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Figure 1: An overview of the MoVis analysis tool (cf. section 4). (a) shows the map with circles that indicate high mobility in specific
locations. Users can zoom into the map to see building polygons and display additional information. (b) shows the deviation of
movement patterns between two selected time ranges. The colors indicate the category associated with the deviation of a specific
type. (c) shows the number of travels over time for each category (d) displays the temporal outage severity for previously selected
counties relevant to the study. (e) shows sliders that allow the user to select time ranges for comparison. The selected ranges are
shown in (c) and (d) as purple and green vertical line pairs.

ABSTRACT

Large-scale power outages, such as those caused by extreme
weather events, have a big impact on human behavior. A short
power outage is merely a nuisance for most, and may not change
people’s locations. An outage that lasts for a few hours can result in
spoiled food and medical supplies, and people will have to restock
spoiled items. Long outages result in temperatures outside tolerable
levels in homes, and may prompt people to acquire supplies, such
as generators and gas, or change location. The long outages during
Winter Storm Uri in Texas resulted in millions of dollars in property
damage due to freezing pipes. This level of damage is expected to
result in a sharp increase in supply runs and contractor activity.

In this paper, we present a tool to explore differences in visit-
ing patterns before, during, and after power outages. It allows to
compare different points of interest like medical facilities, grocery
stores, hardware stores, and other types of businesses.
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1 INTRODUCTION

In February 2021, Winter Storm Uri made headlines when it caused
widespread power outages in Texas, leaving about 10 million Texas
residents without electricity, causing billions of dollars in economic
damage and costing several dozen lives. The energy infrastructure,
housing stock, and the general population were not prepared for the
extreme temperatures caused by Uri, which were 22− 28◦C/40−
50◦F below average winter temperatures [9].

The extreme temperatures caused a dramatic decline in available
energy [9] at a time of extremely high demand as households strug-
gled to stay warm. Most of the Texas power grid is part of an elec-
tric interconnection that is isolated from the rest of the United States
and Canada, making electricity trading with unaffected regions im-
possible. According to the Texas Department of State Health Ser-
vices, hundreds of lives were lost during this energy crisis due to
hypothermia, carbon monoxide poisoning due to inappropriate use
of indoor generators, and the loss of power to critical medical equip-
ment [27]. In many homes, frozen pipes caused immense damage
to the property. 75% of Texans had difficulty obtaining food, as
food in homes and grocery stores had spoiled [17].

Rather than studying the impact of the weather directly, the ob-
jective of this paper is to gain insight into the impact of the en-
ergy crisis on occupancy. In building energy research, occupancy
is commonly used to determine the human impact on energy use
[2, 1]. In case of the energy crisis, we want to understand the im-



pact of energy on humans by applying this metric in reverse. In this
case, occupancy can serve as a measure of how many people are
affected.

In this paper, we propose a tool to analyze changes in occupancy
patterns at urban scale and evaluate the relationship between power
outages and human behaviors at the example of the Texas winter
storm outages. Using mobility data, we will study the population’s
visits at points of interest in Austin to better understand how res-
idents responded to the energy crisis in preparation of the storm,
during outages, and in the aftermath.

2 RELATED WORK

Visual analytics approaches for urban data have been extensively
studied, as shown in the surveys: [19, 11, 29]. In the context
of visualizing data on maps, generalization, aggregation, and sim-
plification were widely used to simplify building representations
[25, 28, 10] or maps in general [15]. For 3D building data, oc-
clusion also plays a major role. Hirono et al. [14] introduced a
disoccluding technique for building data. In the context of mo-
bility patterns in urban areas, various studies have been conducted
[8, 16, 21, 13, 30, 31]. Most visualization schemes related to mo-
bility focus on depicting heatmaps of values of interest. Alterna-
tively, authors utilize graphs to encode an visualize different trips.
Although a graph representation would be suitable for the depic-
tion of mobility patterns and change, we want to keep the level of
abstraction low and focus on an intuitive exploration of the data.

Previous work on the impact of power outages on humans has fo-
cused on studying disparities between different counties during Uri
on an aggregate scale of total hours of consecutive outages [12],
and assessing the overall burden of the household [23]. Both works
were based on survey data and the focus was on an in-depth anal-
ysis of the findings. Another work studied the spatial distribution
of power outages in relation to social vulnerability [7]. Although
all three of these works study human behavior and impact during
power outages, they are complementary to the goals of this work,
as we evaluate externally visible impact in time series data while
the surveys used in these studies inquired overall experiences, such
as duration of the outage, difficulty acquiring food, and property
damage.

