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Figure 1: Sample analysis using the OutVis analysis tool. (a) shows the choropleth map of the outage data for a selected state
at a specific time, with an optional temperature data overlay. Users can select counties in view (b) and highlight them with red
outlines. The Texas Interconnection boundaries are displayed in green. (b) displays the temporal outage severity for every county
of the state. Counties can be sorted by severity at the specified time (black bar). The red bar indicates the threshold of the n%
most affected counties, as selected by the user. (c) shows power generation shortages and (d) displays the median temperature
over time. Finally, the tool provides data exploration options (e) to select the time range, the specific time, the aggregation level
for severity, or set the threshold to automatically highlight the most severe outages, control of temperature overlay in (a), and state
selection.

ABSTRACT

Weather can have a significant impact on the power grid. Heat and
cold waves lead to increased energy use as customers cool or heat
their space, while simultaneously hampering energy production as
the environment deviates from ideal operating conditions. Extreme
heat has previously melted power cables, while extreme cold can
cause vital parts of the energy infrastructure to freeze. Utilities have
reserves to compensate for the additional energy use, but in extreme
cases which fall outside the forecast energy demand, the impact on
the power grid can be severe.

In this paper, we present an interactive tool to explore the rela-
tionship between weather and power outages. We demonstrate its
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use with the example of the impact of Winter Storm Uri on Texas
in February 2021.

Index Terms: Power outages, weather, severity, exploration.

1 INTRODUCTION

Energy resilience is becoming an increasingly studied topic. Most
renewable energy sources are subject to seasonal variation, such as
differences in wind patterns, ideal operating temperatures for so-
lar photovoltaic (cold), and differences in river water volume due to
snow melt and droughts. Many renewable and fossil energy sources
also depend on the daily weather, including solar photovoltaic and
concentrated solar power, which operate best with clear skies, and
wind energy on land and offshore. Extreme weather can further
affect the electric grid through direct damage, such as frozen nat-
ural gas lines [14], melted power lines during heat waves [27], or
downed power lines after storms [21]. Extreme weather can also
affect the grid more indirectly, e.g., through restrictions on cooling
water for nuclear reactors to limit the environmental impact on river
ecosystems during a drought [22], as happened during the summer
of 2022 in France. Dumas et al. [12] provide a comprehensive
overview of how extreme weather events affect the different means
of energy production. Novacheck et al. [26] examine how differ-



ent future weather conditions will affect the operation of diversified
power grids that rely primarily on renewable energy sources.

The United States Power Grid consists of three major intercon-
nections [7]. The Western Interconnection includes the western
United States and Canada, the Eastern Interconnection includes the
central and eastern United States and central Canada, and the Texas
Interconnection covers 90% of the Texas customer loads [13].

The advantage of an interconnection is that electricity can be
shared within the entire interconnection. For large interconnects
that span multiple climate zones, this enables the grid to compen-
sate for production shortcomings in some areas by using electricity
produced in unaffected areas. However, if the entire interconnec-
tion area is affected by extreme weather, the operations of power
systems can be hampered. In this paper, we will focus on the
widespread power outages in Texas caused by Winter Storm Uri
in February 2021.

Most of Texas lies within hot-humid and hot-dry climate zones,
and in highly populated areas, winter temperatures typically remain
above freezing. This is relevant for two reasons: first, the Texas
Interconnection has relatively homogeneous temperatures, and the
entire area was affected by the winter storm. This means that there
was little opportunity to balance production and loads across the
grid. Second, the majority of the Texas building stock is comprised
of buildings that are designed for a warm climate. Texas house-
holds rely primarily on electricity (51%), and natural gas (42%) for
heating.

