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Figure 1: Heterogeneous data integration and visualization for bottom-up and top-down approaches to detect and localize methane
emissions. The picture inside the cross-validation part is from [28]. Visual analytics can improve the results of any step. Both
approaches have individual deficiencies that a visual analytics cross-validation approach can mitigate.

ABSTRACT

Methane (CH4) leakage monitoring is crucial for environmental
protection and regulatory compliance, particularly in the oil and gas
industries. Reducing CH4 emissions helps advance green energy
by converting it into a valuable energy source through innovative
capture technologies. A real-time continuous monitoring system
(CMS) is necessary to detect fugitive and intermittent emissions
and provide actionable insights. Integrating spatiotemporal data
from satellites, airborne sensors, and ground sensors with inven-
tory data and the weather research and forecasting (WRF) model
creates a comprehensive dataset, making CMS feasible but posing
significant challenges. These challenges include data alignment and
fusion, managing heterogeneity, handling missing values, ensuring
resolution integrity, and maintaining geometric and radiometric ac-
curacy. This study outlines the procedure for methane leakage de-
tection, addressing challenges at each step and offering solutions
through machine learning and data analysis. It further details how
visual analytics can be implemented to improve the effectiveness of
the various aspects of emission monitoring.

Index Terms: methane leakage, real-time monitoring, Spatio-
temporal visualization techniques.

*e-mail: parisa.masnadi@ou.edu
†e-mail: danala@ou.edu
‡e-mail: wjentner@ou.edu
§e-mail: ebert@ou.edu

1 INTRODUCTION

Methane (CH4), with a warming potential more than 28 times
greater than carbon dioxide (CO2) over a century, is crucially
targeted in climate change mitigation efforts [33, 34, 43]. Emis-
sions from natural gas systems, landfills, and livestock present
substantial monitoring and mitigation challenges. Innovations
in CH4 capture technologies are transforming these emissions
into clean energy. Regulatory policies, including carbon pricing
and renewable energy incentives, alongside advanced monitoring
technologies, emphasize the benefits of reducing CH4 emissions
and advancing green energy solutions.

A near real-time system is crucial for continuous monitoring
(CMS) and fugitive detecting CH4 emission detection. This
system provides actionable insights for mitigation. Integrating
spatiotemporal data from ground sensors, unmanned aerial
vehicles (UAVs), aircraft, and satellites, improves detection capa-
bilities, and mitigates the limitations of individual measurement
tools [8, 17, 37]. However, analyzing this complex data requires
powerful computational frameworks and data-driven models to
enable effective analysis and mitigation [45]. The ideal framework
should be scalable and flexible to adapt to new technologies and
regulatory changes [2]. It should include robust verification and
validation mechanisms to enhance data credibility, ensure active
stakeholder engagement, enable stakeholder decision-making, and
maintain cost-effectiveness.
Advanced visual analytics (VA) techniques can fully exploit the
potential of these data. These techniques are vital for transforming
raw data into practical decisions and for effectively communicating
the findings to decision-makers [5, 10].



This paper, as illustrated in Fig.1, reviews the procedure for de-
tecting CH4 emissions, measuring their concentrations, and creat-
ing a visual analytics decision-making environment. It covers both
top-down and bottom-up approaches and discusses their integration
with the Weather Research and Forecasting (WRF) model [31]. The
paper identifies challenges associated with each step and examines
how data analysis and visualization techniques can address these
issues, offering effective solutions.

2 CHALLENGES AND OPPORTUNITIES USING VISUAL ANA-
LYTICS

CH4 emissions significantly contribute to global warming. To
combat these emissions, enhanced regulatory measures [13, 24]
such as the Environmental Protection Agency’s (EPA) imposition
of a waste emissions charge on facilities exceeding set emission
thresholds are in place, with charges increasing annually from
2024 onwards [15]. Effective measurement and monitoring
of emissions involves advanced sensing technologies including
satellites, UAVs, ground sensors, and data from inventories like the
National Ecological Observatory Network (NEON)