3 DATASET

3.1 Point of Interest (POI) Visits

The POI visit data for Austin, Texas was purchased from Resilient
Solutions 21 (RS21). These data use cellphone-based GPS data to
determine individual device locations and map them to Foursquare
POIs.The visit data contain: anonymous device ID, home location,
visit start and end times, distance from home in meters, POI ID, and
POI name. To protect privacy, the home location of each device is
set to the Census home block group. A second file provides the POI
ID and the geometry of the building (Microsoft building footprints
[18]) for each building. A third file contains the mapping from
POIs to buildings: POI name, address, lat/lon centroid, building
ID, and building geometry [18]. Austin has 127,392 POIs in 52,553
buildings. The raw visit data consist of 2,477,95,413 rows for the
interval from January 1 to March 31, 2021.

3.2 Customer Outages

To provide context for visit behaviors, we use power outage data
from the Environment for Analysis of Geo-Located Energy Infor-
mation (EAGLE-I) [26] platform. These are 15-minute county-
level data, and each timestep includes the Federal Information Pro-
cessing Standards (FIPS) code, state and county name, and number
of customers without power. In addition, modeled total customer
counts are available for each county [4, 20].
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Figure 2: Data fusion steps from original data to the final visit data.
The different steps are linked through POI IDs (pink font) and types
(orange), building IDs (green), and building geometry (blue).

4 METHODOLOGY

The purpose of the proposed tool (MoVis) is to interactively com-
pare mobility patterns between different time ranges. It should pro-
vide context, allowing the user to identify time regions of interest
and investigate them in detail. Figure 1 provides an overview of the
tool.

The application is written in Julia [3], and we chose the Makie
framework [6] to create the interactive user interface and visualiza-
tions, as its support for OpenGL and WebGL makes it adaptable
and scalable.

4.1 Preprocessing

Data Fusion Several data fusion steps of data fusion were
needed to combine the different data products into a consolidated
dataset (cf. Figure 2). First, we defined a mapping between POI
IDs (pink) and building IDs (green) by joining the data based on
the shared building geometry (blue). We furthermore added POI
types (orange) to the POI data, and provided building types in three
ways: a full dictionary of all POI types and their counts, a major-
ityType which is the most frequent POI type in a building, and a
rankedType which chooses the POI type with the highest priority
type present, using a manually created ranking. The legend for Fig-
ure 1b shows a ranking of POI type groups from most (top) to least
(bottom) important.

Augmenting POI Type To better understand visit behavior,
we are interested in what types of POIs people visit. As the raw
POIs we received did not include classifications, we first performed
a keyword-based mapping from business names to 39 different POI
types (cf. Figure 1 (b)), using a set of 450 manually selected
keywords that can reliably identify business types (e.g., “taco”,
“surgery”, or names of big chains). This resulted in a successful
classification of 81,073 POI types. For the remaining 46,318 POIs,
we used gpt-4-turbo to perform a classification. In small increments
of 50 POIs (to ensure that the model would return classifications
rather than a generic response), we provided the list of possible
classifications and a list of POI names, and requested a classifica-
tion, confidence level, and rationale for the classification. Several
hours of manual review and cleaning later, we were left with 2,315
unclassified POIs that were manually classified. Finally, we defined
10 coarse classification categories for visualization purposes.

Cleaning Visits When we began working with the visit data,
we found extremely high rates of visits. Further investigation re-
vealed that this issue was caused by buildings with multiple POIs
as each POI has the geometry for the full building, the data counted
a visit for each POI in these buildings at each time step. We aggre-
gated these data by identifying the first and last consecutive times-
tamps during which a device visited a building and aggregating the
other fields accordingly. This reduced the dataset size by 96.4%
to 9,040,695 rows of visit data. During this cleaning step, we also
appended visit durations to each row.



Figure 3: The map view visualizes travel activity using scatter plots
when zoomed out (left), and switches to colored building polygons
when zoomed in (right). Green indicates and increase in activity com-
pared to the baseline, whereas magenta indicates a decrease. The
mouseover of the university library building shows a 61% decrease in
activity. The building’s POI types include library, university, and bank
(ATMs).

