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ABSTRACT

This paper introduces CPIE (Coal Pollution Impact Explorer), a
spatiotemporal visual analytic tool developed for interactive visu-
alization of coal pollution impacts. CPIE visualizes electricity-
generating units (EGUs) and their contributions to statewide Medi-
care deaths related to coal PM2.5 emissions. The tool is designed
to make scientific findings on the impacts of coal pollution more
accessible to the general public and to raise awareness of the as-
sociated health risks. We present three use cases for CPIE: 1) the
overall spatial distribution of all 480 facilities in the United States,
their statewide impact on excess deaths, and the overall decreasing
trend in deaths associated with coal pollution from 1999 to 2020;
2) the influence of pollution transport, where most deaths associ-
ated with the facilities located within the same state and neighbor-
ing states but some deaths occur far away; and 3) the effectiveness
of intervention regulations, such as installing emissions control de-
vices and shutting down coal facilities, in significantly reducing the
number of deaths associated with coal pollution.

Index Terms: Coal Pollution, Spatiotemporal Visualization, Pub-
lic Health.

1 INTRODUCTION

Coal remains a primary energy source globally, providing essential
electricity but at a significant environmental cost. Coal pollution
is a major contributor to poor air quality [4, 21], with exposure to
pollutants like PM2.5 linked to adverse health effects and increased
mortality [7]. This pressing issue necessitates ongoing efforts to
understand and mitigate the impacts of coal pollution. Previous
work has developed complex computational models to estimate the
number of deaths associated with exposure to coal PM2.5 from
electricity-generating units (EGUs) [8, 12, 13, 5, 2]. However, an
interactive visualization tool that can effectively analyze and com-
municate the multidimensional spatiotemporal impacts of coal pol-
lution on public health is still missing. Such tools are crucial for
policymakers, researchers, and the public to better understand pol-
lution patterns, assess the effectiveness of regulatory measures, and
identify areas requiring intervention.

In this paper, we present CPIE (Coal Pollution Impact Explorer),
a spatiotemporal visual analytic tool designed to explore the im-
pacts of coal pollution on mortality. This work is part of a scientific
study on mortality risks from U.S. coal electricity generation [8].
The motivation behind CPIE is to provide an interactive platform
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for identifying the impact of coal pollution on excess death patterns
across U.S. states and to serve as an open-source tool for commu-
nicating scientific evidence and findings to a broad audience.

Collaborating with experts in civil, environmental, and infras-
tructure engineering, biostatistics, and public health, we iteratively
developed CPIE to visualize the estimated mortality risks associ-
ated with exposure to coal PM2.5 from 1999 to 2020 for 480 U.S.
EGUs. Users can explore the estimated death coefficients in each
state, associated with or attributed to pollution emission coefficients
from each state or facility over this period. Additionally, CPIE in-
corporates data on pollution reduction interventions such as scrub-
ber installations and unit retirements, allowing users to observe the
impacts of these interventions on excess deaths over time. This tool
aims to enhance the understanding and communication of coal pol-
lution’s health impacts, ultimately supporting efforts to improve air
quality and public health. CPIE is deployed as an open-source tool
and is freely accessible by general public at here. Notably, CPIE has
also drawn the attention of policymakers at the U.S. Environmen-
tal Protection Agency. Furthermore, journalists have used CPIE to
gather information for reporting on specific power plants in their
news articles.

2 RELATED WORK

Visualizations are an effective method for analyzing air pollution.
Air pollution visualizations often involve spatiotemporal data visu-
alization designs, with maps being widely used to present spatial
distributions [14, 3, 17, 20]. Utilizing geographic maps to visualize
air pollution data not only presents the spatial distribution but also
helps the public better relate it to their own locations, allowing them
to envision the real impact of pollution on their health [1]. In addi-
tion, charts such as line charts [14, 17], calendar views [14, 20, 6],
and circular heatmaps [16, 15] are widely used in air pollution visu-
alization to present temporal patterns with both overview contexts
and fine-grained details. Deng et al. [3] developed AirVis to visu-
alize the uncertain propagation patterns of air pollution using graph
visualizations. Park et al. [17] created an interactive dashboard in-
corporating maps, time-series plots, and bar charts to identify high-
concentration areas, temporal trends, and pollutant comparisons.
Similarly, AirLens was developed to analyze air quality evolution
trends [20]. Yue et al. developed AirPollutionViz [22] to explore
both long-term and short-term spatiotemporal sequential patterns in
air pollution evolution.

