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ABSTRACT

This paper presents a novel open system, ChatGrid, for easy, intu-
itive, and interactive geospatial visualization of large-scale trans-
mission networks. ChatGrid uses state-of-the-art techniques for
geospatial visualization of large networks, including 2.5D map
views, animated flows, hierarchical and level-based filtering and ag-
gregation to provide visual information in an easy, cognitive man-
ner. The highlight of ChatGrid is a natural language query based
interface powered by a large language model (ChatGPT) that offers
a natural and flexible interactive experience whereby users can ask
questions and ChatGrid provides responses both in text and visu-
ally. This paper discusses the architecture, implementation, design
decisions, and usage of large language models for ChatGrid.

Index Terms: Power Grid, Visualization, LLM, NL2VIS

1 INTRODUCTION

With the ongoing modernization efforts to enhance reliability, re-
siliency, flexibility, affordability, and equity, the grid is undergo-
ing a transformation with new technologies, processes, and thereby
also increasing the complexity of planning and operation. In this
context, the operators, planners, and researchers heavily rely on
advanced analytic techniques to understand and predict how the
grid operates. Drawing insights and inferences from these analytics
through visualization is essential for quickly identifying patterns,
such as power spatial distributions. As such, power grid visualiza-
tion is extremely valuable for power utilities, researchers, and poli-
cymakers, enabling them to extract patterns, monitor and optimize
the performance of modern power grids in an increasingly dynamic
and efficient manner. However, visualization of large-scale geospa-
tial networks, such as the power grid, is challenging due to several
aspects from large-scale geography, visual clutter, cognitive over-
load, and even the learning curve of the visualization tool.

Over the years, researchers have developed different visualiza-
tion techniques starting with the seminal work of Thomas Over-
bye [29, 25, 26, 28] on geospatial visualization of transmission net-
works, dynamic line flows, and contouring. [1] and [2] presented
displaying the 2D grid information (such as power flows and volt-
ages) through a third dimension. For comprehensive surveys of dif-
ferent visualization techniques used, we refer the reader to [31, 13].

In this paper, we present a state-of-the-art novel visualization
tool, named ChatGrid, for visualization of transmission networks.
Our emphasis and motivation in developing ChatGrid are (a) de-
veloping visualization for large-scale transmission networks min-
imizing the “visual clutter”, (b) exploring the usage of large lan-
guage models, such as ChatGPT, to assist in answering analytic
queries, and (c) visually displaying the answer from the large lan-
guage model. Figure 1 shows a sample of the ChatGrid interface
with its map-based visualization and the natural language interface
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for data queries. In this sample, the user asks ChatGrid for informa-
tion on generatoring stations with remaining capacity (headroom)
greater than 100 MW and ChatGrid returns this information in text
and displays the locations of those generation sources on the map.

Figure 1: ChatGrid interface displaying the visualization and query
interface. Queries asked by users are responded through both text
and visualization. The vertical bars represent the generation sources
that have a remaining capacity greater than 100 MW.

The developed ChatGrid framework is a part of the Exascale
Grid Optimization (ExaGO) [4, 3], and is currently used for visu-
alizing the AC optimal power flow (ACOPF) results from ExaGO.
We have tested ChatGrid to visualize ACOPF results from ExaGO
on transmission grids as large as the combined synthetic U.S. grid
cases [11]. We note here that though ChatGrid is part of ExaGO, it
can be used for visualizing power flow or AC optimal power flow
results from other analysis tools through creating appropriate input
files. In this paper, we first describe the visualization framework
of ChatGrid including its different features. Next, we detail its
ChatGPT-based natural language interface and discuss the design
choices we made. Lastly, we summarize the lessons learned and
the next steps.

