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Figure 1: Snapshot of the 100 megapixel high-resolution display with an interactive visualization in the browser. Two synthetic
energy model topologies are shown: an electrical transmission system (blue lines) and a corresponding distribution system (orange
points) in the San Francisco Bay area. These two models have over 12 million combined features.

ABSTRACT

With the growing penetration of inverter-based distributed energy
resources and increased loads through electrification, power sys-
tems analyses are becoming more important and more complex.
Moreover, these analyses increasingly involve the combination of
interconnected energy domains with data that are spatially and tem-
porally increasing in scale by orders of magnitude, surpassing the
capabilities of many existing analysis and decision-support systems.
We present the architectural design, development, and application of
a high-resolution web-based visualization environment capable of
cross-domain analysis of tens of millions of energy assets, focusing
on scalability and performance. Our system supports the exploration,
navigation, and analysis of large data from diverse domains such
as electrical transmission and distribution systems, mobility and
electric vehicle charging networks, communications networks, cyber
assets, and other supporting infrastructure. We evaluate this system
across multiple use cases, describing the capabilities and limita-
tions of a web-based approach for high-resolution energy system
visualizations.

Index Terms: Visualization—Visual Analytics—Human Computer
Interaction—Grid Modernization

1 INTRODUCTION

Historically, power systems transmitted electricity in a single di-
rection from synchronous utility-owned generators to easily fore-
castable customer loads, requiring few assets to be measured or
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modeled to analyze and control a system. However, renewable
energy is driving us to reconsider how we model, visualize, and
ultimately support decision-making about the energy system, requir-
ing analyses of higher-fidelity information. Inverter-based resources
(IBRs), such as wind or solar farms, change the dynamics of the
power system [23], requiring high temporal fidelity to capture the
system behavior. Additionally, these generation resources are no
longer exclusively owned and controlled by utilities; increasingly,
they are Distributed Energy Resources (DERs) installed closer to
end loads. Moreover, customer loads are changing as more elements
traditionally powered by fossil fuels, such as transportation or heat-
ing, undergo electrification [38]. As a result, energy studies and
operational tasks can require information on individual buildings or
even individual plug loads within a system.

Modern energy systems and supporting infrastructure are more
intertwined with other large-scale systems than ever before. Indi-
vidual systems were previously modeled in isolation, but now are
considered alongside adjacent domains so that the diverse groups of
stakeholders can learn how actions in one domain affect the compre-
hensive system. For example, the placement of electric vehicle (EV)
charging equipment is a decision that crosses multiple domains and
can involve many stakeholders. In this setting, the location of an
EV charging station affects electrical grid planners and operators,
transportation authorities, community planners, and EV charging
installers. We must consider travel patterns, plug-in times, EV charg-
ing profiles, and charging locations across a regional extent at a
distribution-bus fidelity to understand how these installations will
impact the power system [29].

The growing scale and complexity of multi-domain data for mod-
ern energy systems underscores the need for high-resolution vi-
sualization systems that can facilitate the necessary analysis and
management for making decisions with this data. In this paper, we
describe a web-based architecture that supports a 100-megapixel
high-resolution large display wall for direct visualization of these
multi-domain datasets. To effectively visualize datasets with mil-



lions of features, we leverage data processing steps that include
vector tiling pipelines, data transformations into efficient buffer
formats, and layer definitions with high-performance WebGL2 ren-
dering libraries. Vector tiling and efficient buffer formats need to
work together to support the largest time-varying datasets. While
vector tiles can enable scalable and interactive visualizations by
statistically sampling large and spatially dense static datasets to gen-
erate appropriate levels of detail [24], merging time-series values to
existing tiles is computationally expensive and limits interactivity.
Conversely, encoding large and spatially dense features into efficient
buffer formats can handle fast time-series updates but leads to sig-
nificant over-plotting, which constrains interactivity when dataset
feature sizes approach multiple millions.