Effective data integration, visualization, and interactive analyt-
ical approaches are crucial for understanding various data streams
and deriving actionable solutions for detecting and mitigating emis-
sions. Applying advanced data analysis techniques and integrating
data-driven models enhances the resolution of datasets with sparse
or irregular sampling, identifies measurement errors, and improves
the accuracy of volume and source location estimation. These vi-
sual analytic frameworks, combined with novel artificial intelli-
gence (AI) and machine learning (ML) approaches that facilitate
human-in-the-loop interactions, can significantly enhance efficacy
and adaptability across different monitoring sectors. Data explo-
ration techniques within the visual analytics system allow operators
and users to explore various combinations of data fusion and as-
similation, enabling the investigation and identification of optimal
data fusion techniques to derive effective mitigation actions. This
integration also allows for data comparison and cross-validation,
helping identify inconsistencies and anomalies. These VA systems
must be customized for different users (like O&G operators, regula-
tors, federal agencies, communities,& tribal agencies, etc.) to pro-
vide appropriate information and monitoring capabilities required
for those stakeholders.

2.1 Measurement Technologies and Challenges
As mentioned in the introduction, various tools and technologies
are employed to measure methane emissions, each with unique
capabilities and limitations. Satellite monitoring provides broad
coverage, including remote areas, but suffers from lower resolution
and can be affected by weather and timing, making it best for
identifying large leakage emissions, which are a source of huge
methane emissions, and are referred to as super emitters. Airborne
methods offer more detailed local data but are expensive and also
weather-dependent. UAVs and ground-based systems provide
accurate, real-time data but need significant infrastructure for
large-scale effectiveness [3, 51]. Inventory data, while not updated
in real-time, is crucial for improving WRF model predictions and
detailed bottom-up measurements.

The top-down approach to estimating CH4 emissions uses
atmospheric measurements from ground stations, aircraft, or
satellites to assess regional or global emissions. This method
combines these measurements with meteorological data and atmo-
spheric chemistry models to calculate total emissions. However,
it faces challenges due to its reliance on complex modeling, the
accuracy of atmospheric models, and the density and distribution

of measurement stations or remote sensing coverage.

The bottom-up approach provides a detailed analysis of CH4
emissions by tracking their sources and quantities, though man-
aging the complex data is challenging. Advanced visualization
tools like Geographic Information Systems (GIS) are essential for
transforming this data into actionable insights. For instance, a
GIS-based method helps model and visualize energy usage and
greenhouse gas (GHG) emissions, providing detailed insights
into how behavioral and technical changes affect energy patterns
and emission hotspots, which aids in developing effective energy
policies [27]. Additionally, as noted in [35], addressing discrep-
ancies in national inventories through a detailed CH4 inventory
enhances the accuracy of global warming and air quality models.
Techniques like Sankey diagrams, referenced in [9], visualize
emission flows across sectors, helping to identify crucial areas for
targeted mitigation efforts. An example is the analysis of Canada’s
GHG emissions [9], which shows significant impacts, particularly
from Alberta’s oil and gas and Ontario’s transportation sectors,
pointing to areas where targeted actions could yield major benefits.

Satellite and airborne hyperspectral and multispectral imagery
are used for visualizing CH4 point sources. Matched filter tech-
niques and adaptive coherence methods are applied to raw data to
identify specific signatures associated with CH4 , allowing for the
visualization and quantification of discrete CH4 plumes [43]. De-
tecting emissions smaller than a pixel using satellite data is partic-
ularly challenging. Controlled release experiments, where known
quantities of CH4 are emitted, have been used to validate emission
quantification algorithms in satellite data, with airborne sensors
measuring these controlled plumes [43]. This process is enhanced
by sub-pixel resolution analysis, which aids in calibrating and vali-
dating satellite CH4 products, thereby refining the accuracy of satel-
lite sensors. Additionally, another challenge is the atmospheric ef-
fects on satellite observations. Atmospheric transport models [43]
can be employed to simulate the dispersion of CH4 plumes, which
helps in calibration by understanding how atmospheric conditions
affect satellite observations.