2 RELATED WORK

2.1 Power Grid Visualization

Power grid networks are complex data structures that require multi-
faceted analysis, including multivariate analysis, geospatial anal-
ysis, network analysis, and outlier detection. Previous work has
examined various visualization techniques for power grid networks
[24, 13, 31] and there are commercial products like Powerworld
Simulator [29] and RTDMS [9] designed for power grid visual an-
alytics. Among typical power grid visualizations, high-dimension
multivariate visualization has been widely adopted in power grid



analysis tasks, such as using scatterplot matrix [5] for consumer de-
mand estimation, parallel coordinates for evaluating factors affect-
ing heating demand [5], and dendrogram to show epicentric event
propagation[7].

Glyphs are another common way of encoding multivariate data
in the power systems, representing information such as voltage lim-
its [28], transmission load percentage [28], bus voltage stability
[45], faults detection [43]. However, as the scale and network size
of the visualization increase, visual clutter can become problematic,
making glyphs less distinguishable. To address this, some work ex-
tends 2D visualization into a 3D space [25] to broaden the visual
encoding bandwidth, which has been shown to improve solution
time and reduce errors in power grid monitoring tasks due to more
salient visual encoding and less visual clutter. In addition to mul-
tivariate visualization, geographical maps with overlaid topology
are often the primary presentation of location and topology infor-
mation. Some approaches include additional geographic layers to
display temperature [27] and regional voltage profiles [16, 33] us-
ing contour maps. There are also works [41, 40, 18] that propose
layout algorithms to preserve both geographic layout and topolog-
ical relationships for more efficient grid cluster identification (e.g.,
synchronous nodes).

2.2 NL2VIS
In the rapidly advancing field of Natural Language Processing
(NLP), the utilization of natural language as an intermediary inter-
action interface for visualization provides opportunities to reduce
the learning curve of operating dataflow systems [34]. Works in this
area include automatic visualization creation [39, 10, 30], conver-
sational interfaces for visualization [8, 12] that support data queries
such as retrieving values, deriving values, determining range, filter-
ing, etc[14, 36, 38]. However, most previous works are built upon
design rules formulated according to data types and utilize gram-
mar and lexical parsing techniques [42, 15, 20, 44, 23]. The pre-
defined template mapping for attribute and task inference can limit
the tool’s generality, particularly when dealing with underspecified
queries that may include synonyms and similar challenges. Recent
work attempts to overcome these limitations by integrating deep
learning models, as exemplified by projects such as ADVISor [19],
ncNet [21], RGvisNet [35], Chat2VIS[22]. These deep learning-
based approaches leverage visualization grammars or programming
codes, such as Vega-lite [32], Vega-zero [21], Python scripts [22] to
reframe the problem of translating natural language to visualization
as one of generating visualization grammar code or expressions.
We build on previous work in NL2VIS by extending its applica-
tion to the context of power grid management and making massive
and complex power grid datasets more accessible and actionable for
power grid operators.

3 CHATGRID - VISUALIZATION

The input of ChatGrid will be a GeoJSON file with the sub-
stations/buses as “points” and branches as “links”. The sub-
station/buses include generation and load information, and the
branches include information on the flows, capacities, etc. This
input GeoJSON file can be created by ExaGO [4, 3] or externally.

The visualization is implemented using open-source libraries, in-
cluding Deck.gl and Chart.js. ChatGrid’s visualization relies heav-
ily on the Deck.gl library [37], a WebGL-powered framework that
provides fast rendering capabilities for handling large power grid
networks. The ChatGrid visualization is detailed through the fol-
lowing views in the next subsections:

3.1 Generation View Layer
The generation view layer (Figure 2) chooses a 2.5D projection vi-
sualization providing an additional visual dimension beyond color,
size, or shape on a 2D map to reduce visual clutter. Tilting the map

with a small angle allows users to effectively discern variations in
bar height and make assessments of its value. The color of the bar
indicates the generation type (e.g., wind, solar, coal, etc.), and the
height displays the power generated by it. Users can toggle on a
capacity layer to visualize the generation capacity, displayed as a
semi-transparent bar overlaying the power generation bar. The ex-
ceeded semi-transparent bar indicates the remaining capacity. We
chose a transparency level that maintains clarity while allowing the
underlying bar colors to remain distinguishable. Additionally, the
color scheme is selected to ensure sufficient contrast between the
different layers to reduce color interference. When the generation
layer is activated, a doughnut chart displays the proportion of power
generated by each generation type. Users can select specific types
of generators by clicking on corresponding sectors of the doughnut
chart. For instance, by hiding other types of generations, it be-
comes apparent that most hydroelectric generators are located near
the coast or close to water resources.