2 BACKGROUND

The energy sector has employed various visualizations for power
systems, with the traditional one-line diagram serving as the stan-
dard representation of an electric network’s static structure. This
schematic uses symbols and lines to depict electrical components and
their connections [35]. However, one-line diagrams are not scalable
and generally lack geographic context, making it difficult to under-
stand geographically-driven phenomena such as renewable energy
resource distribution, electric vehicle travel patterns, weather-related
events, and the interplay with non-power infrastructure. Researchers
commonly use glyphs like ellipses and arrows to represent various
system properties, including load and generation, in a geographical
context [8, 12]. However, overplotting becomes a limitation at any
significantly large scale [22]. Two-dimensional colored contour
maps are a common aggregation technique for visualizing power
systems data [26, 37]. However, colored contour maps can misrepre-
sent data in dense, topologically complex distribution systems [9].
Lyons-Galante et al. [19] have proposed tessellation-based aggre-
gation techniques that more faithfully represent the statistical dis-
tributions of dense electrical bus values, but these have yet to be
empirically evaluated with power systems stakeholders.

Considering the scales of the emerging energy systems, analyses
based on aggregation techniques alone are likely to be insufficient.
Traditional electrical control rooms utilize large-scale displays with
millions of pixels composed from multiple independent screens,
which generally display multiple independent views [11]. Similar
large-scale display designs have been found to be beneficial for
collaboration [1, 34] and providing space to think [3]. Like many
use cases in the visualization literature [5], our system creates a
single, integrated visualization utilizing all the pixels as a single
unified display. Large-scale high-resolution displays offer signif-
icant advantages, such as improved access to information within
multi-scale, heterogeneous data sets [4]. For large, multi-scale data,
zoom and pan interactions on traditional displays can be insufficient,
whereas high-resolution displays are a tool to see the context and
details simultaneously [14, 30]. These high-resolution displays may
provide perceptual and cognitive benefits as empirical studies have
shown increased user performance on spatial tasks, mental mapping,
and memory on large-scale high-resolution displays compared to
traditional desktop displays, even when controlling for visual angles
between the display types [32].

2.1 Domain Models
Modern energy domain models span power systems (e.g., trans-
mission and distribution electric systems with DER assets such as
rooftop solar installations), transportation and mobility systems (e.g.,
vehicle trajectories and EV charging data), and cyber systems (e.g.,
communications, sensing, and supporting infrastructure) to name
a few. A common starting place for many energy analyses in the
context of grid modernization involves leveraging transmission and
distribution electric system models [17]. For a reference of distribu-
tion model sizes and scales, the SMART-DS models [27] represent
synthetic distribution electric systems and are shown in Table 1. For

Table 1: Details for three reference SMART-DS models [28].

example, the San Francisco Bay area model captures roughly 4.3 mil-
lion consumers and contains close to 10 million electrical nodes and
116,837 kilometers of distribution lines. Traditionally, visualizing
datasets of this size involves aggregation techniques such as vector
tiling to statistically sample representative levels of detail based on
client view-port location and zoom levels. Vector tiling methods
can generate faithful representations of large datasets [31], and have
been shown to outperform similar raster-based tiling methods [24].
However, vector tile approaches can require computationally ex-
pensive pre-processing steps as datasets grow and have interactive
limitations when attempting to style assets based on dynamic time-
series values. Conversely, the availability of high-resolution large
display environments provides opportunities to visualize more of a
domain model’s assets simultaneously. However, there are multiple
considerations when choosing visualization data formats and render-
ing parameters to reduce overplotting, enable dynamic time series,
and allow for smooth interactions [36]. Additionally, geospatial in-
dexing techniques can be advantageous in addressing the challenges
between vector tiles and raw buffer approaches [6].

Figure 2: H3 hex aggregation of the San Francisco SMART-DS
model feeders. Hexes are colored by electrical feeder and overlaid
with the distribution buses.

Figure 3: San Francisco SMART-DS model on the Insight Center
100 megapixel display wall. Assets are styled from time-series
values with a diverging color-scale based on nominal per-unit voltage
(white) and +/-5%, with red as higher and blue as lower voltages.



3 ARCHITECTURE

We are visualizing high-performance computing (HPC) energy sys-
tem simulation data on a 100-megapixel, high-resolution display
wall composed of twelve 4K displays with a total resolution of 15360
by 6480 pixels. A single Linux server uses NVIDIA Mosaic to drive
the high-resolution large display with three Quadro RTX 8000 GPUs
and 1TB of CPU RAM. The server connects to the NREL HPC data
center [25] via a 100-gigabit fiber network, where the large-scale
models are run and resulting data are stored. Once data has been
processed through our pipeline, we use Google Chrome to render
interactive web-based visualizations.