2.2 Emission Detection
Time series and anomaly detection algorithms are used to detect
plumes in large satellite datasets, which can sometimes trigger false
alarms. To address this, Ouerghi et al. [32] utilize the Reed-Xiaoli
algorithm and adjust detection thresholds with a counteractive sta-
tistical model to reduce these false alarms. Further, in the ”plume
detection” part of Fig.1 [41], hyper/multi-spectral imaging provides
a 3D view of the area across different wavelengths. This data is pro-
cessed using a matched filter technique to enhance CH4 detection,
which involves refining the raw data to clarify the CH4 spectral sig-
nature [41]. The refined data is then orthorectified to create a 4D
CH4 map. This map includes RGB layers and an additional layer
that displays CH4 concentrations in parts per million-meter (ppm-
m) [26]. Human analysts must manually review these maps to ac-
curately identify and delineate CH4 plumes, separating them from
non-plume artifacts. Visualization tools help enhance the display
by providing more detailed information such as time and location
through interactive features like pop-up menus [41]. These visual-
izations enable analysts to access additional contextual information,
making the data more informative and easier to interpret.

2.3 WRF Model
WRF model, especially its Large Eddy Simulation (LES) version,
plays a pivotal role in simulating critical atmospheric conditions
like wind patterns and temperature profiles. The WRF-LES model,
with its enhanced capability to simulate fine-scale atmospheric phe-
nomena, significantly aids in accurately tracking plume movement



and predicting trajectories [23]. When integrated with satellite im-
agery, the WRF model’s outputs, especially those about wind fields,
enrich plume detection and analysis. This combination offers an in-
depth view of meteorological factors over the study [31].
Visual analytics enable the use of different weather models, allow-
ing for the comparison and testing of each model’s efficiency across
various regions.

2.4 Integration
Integrating and fusing multi-sensor data from terrestrial and
drone-borne platforms is essential for achieving geometric and
spectral accuracy but poses significant challenges. These chal-
lenges include the complex processing required for data alignment
and fusion, environmental conditions affecting data consistency
(enforce sensor recalibration), and the need for sophisticated
software capabilities [25, 40]. Cross-validation techniques and
advanced statistical reconciliation help enhance data accuracy [8],
while data from various sources are consolidated into a centralized
Data Warehouse [18].

Managing the heterogeneity, multidimensionality, and scalabil-
ity of data, often containing semantic differences such as varied
terminologies and units, further complicates data integration. To
address these issues, methods like ontology-based integration, ad-
vanced data warehousing, and robust data mining and visualization
are recommended [30]. Additionally, handling missing data entries
due to incomplete metadata or equipment failures is crucial for
maintaining data quality, with techniques such as hybrid clustering
and hypergraph clustering being utilized to efficiently organize
data into comparable groups [11].

The surge in data from devices and mobile cloud systems
necessitates real-time processing for anomaly detection and
security [21]. Newer frameworks like Hadoop, Spark, and Apache
Storm enhance these capabilities [21]. Furthermore, combining
satellite and airborne data with advanced image processing and
atmospheric modeling enhances the detection and quantification
of CH4 emissions [16]. Despite these advancements, maintaining
resolution integrity remains a challenge. Yokoya et al. [48] discuss
various data fusion techniques such as component substitution,
multiresolution analysis, spectral unmixing, and Bayesian. Among
these, spectral unmixing proves particularly effective for CH4
detection, while Bayesian probability is valuable for managing
uncertainties and updating analyses with new data.

Merging raw hyperspectral data with geolocation information
creates 3D hyperclouds, and significantly improves geological
mapping and visualization. This requires meticulous geometric
and radiometric corrections to ensure accurate real-world repre-
sentation [40]. Finally, categorizing data based on resolution
levels within databases helps manage multiple data representa-
tions effectively, ensuring efficient storage and retrieval for specific
tasks [38].

2.5 Inverse Modeling
Quantifying CH4 emissions accurately is challenging due to the
spatial and temporal variability of sources. Inverse modeling
addresses this by working backward from atmospheric methane
measurements to identify emission sources and determine their
rates and locations. This method uses data from satellite, airborne,
or ground-based sensors combined with meteorological data to
provide more reliable estimates than direct measurements, which
may overlook intermittent or diffuse sources.

There are several methods to quantify emissions from observed
plumes, including the Gaussian plume inversion method, source

pixel method, cross-sectional flux method, and Integrated Mass
Enhancement (IME) method [44]. While Gaussian plume model-
ing struggles with small, non-standard plumes due to turbulence,
methods like IME and cross-sectional flux, which are less affected
by turbulence, offer more accurate estimations by correlating total
plume mass or measuring fluxes across plume transects to deduce
source rates [12, 44].