Figure 2: The generation view layer represents the capacity and
power generated of each generation using the height of bars within a
2.5D projection.

3.2 Network View Layer
The network layer (Figure 3) visualizes buses and transmission
lines on a base map. Each point represents a substation, which con-
tains several buses and generations. A transmission line connects
two substations, with color encoding the load ratio passing through
it (i.e., the amount of actual flow/ line capacity), ranging from 0 to
100% and line width encoding the kilovolt (KV) level of the trans-
mission line. The network layer supports searching by substations
and/or transmission line names. In addition, users can apply filters
to visualize the network at a specific KV level or KV level range.

Figure 3: The network layer visualizes buses and transmission lines
on a map with line color representing load ratio and line width repre-
senting voltage level.

The network view includes a flow layer (Figure 4) to display
line flows as animated dashed lines. In the flow layer, color repre-
sents the flow ratio, which is the ratio of actual flow to line capac-
ity, and the line width shows the amount of flow. The direction of



power transmission is visually conveyed through the movement of
the dashed lines, with the dashes moving along the line from the
power source to the destination. The flow layer supports aggrega-
tion so as the zoom level changes, the granularity of flow visualiza-
tion adjusts accordingly. Additionally, users can filter transmission
lines by loaded percentage with the flow ratio slider.

Figure 4: The flow layer shows the power transmission direction with
animated dash lines. Substations nearby are aggregated to reduce
visual clutter.

3.3 Load View Layer
The county load layer shows the total load of buses within each
county with a continuous gray to red color scale to indicate low-
load counties to high-load counties, respectively. As seen in figure
5, the load hot spots are usually big city urban areas such as Los
Angeles, Chicago, New York, Houston, etc. Clicking on a county
of interest like Los Angeles County, the map will zoom into it and
provide detailed information through a tooltip. Utilizing the load
slider filter, one can filter the visualization to look for counties that
have a specific range of electricity consumption.

Figure 5: The county load layer shows the total load of buses within
each county with a continuous color scale that transitions from gray to
red to indicate low-load counties to high-load counties, respectively.

4 CHATGRID - A LARGE LANGUAGE MODEL INTERFACE

As discussed in the previous section, the visualization interface al-
lows users to interact with the data through some predefined filter
widgets such as sliders. However, using such widgets has several
drawbacks - (a) displaying a large number of attributes increases the
number of widgets or increases the complexity of the visualization,
(b) data interactivity and exploration are limited to the functionality
of these widgets, and, lastly, (c) there is a learning curve to learn
how to operate these widgets (e.g. understanding when to apply
union versus intersection).

To tackle the above problems of widget interactions, ChatGrid
incorporates a natural language interface between user queries and
visualization outputs to support a more flexible and natural interac-
tion experience. With this approach, users can pose queries using

Figure 6: The system architecture of ChatGrid with a spatial query
as the use case.

natural language and receive updated visualizations and text sum-
maries as responses.

There were two considerations/challenges in designing this in-
terface. First, LLMs on their own, without the aid of augmentation
tools like search engines, do not have access to knowledge beyond
their training corpus. So, they do not have information on our local
dataset used for visualization. Second, the response from ChatGPT
needs to be also converted to a visual display. The architectural de-
sign and the flow of information from the user query to ChatGrid
to the LLM and back to the user is shown in Figure 6. We break
down this workflow and discuss key components and design con-
siderations in the next subsections.