3.1 Data Processing
To support web-visualization of large-scale data, we begin our visu-
alization pipeline with data processing steps of vector tiling, hierar-
chical geospatial aggregation, and buffer formatting.

3.1.1 Vector Tiling
When dealing with especially large or dense datasets, we generate
vector tiles using Mapbox’s Tippecanoe [20] command line interface.
Written in C++, the pipeline can process large geospatial datasets
into a custom .mbtiles file format or as a directory of corresponding
protobuf (.pbf ) files at specified zoom levels. There are many run-
time parameters that need to be properly chosen–such as balancing
sampling in datasets with high densities, managing representations
over large geographical areas, and smoothing polygons with many
features, to name a few. For example, the amount of data included
in each tile at various zoom levels can significantly impact inter-
active performance and may even cause client browsers to crash
due to memory overload. In our case, we process large energy do-
main models (e.g., the SMART-DS San Francisco model) through
Tippecanoe and manage the tile size by extracting individual layers
of asset types (e.g., electrical buses, lines, transformer, regulators).
These layers can be rendered as references, upon which we can dy-
namically assign styles from data properties and simulation outputs.
Tippecanoe’s outputted directory of tiles can be hosted from a static
file tile server that runs locally, on networked servers, or from a
cloud resource.

3.1.2 Geospatial Aggregation
Often, there are properties of domain model assets that naturally
group hierarchically. For example, in transmission and distribution
electric system settings, a bottom-up construction would start with
individual assets (e.g., electrical buses, transformers, lines, etc.),
which group into distribution feeders. These feeders can be grouped
to corresponding transmission substations, which are subsequently
grouped into a utility’s service area, onto balancing authorities,
and eventually into interconnections. Rather than pre-computing
convex or concave hulls, or Voronoi tessellations that can lead to
elongated and irregularly shaped units, we process assets through
an iterative geospatial indexing library, H3 [6]. This process gener-
ates hexagonal partitions at desired levels of detail, while enabling
fast hierarchical (parent-child hexagon) computations and on-the-fly
styling. These features allow the same generated covering to be effi-
ciently and dynamically styled. For example, we can dynamically
style all hexagon bins that group into feeders, which feeders group
together to a transmission substations, and generate boundaries for
utility service areas. A sample of this type of covering is shown in
Figure 2. Moreover, the styles are not limited to an asset’s static
properties, but can also be updated based on any function of their
contents’ time-series values (e.g., voltages and violation counts).
While this geospatial aggregation allows for efficient client render-
ing, without needing to draw and style large amounts of individual
assets, it also serves the purpose of anonymizing the underlying
model and data when required. For example, when utilities share dis-
tribution feeder data, they often need to keep their feeder topologies
and asset geospatial locations private. Passing this data through a H3

partitioning process at an acceptable resolution allows researchers
to dynamically compute aggregate values in ways appropriate for
sharing information with stakeholders.

3.1.3 Buffer Formatting
When focusing on energy model simulations that prioritize visualiz-
ing frequent time-series updates, directly modifying asset styles in
the vector tile format can be challenging and computationally costly–
ultimately preventing levels of smooth interactivity from users. In
settings where simulation data is regularly changing or needs to
be animated, data processing steps that prioritize efficient mem-
ory formats become paramount for achieving smooth style updates.
This memory formatting depends closely on the chosen rendering
pipeline. Our architecture leverages the highly-performant Deck.GL
library [36], wherein the specification for binary data formats is
well-defined and can be immediately used for primitive layer defini-
tions. This performance-optimization method makes heavy use of
transforming raw data representations into JavaScript TypedArrays
formats (e.g., Float32Array and UInt8Arrays etc.). These formats
allow the library to minimize CPU overhead and pass data directly
onto the GPU for rendering. When paired with web workers [2],
this process can efficiently compute and no-copy transfer memory
objects of updated asset positions, styles, and properties without im-
pacting the main thread, which has allowed us to support interactive
datasets with millions of assets.