In addition to complex visual analytic systems designed for do-
main experts in air quality monitoring and pattern extraction, visu-
alizations also serve as tools for data communication to educate the
public, increase awareness, and promote discourse. For instance,
Proma et al. [19] developed an interactive map, CleanAirNowKC,
to help community members in Kansas City monitor air quality
by reporting and tracking industrial emissions or toxic releases,
thereby increasing community participation and engagement. Park
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Figure 1: The user interface of CPIE shows the coal pollution impacts when Pennsylvania is selected. It consists of (A) a choropleth map
view highlighting facilities in Pennsylvania and showing statewide deaths associated with all facilities in Pennsylvania, (B) a choropleth map
displaying the number of deaths in Pennsylvania attributable to facilities in other states, and (C) a stacked line chart showing the changes in
deaths associated with all Pennsylvania facilities from 1999 to 2020.

[17] created a web-based interactive visualization to provide non-
experts with easy access to scientific research findings and knowl-
edge, specifically showing predicted spatial and temporal concen-
trations by a pollution prediction model in South Korea. Carro et
al. [1] evaluated the effectiveness of different visualizations (e.g.,
chart types, color usages) in translating complex air quality indices
into comprehensible information for stakeholders.

3 BACKGROUND

CPIE was built as part of a scientific study on mortality risks from
U.S. coal electricity generation [8]. Prior work in this study has
led to three major findings: 1) coal PM2.5 was more harmful and
linked to more deaths (nearly 500,000) than originally thought; 2)
U.S. regulations and a shift from coal to natural gas reduced annual
deaths from coal power plants since 1999; 3) the number of deaths
from each coal power plant depends on both its emissions and its
proximity to large population centers.

CPIE is designed to make the results of this research accessible
to general audiences because of coal’s coal’s important, yet contro-
versial status in our society; it has enabled progress by generating
cheap electricity while also extracting substantial tolls on the envi-
ronment and human health. Over the 22 years of study, coal pol-
lution’s impact on the environment and public health was reduced
substantially with regulations and shifts to cleaner forms of energy;
these industry-wide impacts were realized through actions at hun-
dreds of individual power plants. CPIE was intended to enable users
to explore the data and draw conclusions about the evolution of neg-
ative health impacts from coal power plants.

The dataset visualized in CPIE includes estimated coal emissions
from each facility and the estimated number of excess Medicare
deaths attributable to air pollution emissions from each coal power
plant annually in each state. Here, we briefly describe the models
and methods used to derive the data. For more detailed information
on the methods and models, please refer to this paper about the full
study [8].

Henneman et al. first collected coal EGU location and emis-
sions information from the United States Environmental Protec-
tion Agency’s Clean Air Markets Program Data tool for the years
1999-2020 1. They then used the HYSPLIT air pollution trajectory
and dispersion tool to track how the emissions traveled through the
air from each facility; in total, they ran HYSPLIT over 30 million
times. They combined the results of the HYSPLIT modeling with
another atmospheric chemical transport model to estimate how each
coal EGU contributed to fine particulate matter (PM2.5).

The authors then linked the exposure data with Medicare health
records of people aged 65 and older, and used statistical models to
estimate the increased risk of death associated with elevated coal
PM2.5. Using the combined results of the epidemiological model-
ing and the atmospheric modeling, they calculated the number of
excess Medicare deaths attributable to air pollution emissions from
each coal power plant in each year (i.e., the number of deaths that
would not have occurred if that coal power plant were not operat-
ing).

4 VISUAL DESIGN

The CPIE platform was iteratively designed by an HCI research
team led by one of the paper authors. Preliminary work conducted
in 2020 explored multiple views and formats for data representa-
tion. The HCI team created a series of interactive prototypes using
the online prototyping tool Figma, which were then presented back
to the paper authors and tested with users in a small user study.
This preliminary work elicited the three main views in the final
CPIE platform: (Figure 1): a choropleth map displaying statewide
deaths associated with the selected state or facility, a choropleth
map showing deaths in selected states attributable to facilities in
other states, and a stacked line chart illustrating the deaths associ-
ated with facilities in each state over time. These views are inter-
connected through selection and highlighting interactions.

1https://campd.epa.gov/



4.1 Map of Statewide Deaths Associated with the Se-
lected State or Facility

This map view (Figure 1A) comprises two layers: a choropleth
map displaying the estimated statewide deaths in each state, and
a dot density map indicating the locations of all 480 U.S. EGUs
(facilities), with dot size representing the total deaths caused by
each facility. The map supports zoom and pan interactions. Users
can hover over facilities to view a tooltip showing the deaths they
caused, with values in parentheses representing 95% confidence in-
tervals (CIs). Reported deaths are rounded up to the nearest multi-
ple of 10. Users can select a facility by clicking on a dot or search-
ing in the ‘Explore by Facility’ dropdown menu. The selected facil-
ity will be highlighted in light blue, while other facilities appear in
low opacity to reduce visual clutter. A ‘show facilities’ switch al-
lows users to hide or show the dot density layer. Selecting a specific
facility updates the choropleth map to show deaths in each state as-
sociated with the selected facility.