4.1 Connecting LLMs to Local Datasets

There are two common ways to adapt LLMs to understand personal
datasets. The first is to fine-tune the model’s parameters by training
it on specific datasets. The training or fine-tuning process involves
providing LLMs with examples from the local datasets, such as ex-
ample question and answer pairs. The model will then learn from
this data and adapt its language understanding and generation capa-
bilities to be contextually relevant to the local datasets. The second
option involves using a combination of external tools and LLMs to
generate answers to queries. This is usually achieved by leverag-
ing prompt strategies and API to external tools. For instance, to
compose a prompt instructing LLMs to create executable API com-
mands, execute these commands using external tools, subsequently
process results, and return the outputs.

Comparing the two approaches, retraining the model enhances
the LLMs’ knowledge of specific topics, particularly when textual
inputs and outputs are available. However, power grid data is typ-
ically stored as structured network datasets. For our data query
task, a combination of reasoning (e.g., calculation) and actions
(e.g., searching, visualizing) is required beyond mere conceptual
understanding. Additionally, power grid data can include sensitive
information that LLMs cannot access. Therefore, we chose to in-
tegrate LLMs with API-enabled external tools, such as LangChain
and SQL databases.

Specifically, we used LangChain, an auxiliary framework to set
up steps and actions to interact with ChatGPT, for prompt template
configuration and output parsing. In addition, all the local data is
stored in an SQL database. We chose PostgreSQL because its spa-
tial extension, PostGIS, provides a comprehensive set of geographic
operations for spatial data queries.



Table 1: Performance Evaluation across Query Types. A sign implies the returned results are partially correct (i.e., a subset of the correct
answer is returned). A sign implies the returned results are not always correct. A sign implies the returned answers are always correct.

Query Type Example Input Query SQL

Data
Lookup

name constraints How much power is generated by the generation “RANDLE” ?
numeric constraints List generations with capacity higher than 600.

categorical constraints List all the wind generations

Value
Derivation

aggregates How many wind generations are there in total?
derive new attributes and values

from existing ones
List transmission lines that are loaded more than 50%.

(given the actual flow and capacity of each line).
spatial relationship Which generations are in California?

Logical
Inference

or, and List all the wind generations and generations with a capacity higher than 1300.
negation List names of all generations except for wind generations.

nested List the top 5 coal generations that generate the most power.

Semantic
Inference

subjective description Return the most robust generations.
spelling error List all the caol generations.

synonyms Show me all the generations with a storage limit higher than 600.

The overall system architecture is shown in Figure 6. When a
user inputs the query “Which generations are in California” into the
popup chat window, ChatGrid uses a predefined template to con-
struct a prompt by combining the query with database information,
including table names, attribute names, attribute types, and descrip-
tions. This assembled prompt is then forwarded to ChatGPT for
processing. To fetch relevant information, ChatGPT first identifies
that there is a table named “generation,” but it lacks the informa-
tion about “state”; instead, it contains only the geographic coor-
dinates (latitude and longitude) of each generation. Subsequently,
ChatGPT detects another table named “US state” which stores the
geographical boundaries of all states. ChatGPT then generates a
SQL query that calls a PostgreSQL function to determine which
generations are located within the geographical boundaries of Cal-
ifornia, based on their coordinate information. ChatGrid uses this
SQL query to query the database and send the output data to be
visualized and summarized.

4.2 Performance Evaluation across Query Types
We conducted performance evaluations across four types of data
queries: data lookup, value derivation, logical inference, and se-
mantic inference on a synthetic US Western power grid network
[11]. This synthetic network comprises 12,709 transmission lines,
10,000 buses, 4,762 substations, and 849 generating substations.
We follow previous work of a text-to-SQL benchmark that builds a
taxonomy that covers different classes of queries [17]. Data lookup
queries are queries where the desired answer is readily present in
the provided dataset, while value derivation queries require some
form of calculation or additional processing to obtain the answers.
Logical inference queries are queries that involve logical opera-
tions, such as “and, or, negation”. Semantic inference queries are
queries that include inaccuracies or ambiguities expression in the
queries. Table 1 lists example queries and results. The check icon
in half green ( ) implies the returned results are partially correct
(i.e., a subset of the correct answer is returned). The dashed check
icon ( ) means the returned results are not always correct, as vari-
ations such as rephrasing can affect the results. The square green
check icon ( ) implies the returned answers are always correct re-
gardless of rephrasing. The experimental setup includes ChatGPT-
Turbo 3.5 with a temperature setting of 0, and LangChain@0.0.233.