3.2 Front-End
Our data pipeline feeds our interactive visualizations through the
use of modern web frameworks, allowing researchers to design and
develop applications that can scale across devices, including mobile,
desktop, and high-resolution large displays. In this paper’s context,
we make use of the Next.js framework that wraps the React.js library
for state management. We defined custom web-workers to handle
connections and requests to external data APIs, load and parse lo-
cal data into proper (binary) formats, and transfer updated buffers
back to the main application thread to minimize memory footprints
and unnecessary data copying. Additionally, we leverage Deck.GL
specifications for formatting data to be used within layer definitions
for vector tiles, GeoJSON, trips, and primitive points/lines. When
combined with the data processing approaches above, our architec-
ture supports interactive exploratory visualization for a wide array
of energy domain models.

4 EVALUATION

We applied our architecture in a variety of different modeling con-
texts including power systems analyses, renewable resource assess-
ments, situational awareness platforms, and cyber studies [13,15,21].
We outline two of these applications here. At a high-level, we design
and implement our applications with domain users by considering a
handful of properties: number and density of assets, level of inter-
activity, dynamic styling, time-series frequency, and desired frame
rates. A current challenge arises when a large and dense dataset has
frequent time-series updates that require dynamic styling. Using
the vector tile approach, reference layers can be generated through
Tippecanoe upon which time-series data, either requested from an
external API or parsed in memory (e.g., parquet and csv), can be
used to re-draw the defined Deck.GL layers. However, this approach
is CPU intensive as Deck.GL must re-compute buffers for all tile
assets in each animation frame and quickly limits interactivity. Con-
versely, time-series data can be baked into the tiles during their
generation–outputting a new directory for each time-step. The ren-
dering client can subsequently point to the corresponding directory
at the current time-stamp. While pre-processing is computationally
intensive and can require substantially more back-end tile storage,
this approach moves the bottleneck from the CPU to network I/O,
as each new time-step will request a fresh set of tiles and unable to
leverage the browser’s cache. In our experience, if a dataset has 5



million features, regardless of density, we can utilize the Deck.GL
binary buffer formats to bypass the CPU-intensive bottleneck to
achieve sub-second re-renders with the map remaining interactive.
Ultimately, our applications leverage a combination of the data pro-
cessing steps–vector tiles for rendering references of large and dense
models, hierarchical aggregations for rendering group inclusions
and statistics, and binary buffer formats for rapidly re-rendering
models, selected assets in focus-areas, or assets that are flagged in
simulation-defined events.

Figure 4: Example visualization of wind resource availability in-
volving electrical transmission system components, existing wind
turbine arrays, modeled future wind sites, and expanded capacity
transmission lines across the continental United States [18].

4.1 Regional Distribution Systems Analysis
We used our architecture to analyze the adoption of DER and the
impacts of EV charging on electric distribution systems in large
metropolitan areas and the surrounding rural regions, with a detailed
resolution down to the customer meter. The largest of these studies
was conducted on the San Francisco Bay region [29]. The SFO
model has over 12 million features and a density on the order of
1000 assets per half-mile radius–see Table 1 and Figure 3. This
corresponded to a directory of 2198 feeder GeoJSON files at 8.7GB
that were used as tiling input files. Due to feature densities and size,
we processed each asset type (e.g., buses and lines) into its own
set of vector tiles. We ran Tippecanoe on a Linux server with two
Intel Xeon Gold 2.40GHz CPUs, two NVIDIA A40 GPUs, and 1
TB of RAM. Tippecanoe’s runtime and output directory size are
highly dependent on the flags included in the processing. Our chosen
method used the following flags for generating tiles for each asset
type: max threads of 96, no line simplification, no feature limits,
no tile size limit, no tile compression, and a zoom levels 9 - 14.
Processing the input GeoJSONs for the bus assets took our system 5
minutes 46 seconds and produced a tile directory of 470MB. When
using no optional flags for the same bus assets at the same zoom
levels, Tippecanoe produced a directory of 198MB in 6 minutes 40
seconds. As a reference, processing all asset types together, with the
same flags as above, Tippecanoe produced a 2.9GB tile directory in
6 minutes 50 seconds. To understand distribution impacts in DER
scenarios, we ran power flow simulations, generating voltage and
power time-series on each electrical bus. These time-series data
were mapped to the reference tiles using Deck.GL, but are limited to
infrequent updates to maintain interactivity. As a test, we encoded
the 4.9 million bus assets into binary buffers using custom web
workers and could maintain interactivity with a sub-second time-
series update frequency; when the dataset is on the order of 500K
assets, we achieved interactive re-renders in less than 250ms. With-
out web workers, the client is split between supporting UI events
and processing the time-series data into binary buffers–ultimately
blocking the user from interacting. Additionally, we leveraged H3
in these studies to generate multiple resolutions of aggregate model
representations–showing feeders, substation mappings, and aggrega-