Users can also explore at the state level by selecting a state in
the ‘Explore by State’ dropdown menu. This highlights facilities
within the selected state in light blue and hides facilities in other
states. The choropleth map updates to show deaths in each state
associated with the selected state.

4.2 Map of Deaths in Selected State Associated with Fa-
cilities in Other States

This map (Figure 1B) shows how deaths in selected states can be
attributed to facilities in other states (e.g., identifying the sources of
air pollution causing deaths in a selected state). The darker the red,
the greater the impact of a state’s facilities on the selected state.
For instance, we can see in Figure 1B that Pennsylvania’s deaths
are mainly attributable to facilities in Pennsylvania and partially
attributable to facilities in Ohio. This map updates as users select a
state from the ‘Explore by State’ dropdown menu.

4.3 Stacked Line Chart
The stacked line chart (Figure 1C) displays deaths in each state as-
sociated with the selected state or facility from 1999 to 2020. The
legend and lines are sorted by the number of deaths. Hovering over
a line highlights the state on the map and shows a tooltip with the
number of deaths. A text annotation in the bottom right corner of
the chart shows the total deaths associated with the current selec-
tion, with values in parentheses representing 95% confidence in-
tervals. Reported deaths are rounded up to the nearest multiple of
10. The legend lists states with the most deaths at the top. Users
can click state names in the legend to select and deselect specific
states to hide or display them in the chart. When ‘consistent scale’
is enabled, the y-axis value range remains unchanged when users
select different states or facilities, aiding comparison. Otherwise,
the y-axis maximum updates to the extreme value of the current
selection.

4.4 Implementation
CPIE is implemented using D3.js and React.js for front-end visu-
alization and interaction. CPIE is deployed as an open-source tool
and is freely accessible at here.

5 CASE STUDIES

5.1 Overall Distribution and Trends
The landing page of the tool shows the overall spatial distributions
of all 480 facilities on the map and the estimated total deaths in
each state due to coal pollution exposure (Figure 2A), and the total
estimated deaths attributed to coal pollution emissions from 1999
to 2020 in each state (Figure 2B). The data reveals that Pennsylva-
nia, Ohio, New York, Illinois, and North Carolina are the top five
states with the highest number of deaths attributable to coal pollu-
tion. Pennsylvania, with its extensive history of coal mining and

numerous coal-fired power plants, tops the list. The state’s sig-
nificant coal production and use for electricity generation result in
substantial pollutant emissions, adversely affecting public health.
The stacked line chart, summarizing data over the study period, in-
dicates that annual excess deaths attributable to coal PM2.5 were
worst between 1999 and 2007, which adds up to 390,000 (95%
Confidence Interval: 360,000 to 430,000) and averages over 43,000
deaths per year. The annual excess deaths decreased significantly
after 2007, dropping below 1,600 (95% Confidence Interval: 1,400
to 1,700) in 2020.

Figure 2: (A) An overview of the spatial distributions of all 480 facili-
ties and the deaths associated with them in each state. (B) The total
estimated deaths attributed to coal pollution emissions from 1999 to
2020 in each state.

5.2 Localized Impact

Air pollution from coal plants consistently has the most significant
impact on nearby regions. Emissions from these plants, includ-
ing particulate matter, sulfur dioxide, and nitrogen oxides, tend to
disperse locally before spreading further afield, through poor air
quality, water pollution, and soil degradation, etc. As a result, com-
munities close to coal plants are the first and most severely affected
by the harmful pollutants. This localized impact is evident in the
data: for almost every state or facility, the majority of deaths as-
sociated with coal plant emissions occur within the same state or
in neighboring states. We take the top most influential facilities
in Michigan (Figure 3A), Texas (Figure 3B), Georgia (Figure 3C),
Florida (Figure 3D) as examples to show the effect. These facilities
represent that around 50% of deaths occur within the same state and
neighboring states. Similarly, at the state level, deaths are mostly
attributable to facilities within the same state (Figure 3E, F, G, H).

https://cpieatgt.github.io/cpie/


Figure 3: The deaths associated with selected facilities: (A) the Monroe facility (Michigan), (B) Big Brown facility (Texas), (C) Bowen facility
(Georgia), and (D) Crystal River facility (Florida). The stacked line charts mark the timing of regulatory interventions on the x-axis (e.g., scrubber
installations, unit retirements). Deaths in (E) Michigan, (F) Texas, (G) Georgia, and (H) Florida attributed to pollution from facilities in other states.

