of the LLM
and DR computation in Torch with autograd, requiring only 2n back-
wards passes, where n is the number of documents. In our experience a
backwards pass takes ≈ 1 second. These could be computed in parallel,
however Torch currently does not allow this. There is also a minor time
cost for the tracking of the gradients with autograd. In our experience,
enabling autograd increases algorithm execution time by approximately
12 percent. The only additional execution is the spatial word-cloud
algorithm, which has O(n logn) performance in average cases.

7 CONCLUSION

In this study, we present a method to enhance understanding of docu-
ment projection through gradient analysis of text data. We designed
a visualization system to assist users in interpreting the projection of
documents, which includes impact heatmaps, impactful words of in-
dividual documents and spatial word clouds of global word impacts.
The three usage scenarios demonstrated how our visual system, sup-
ported by the gradient-based explanation, facilitates the identification
and understanding of cluster patterns and relationships in the text data
and enables comparison of different analysis settings. Additionally, our
method can be extended to a variety of DR pipelines to illustrate the
spatial semantics for different projection spaces.
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