tions of asset time-series at H3 resolutions 4 - 12. H3 aggregations
enable on-the-fly styling of assets, as well as efficient representation
of statistical trends (a sample is shown in Figure 2).

4.2 Renewable Energy Resource Assessments
The technical potential of renewable generation technologies across
the continental United States [18] is based on several factors, includ-
ing the availability and quality of renewable resources, technical
system performance, topographic limitations, economics, and envi-
ronmental and land-use constraints such as siting ordinances. The
goal of this effort was to enable researchers to explore large amounts
of scenario data without having to view layers independently. The
data, while on the order of 1 million features, was considerably
less dense than the SMART-DS example; allowing Tippecanoe to
generate tiles, following the same process described in the previ-
ous section. The data was separated into eleven different input
layers–such as transmission lines, substations, existing wind tur-
bines, ReEDS model supply curves [10], modeled reinforcement
lines, spur lines, and modeled future wind turbines. Each layer was
processed into its own set of vector tiles using Tippecanoe, turning
over 7 gigabytes of original features into a directory of vector tiles
of 1.5 gigabytes in about 20 minutes. While it should be possible to
employ the binary buffer format to render all features in all layers
simultaneously, we opted for tile generation due to its simplicity,
minimal data preparation, and re-use of layer definitions within
Deck.GL. A sample of this application is shown in Figure 4.

5 LIMITATIONS AND FUTURE WORK

Web technologies have steadily advanced through the evolution of
WebGL, WebGL2, and WebGPU graphics APIs, and are capable
of rendering millions of features in browsers. We have shown how
we interactively render energy domain datasets with feature counts
ranging from hundreds of thousands to 12 million elements, support-
ing both static data and time-series re-renders up to 250ms in a web
browser running on a 100MP high-resolution display. However, we
do have performance challenges and scalability limitations. There is
a trade-off between vector tile approaches that need to support fre-
quent time-series re-renders and binary buffer formats that are only
supported on primitive layer types. While there has been community
progress in developing a binary buffer format compatible with vector
tiles, its evaluation remains open for future work. Additionally, we
still need to invest in better aggregation algorithms [19] and targeted
analytics. Our architecture helps provide an overview of the system
but still requires application-specific development of visual analytics
to answer user questions. At a lower level, Chrome-based browsers
can only support 4GB file sizes, and maximum WebGL buffers
can easily be exceeded if applications are being used in multiple
tabs. While this can be solved by using separate browser windows
with their own cache directories, large and dense datasets must be
thoughtfully processed to avoid loss of WebGL contexts and related
browser memory constraints. Our 100MP display web applications
are ultimately limited by the current WebGL2 specification. We
anticipate the continued adoption of WebGPU will support even
larger datasets [33] and enable more general compute capabilities
in the near future. Additionally, the standard mouse and keyboard
interfaces lack the precision and fluidity to interact with large, dense
pixel spaces efficiently, motivating a move beyond the traditional
interfaces [16]. We are exploring integrating touch devices as con-
trollers of applications on high-resolution large displays and, more
generally, considering real-time interactive collaboration across dis-
tributed clients [7]. While web-based visualization platforms have
current limitations, they provide a rich and capable ecosystem for
interactively rendering a wide array of energy domain datasets. Web-
based visualizations have an exciting future ahead–keeping pace
to support analyses of growing datasets, offering more efficient
GPU computing, faster render loops, deeper user interactions, and
simulation-on-demand capabilities.
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