This pattern underscores the direct correlation between the concen-
tration of coal plants and the incidence of pollution-related health
issues.

5.3 Effective Regulatory Interventions

In coal pollution control, scrubbers play a crucial role in cleaning
the gases that pass through the smokestacks of coal-burning power
plants. Scrubbers are devices that use a liquid, usually a mixture
of water and various chemicals, to remove pollutants from the ex-
haust gases before they are released into the atmosphere. Installing
scrubbers helps mitigate the harmful environmental and health ef-
fects associated with sulfur dioxide emissions [10].

The timeline on the stacked line chart highlights the installation
time of scrubbers and the retirement time of coal plant units. This
timeline allows us to examine the impact of these regulatory mea-
sures on public health. We found that both installing emissions
control devices and shutting coal facilities completely have a visible
and immediate effect on reducing the number of deaths associated
with coal pollution. This indicates the effectiveness of regulatory
measures in improving air quality and protecting public health.

In Figure 3, we selected some influential facilities as examples to
illustrate this effect. The stacked lines chart for each facility shows
a significant drop in associated deaths following scrubbers’ instal-
lation or units’ retirement. For instance, Facility Monroe (Michi-
gan), which installed scrubbers in 2009, shows a marked decline in
mortality rates in the subsequent years. The total number of deaths
associated with the facility dropped to single digits after two addi-
tional scrubbers were installed in 2013 (Figure 3A). Similarly, the
‘Big Brown’ facility in Texas, which retired two of its units in 2018,
shows a significant decrease in deaths related to its emissions (Fig-
ure 3B). These examples highlight the essential role of regulatory
interventions in mitigating the health impacts of coal pollution.

6 LIMITATIONS AND FUTURE WORK

We note the following improvements for future iterations of CPIE.
First, representing uncertainties in the estimated dataset properly
is critical for enhancing the tool’s accuracy and reliability. For in-
stance, current estimations include confidence intervals for excess
deaths associated with each coal facility, presented in CPIE through
tooltips with values noted in parenthesis. To further refine this, fu-
ture versions of CPIE could consider adopting glyphs, such as error
bars or box plots, instead of the dot symbol to show the confidence
intervals on the map. These enhancements would not only provide
clearer visual cues but also convey the uncertainty range more intu-
itively to users, thereby improving the tool’s interpretability and
usefulness in decision-making processes related to public health
and environmental policy [18, 9, 11].

Second, we will work with users to refine the color mapping
choices in the tool. Our intention with the light yellow to dark red
gradient was to visually represent the magnitude of deaths across
regions, using prominent red to highlight the most impacted areas
at a glance. However, we recognize that variations in saturation
could affect how readers perceive the importance of data points,
potentially leading to misinterpretation. Therefore, in future work,
we will consider a color mapping strategy that adjusts the hue while
limiting changes to the saturation range.

Additionally, the current map displays most values aggregated
by time or by state. With a finer granularity dataset, we aim to
implement an animated simulation to visualize the daily dispersion
process of coal pollution. Figure 4 shows a screenshot from previ-
ous formative design studies (Section 4) that visually simulates the
dispersion of pollution from specific facilities. This dynamic simu-
lation will offer a more nuanced view of the pollution’s impact, il-
lustrating how pollution disperses under varying weather conditions
and across different geographic regions. This animated dispersion



process will further introduce uncertainties inherent in estimated
locations and timestamps. Potential ways to address these uncer-
tainties include shading along the dispersion traces to represent the
range of possible pollution levels and outlining affected areas with
dashed lines to show regions estimated to be impacted.

Figure 4: A visual simulation design for coal pollution dispersion,
based on previous formative design studies for future work.

7 CONCLUSION

Visualizations are widely adopted in air pollution analysis; how-
ever, few interactive tools have been developed to illustrate the
impact of coal pollution on public health data. In this work, we
present an interactive visualization tool to explore the estimated
excess statewide deaths associated with 480 electricity-generating
units (EGUs). We employed choropleth maps and stacked line
charts to allow users to interactively explore the spatial distribu-
tion and temporal trends of coal pollution impacts. Using this tool,
we demonstrated three key findings. We hope this work will make
scientific findings more accessible to the general audience and in-
crease awareness among stakeholders and policymakers.
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