Binning For this work, we denote the number of visits as vb(t),
where v is the number of visits to a building b at a time step t. The
high temporal resolution of the visit times, provided with an accu-
racy in seconds, makes aggregating individual visits challenging.
We found a binning approach to be adequate to aggregate visits that
occur seconds apart. Here, we chose a temporal resolution of 15
minutes. In this processing step, we also filter out multiple visits
by a single device in short time frames using the unique ID. Then
aggregation is performed on the binned data, where t is a 15 minute
multiple. Therefore, vb(t) describes the number of visits by unique
devices in 15 minute intervals.

Performance The occupancy data introduced in the previous
section is provided as a list of visits in temporal order. In terms of
data management, this is not suitable for an interactive exploration
of the time domain for individual locations. In this preprocessing
step, we structure the data in a way that allows quick access to the
outage data for a specific building at a specific time step by isolating
the occupancy by building and storing only the time steps for which
these data are available.

4.2 Map view
This view aims to visualize the occupancy information for the
buildings. We display the buildings based on their outline polygon.
Note that a building can include multiple points of interest. A drop-
down list allows the user to color the polygons based on the devia-
tion, the building majorityType or the building rankedType. The last
two options visualize the building category directly with a coloring
based on the preprocessed data and the chosen color scheme. The
deviation is computed as follows. First, given a user-selected time
range r = (t1, t2), the average visits over a time range are calculated
as follows:

v̄(t2,t2)(b) =
1
N ∑

t∈r
vb(t), (1)

where N is the amount of samples within the time range. With
the default of 15 minutes between samples, the user can also select
step sizes of 1 Hour, 24 Hours, or 7 days to account for periodic
fluctuations in occupancy patterns. We define the deviation as:

dr1,r2(b) =
v̄r1(b)− v̄r2(b)

v̄max(b)
, (2)

where b is a building. The user can set the two time ranges r1 and
r2 using range sliders (cf. Figure 1(e)). The deviation dr1,r2(b) ∈ R
ranges from −1 to 1 and encodes the relative change of occu-
pancy. This normalized metric allows the user to investigate vari-
ations independently of the total number of visits, which could
skew the visualization toward frequently visited locations. By de-
fault, the building polygons are colored according to the deviation

dr1,r2(b). This allows a local investigation of the occupancy varia-
tion, whereas coloring by type allows for a quick overview of POIs
in the area. Detailed information on a building is displayed when
hovering the mouse cursor over the polygon.

When zooming out, the number of polygons in the view in-
creases and individual polygons become hard to see. To counter-
act this, we enable the scatter plot view when a set threshold for
the zoom level is reached (cf. Figure 3). This aims to provide an
overview and help the user quickly identify regions of interest with
high counts of visits and deviations. The scatter point locations
correspond to the bounding box centers of the polygons. The size
of the scatter points is based on v̄max(b) = |max[v̄r1(b), v̄r2(b)])|,
where a larger point size is associated with locations with a high
average visit value. The colors of the scatter plot are based on the
deviation dr1,r2(b) analogous to the polygon view.

In addition to the polygons and scatter plot, we integrated tiled
web maps to provide geographical context. While the deviation is
shown using a divergent color map, the color scheme of the coarse
categories was generated manually with nameability in mind [24].

4.3 Aggregate Deviation Chart
The purpose of this chart is to provide the user with an overview of
deviations in visits for the entire area (cf. Figure 1(b)). For every
building type n, we compute the normalized aggregate deviation as
follows:

d̄n(r1,r2) =
1

|b ∈ n| ∑
b∈n

dr1,r2(b) (3)

The color scheme is based on the coarse categories analogous to
the type coloration of the polygons. Note that the types n are more
detailed than the coarse categories. The order of the types is based
on the category ranks, where the types with the highest rank are
on the left. As buildings can contain multiple POIs from different
categories, the selection menu allows the user to choose between
rankedType and majorityType for visualization.

4.4 Timeline
The timeline consists of two visualizations (cf. Figure 1(c,d), each
highlighting the two intervals that are compared using purple (be-
fore) and green (after) vertical bars.

The top graph is a line graph that displays the overall visits over
time separated by categories (cf. Figure 1(c)). The graph displayed
reacts to the category selection option (rankedType or majority-
Type). For every category c we compute:

v̂b(c; t) = ∑
b∈c

vb(t), (4)

The lower visualization displays outages over time in previously
selected counties using a heatmap (cf. Figure 1(d)). We define the
normalized outage value:

o(c; t) =
affected customers at time t

modeled customer count at time t
, (5)

where c is a county and t is time. In some cases o(c; t) can be
larger than 1 as a result of the imprecision in the modeled customer
counts. This visualization adds context to the analysis by provid-
ing an overview of the temporal dynamics of the power outage and
helps the user identify potential time regions of interest.