2.6 Attribute Determination

The CH4 monitoring system aims to quickly link detected methane
plumes to their sources [12], crucial for monitoring global oil and
gas resources. This requires an automated system for both detec-
tion and attribution. Techniques like OGNET [36] and METER-
ML [52] employ deep neural networks to identify specific oil and
gas sites, using models initially trained on datasets like ImageNet.
However, remote sensing imagery often differs significantly in
shape and channel number from ImageNet, affecting model perfor-
mance. Studies have shown that models using the National Agricul-
ture Imagery Program (NAIP) with its four spectral bands outper-
form others in automated detection of oil and gas infrastructures.
This approach, while precise, depends on high-resolution data, lim-
iting its accessibility and global coverage. Furthermore, despite ad-
vancements, manual review is still needed to reduce false positives
and the approach struggles with smaller infrastructures like well
pads and compressor stations. The need for more specialized de-
tection methods and the effectiveness of various algorithms in this
domain are areas requiring further research.

2.7 Visualization and Interactive Visual Analytics

CH4 emissions are dynamic spatiotemporal data tracked through
multiple sensors simultaneously. Visualizing these emissions is
crucial for sense-making and getting a coherent picture of the
emission and situation. VA is useful for estimating the severity of
emissions, detecting polluted areas that may become hazardous,
and detecting the root cause/source of the emission. In combination
with simulations and ML, scenarios can be created to conduct
”what-if” analysis useful for planning, maintenance, and regulation
tasks.
Some previous work has focused on eliminating atmospheric in-
terference as the key to enhancing visualization, and one effective
method could be employing Principal Component Analysis (PCA),
as discussed in Ouerghi et al. [32].
Another method for visualizing CH4 emissions involves depicting
the fluid dynamics of plumes, which can be achieved by con-
densing a series of images into a time map that illustrates the
progression of the fluid [39]. Multivariate data can be displayed
utilizing glyph maps to enhance the comprehension of complex
spatiotemporal data [47]. The glyphs can display variations
and trends, making them particularly useful for identifying and
analyzing CH4 emission patterns across various regions and times.
Zhang et al. discuss using Kernel Density Estimation (KDE)
and map visualization techniques, which are particularly effective
for mapping CH4 emission densities and identifying geographic
and temporal patterns [49]. Visualizing emissions in atmospheric
conditions is not only challenging due to largely interpolated
weather data failing to detect local turbulences [20, 50], but also
challenging for performance reasons of simulating and visualizing
billions of particles [19, 29]. Interacting with such volumetric data
increases the challenge as the user interface must stay reactive
requiring performant calculation, simulation, and visualization
techniques [14, 42].
Another method for displaying plume dispersion is through a
space-time cube, where two dimensions represent space and the
third time [1, 22]. While this allows understanding of temporal
behavior better, losing the third spatial dimension might be
inadequate for understanding atmospheric dispersions and turbu-



lence. On the other hand, having three spatial dimensions only
allows having the time encoded in animating the data, such as a
video, resulting in unwanted effects such as change blindness [7].
Technologies such as virtual reality and augmented reality may
be effective, however, the large scale of emissions in nature
might be challenging to convey whereas down scaling leads to
oversight of important patterns. VA can be key in improving the
accuracy of data fusion, science-based model integration (e.g.,
WRF-GHG), and eliminating errors and gaps in ground-based
inventory measurements to help find and enable mitigation of
fugitive CH4 sources.
An interactive dashboard for GHG emissions visualization could
significantly enhance the display and usability of plume data,
offering a user-friendly tool for monitoring, analyzing, and
reporting emissions on various scales. By benchmarking similar
online dashboards, the fundamental requirements can be inferred,
ensuring the creation of a robust and effective tool [4, 6, 46].
When zoomed out, this dashboard should integrate big circle
symbols representing aggregate data from individual plumes,
with size and color variations indicating total emission volume
or concentration. Semantic zooming allows for detailed views of
individual plumes at closer levels and aggregate views at broader
levels, reducing clutter. Interactive elements would enable users
to hover over plumes and circles to display key data like emission
type, concentration levels, and detection time. A time slider or
calendar feature would facilitate time series analysis, tracking
changes over different periods. Data layer toggling, including
wind patterns, temperature, or other environmental factors, would
help correlate plume data with external conditions. Geographical
context provided by map overlays showing urban areas, terrain, or
weather systems would enhance understanding of plume locations.
Customization options and filters would allow users to focus on
specific aspects of interest, such as plume size or emission type.
The dashboard should be responsive and accessible on various
devices, ensuring a consistent experience across desktops, tablets,
and mobile phones. Indicators of data sources and the accuracy
or uncertainty level of displayed information would be essential,
especially for synthesized or modeled data. Export and reporting
tools would facilitate further analysis or sharing of visualizations.