Overall, ChatGrid exhibits high accuracy in addressing all four
types of queries and successfully returns all the data points that
match specific query conditions in most cases. In addition, Chat-
Grid’s performance is not limited by the data size as it only requests
SQL query returns given database schemas and does not necessarily
need to feed the whole data into the LLM.

On the other hand, there are certain factors that would affect the

performance of ChatGrid. First, for value derivation queries, we
notice the performance also depends on the supported function-
alities of the selected database, especially when complex calcula-
tion is involved. In our example, we choose PostgreSQL as our
database. It has an extension called PostGIS, which offers an ex-
tensive array of functions designed for handling spatial data queries.
Therefore, ChatGrid supports responding to geospatial queries that
involve various spatial operations such as containment and inter-
section but these queries might not succeed in other databases that
do not support spatial queries. However, ChatGrid can become less
stable when dealing with these complex queries that involve exter-
nal functions (e.g., determining geometries’ relationships), where
rephrasing queries could yield different outputs.

Second, ChatGrid mostly relies on table descriptions and at-
tribute names to perform semantic inference, such as subjective
descriptions, spelling errors, and synonyms that appeared in the
queries. Therefore, providing detailed and necessary descriptions
of the database can help it develop an understanding of the dataset
and deal with synonyms and other semantic inference queries.

4.3 Visualize Output
Our next step was to make the visualization respond to the updates
of the SQL agent’s outputs. We formulated a set of rules that func-
tion as APIs that define the data flow and processes and visual-
ization choices. It’s important to note that these rules are highly
system-specific and, therefore can constrain generability and au-
tomation of the system. Our strategy for maintaining automation
integrity involves using universal identifiers, specifically element
IDs, to establish a link between a data entry point and a visual ele-
ment. We explicitly instruct the LLM to generate SQL queries that
retrieve data IDs for each query in the prompt template.

After receiving the data entries and their IDs matching the query
conditions from the PostgreSQL database, we use these IDs to filter
visual elements to be shown to present the query results. In addi-
tion, the visualization will automatically activate layers containing
elements in the returned outputs and adjust the map view to encom-
pass the bounding box of the displayed elements.

At the same time, the data entries from the query results will be
forwarded to the LLM, where a text summary of the observations
will be requested and posted in the conversation window. It’s im-
portant to note that this is the only time when we send original data
to the LLM. For projects involving sensitive data, an alternative ap-
proach can be used to produce other formats of results, such as local
processing to generate tabular data entries.
5 CONCLUSIONS AND NEXT STEPS

In this work, we have demonstrated a novel modern power sys-
tem visualization framework, ChatGrid, empowered with an LLM.



Through enhanced 2.5D projection, dynamic maps, hierarchical fil-
tering, and county-based heat maps, ChatGrid provides functional-
ity for quick visual analytics. Through its natural language inter-
face, the framework pushes the visualization paradigm from “what
you see is what you select” to “what you see is what you ask”, offer-
ing a more flexible approach to visual data analytics that serves as
an alternative to traditional widget interactions. ChatGrid currently
supports most low-level components of analytic activities in infor-
mation visualization, including retrieving values, filtering, comput-
ing derived values, finding extremums, sorting, determining ranges,
and characterizing distributions [6]. However, the NL2VIS compo-
nent needs to be further automated to support other tasks like find-
ing anomalies, clustering, and correlation. Our results indicate that
using ChatGPT to answer queries results in satisfactory answers in
most cases, but not all. This needs further exploration. As with
most visualization interfaces, a human factor assessment study is a
logical next step to improve ChatGrid.
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