5 CASE STUDY

We demonstrate MoVis by comparing visits before, during, and af-
ter the Uri outages, and summarize the relevant visualizations in
Figure 4. We chose three intervals of 72 hours: the time window
of the highest outages, beginning on February 15 at 7:00 (purple
(g)), two weeks before (gray) as a baseline, and one week later as
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Figure 4: Collection of visualizations of visits during Winter Storm Uri. The vertical boxes show maps (a-c) and charts (d) using majorityType
(left), rankedType (middle), and deviation from baseline (right) as building types for aggregation and rendering. The top right shows timeline
views for both renderings (e), as well as power outages (f). Vertical boxes behind the timeline highlight the three chosen intervals: baseline
(gray), during (purple), and aftermath (yellow). The same color is also used to indicate which time interval is compared with the baseline (g-h).

”after” (yellow (h)). The time frames are aligned to cover identical
times and weekdays to account for similar behavioral time-of-day
and weekday patterns. We compare two different UI selections that
share the baseline time frame as the first time frame. One uses
the outage for the second time frame (purple background), and the
other uses the week after the main outages as the second time frame
(yellow background).

During the outages, activities declined sharply for the majority
of POI types compared to the baseline; however, some types saw an
increase: gas stations (potentially to purchase fuel for generators),
critical infrastructure such as emergency services and utilities, and
large event spaces (which were used as cold shelters [5]). After
the outages, activity increased across almost all POIs, compared to
the baseline. The most notable increases are those of Hospital and
Medical Facility visits, which may be due to adverse health condi-
tions due to hypothermia, carbon monoxide poisoning, or ill effects
from unsafe drinking water [27, 5]. Other notable increases include
grocery stores (likely to replace spoiled food items), and hardware
stores (likely to purchase supplies to repair home damage).

The timeline charts (e) show a clear pattern of daily activity for
each POI type. In the week before the main outages, there was a
visible decrease in activity across all types. During this period, the
area experienced six inches of snow and one inch of solid ice from
freezing rain.

The side-by-side comparison of building types (d) illustrates the
difficulty of deciding how to classify a building containing multiple
POIs. Hospitals usually have some food service options for visitors,
and many large buildings have a wide variety of businesses (e.g.
a building could have law firms, barbers, restaurants, a bank, and
medical providers in different suites). Providing users with two
options allows them to get different views of the data. We also
explored providing a full set of POI types in the hover-over menu
but found that it was too much content for multi-use buildings.

6 CONCLUSION

We proposed a tool to interact and explore occupancy data in the
context of a severe power outage. The tool focuses on comparing
occupancy patterns between different time intervals that the user
selects. Changes in occupancy patterns can be explored using the
sliders to define and move the time intervals.The deviation provides
an easy-to-interpret metric for changes in the occupancy, and its
analysis can be performed to investigate categories changes or lo-
cal changes in the urban environment. The presented case study
highlights the usefulness of the presented tool.

We plan to extend the tool to represent the temporal evolution
of visits and will evaluate ways to provide a more intuitive visual-
ization of multiple POI types within the buildings. With regard to
the map view, it would be appropriate to investigate different ab-
stractions of the buildings to encode information while respecting
the geographic context. In addition, we want to visualize the uncer-
tainty of the geographic location of devices in relation to POIs.

We plan to integrate a more detailed analysis of power outages
in relation to weather [22]. Furthermore, we plan to integrate dis-
tance from home, visits at similar POIs to attempt to reproduce Pe-
terson et al.’s [23] finding that some people experienced difficulty
in acquiring food during the winter storm. We also want to in-
clude changes in visit duration as an increase may indicate busier
stores (higher store occupancy), more required shopping to restock
goods, or trouble finding alternatives to out-of-stock items. Finally,
we plan to evaluate equity by incorporating block-group-level Cen-
sus data to compare behaviors of different demographic groups be-
fore/during/after outages. Differences could indicate less access to
electricity (longer/more frequent outages), backup power, and en-
ergy storage; or non-energy factors such as less stockpiled food, or
insufficient heating for human comfort and safety, which could be
indicated by visits to cold shelters.
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