To avoid clutter in visualizations, especially with infrastructure
data, it is important to filter out or scale back certain elements when
zooming out while emphasizing the exact locations of plumes and
surrounding infrastructure in specific areas for better focus and un-
derstanding. This approach ensures that users can pinpoint rele-
vant details without being overwhelmed by excessive information.
These interactive tools can also establish a feedback loop incor-
porating user insights, model outputs, and visualization feedback,
which is crucial for refining detection algorithms. Automated sys-
tems should be employed to flag potential discrepancies in the data,
prompting human review and further adjustments. This iterative
process ensures continuous improvement in methane emission de-
tection and management systems.

3 DISCUSSION

Due to their high global warming potential, CH4 emissions from
natural gas systems, landfills, and livestock pose significant en-
vironmental challenges. Capturing and reducing these emissions
promptly is crucial for clean energy initiatives. Innovations in
CH4 sensing and monitoring technologies transform these emis-
sions into valuable energy sources, mitigating environmental im-
pacts and contributing to clean energy generation. However, captur-
ing these emissions is challenging due to their diffuse and intermit-
tent nature, requiring an integrated approach with data from ground
sensors, UAVs, aircraft, and satellites. A near real-time CMS mon-
itoring is essential for detecting and managing these emissions,

providing actionable insights for mitigation. Such systems must
facilitate capabilities for exploring different data integration com-
bined with intelligent AI-assisted VA tools to enhance emission and
anomaly detection. The main challenges could be summarized as
follows:

• Appropriate recalibration of sensing technologies due to their
variance from environmental impact.

• Data handling from different sources requires a firm and clear
framework.

• Developing a multiscale spatiotemporal framework to support
multi-level analysis and integrate the diversity of scales of in-
put data.

• Continual refinement of modeling techniques that incorporate
data-driven meteorology.

• Large clean and labeled datasets for training ML methods.
• Identifying appropriate data fusion techniques for diverse data

sources.

Potential solutions include:
• VA that continually estimates and compensates for sensor in-

consistencies due to environmental changes.
• ML addressing integration challenges, with imputation tech-

niques fixing data inconsistencies.
• VA enhancing data interpretation, aiding in the integration of

3D atmospheric distribution with emission data for a deeper
understanding, and enabling source identification and mitiga-
tion planning.

• New database development categorized by resolution can cre-
ate multiple data representations for detected CH4 emissions,
enhancing localization, providing further information, and
improving classification.

By addressing these challenges and leveraging advanced visualiza-
tion and ML techniques, we can significantly improve the detec-
tion, management, and reduction of CH4 emissions, contributing to
a cleaner and more sustainable energy future.

4 CONCLUSION & FUTURE WORK

In conclusion, developing a real-time VA monitoring system for
GHG emissions, particularly CH4 can enable the effective detection
and mitigation of the complex and stochastic nature of these emis-
sions. VA systems are enabling capabilities for building the nec-
essary systems to accurately detect, locate, quantify, and mitigate
known and fugitive emissions through a combination of sensing
platforms, including advanced satellite imagery, atmospheric mod-
eling, and computational techniques. This study highlights the crit-
ical need for these techniques, the challenges in integrating the de-
tection techniques and modeling approaches, and producing detec-
tion and mitigation tools that can adapt to diverse and dynamic en-
vironmental conditions and evolving sensing modalities, ultimately
contributing to more effective emission monitoring and mitigation
efforts.
In the next step a dashboard will be created to enable integrated
multidimensional real-time CH4 monitoring. To achieve this, the
system must address the challenges discussed and include neces-
sary interactive tools. A system requirements assessment question-
naire has been developed and distributed to experts and stakehold-
ers to understand their requirements. The survey findings will en-
sure the prospective system’s effectiveness in providing stakehold-
ers with capabilities to mitigate CH4 emissions.
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