During Uri, temperatures dropped 22− 28◦C/40− 50◦F below
average winter temperatures [14]. These low temperatures led to a
sharp increase in electric loads well above typical demand as peo-
ple tried to keep their homes warm. The loads were further exac-
erbated as the natural gas pipes froze, which led to a further in-
crease in the use of electricity for heating (e.g., with space heaters),
while the electricity production from natural gas decreased, which
contributes 52% to the generation. The Federal Energy Regulatory
Commission (FERC) performed an in-depth analysis of the Uri out-
ages and found that there were over 70 hours of firm load shedding –
forced rolling outages to keep the grid from complete collapse – due
to freezing issues (frozen wind turbine blades, frozen equipment in
natural gas plants), limited availability of natural gas, mechanical
and electrical problems, leading to an overall deficit of 65,622 MW
[14].

In this paper, we evaluate the relationship between weather and
power outages at the example of the Uri outages in Texas.

2 RELATED WORK

The visualization of geographic data is common practice. In terms
of analysis, previous studies show the importance of normaliza-
tion of the data when using choropleth maps [33, 10, 1]. As time-
varying data are a common case in visual analysis, various studies
were conducted. The resulting toolbox is extensive and includes
approaches ranging from juxtapositions, glyph designs, and data
aggregation that enable data exploration [16, 8, 34, 35, 30, 28] and
evaluations [18, 20]. More information on the visualization of time
series data can be found in the surveys: [2, 24, 31]. To allow
for intuitive understanding and exploration of the data, we utilize
well-known and studied approaches, e.g., juxtaposed line charts,
heatmaps, and choropleth maps.

Previous work on outage analysis has focused on geospatial tools
that overlay multiple layers of information on a map [32]. Outside
of interactive exploration, research has expanded to the study of the
spatial distribution of power outages in relation to social vulnera-
bility [11]. Some works have studied disparities between different
counties during Uri on an aggregate scale of total hours of con-
secutive outages [15], and assessing overall household burden [29].
Although both of these are very interesting works, they are all based
on survey data and their focus is static visualization for analysis.

3 DATASETS

3.1 Customer Outages
We use the Environment for Analysis of Geo-Located Energy In-
formation (EAGLE-I) [32] platform. The EAGLE-I outage dataset
contains eight years of county-level outages collected at 15-minute
intervals. Each time step contains the Federal Information Process-
ing Standards (FIPS) code, the state and county name, and the num-
ber of customers without power for each county. Estimated cus-
tomer counts for each county were provided separately [6].

3.2 Generator Outages and Load Shedding
The power outages during Uri were caused by different factors, in-
cluding weather, equipment problems, fuel limitations, pre-existing
outages, and other problems. To prevent a complete collapse of
the power system, ERCOT ordered load shedding to reduce the de-
mand on the network and get it to stabilize. To help illustrate the
timeline of events and their relationship with the observed customer
outages, we manually sampled data from FERC Report [14] Fig-
ures 66b (outages) and 85 (load shedding). This sampling is rather
coarse, as it primarily serves illustrative purposes.

3.3 Weather
The weather data were obtained from the Prediction Of Worldwide
Energy Resources (POWER) project [25] API. We obtained hourly
temperatures (T2M) at 2m above ground for the region that spanned
latitude 25 to 37 and longitude −107 to −93 at intervals of 0.1
degrees.

3.4 Geometries
The county boundaries were obtained from Census data. ERCOT
boundary generated manually cross-referencing county maps for
ERCOT.

4 OUTVIS

The primary purpose of the OutVis prototype is to allow the user
to get a quick overview of power outages, identify times of interest
and geographic regions of interest, and analyze power outages and
their relationship to weather for these regions at interactive speeds.
To that effect, we designed the tool to assist in exploration through
an interactive user experience.

The application is written in Julia [5], and we chose the Makie
framework [9] to create the user interface and visualizations, as its
support for OpenGL and WebGL makes it adaptable and scalable.
An overview of the tool can be found in Figure 1.

In this work, we base our analysis on the relative outage count,

o(c; t) =
affected customers at time t

estimated customer count at time t
, (1)

where c is a county and t is time. Note that o(c; t) can be larger
than 1 due to the imprecision in the estimated customer counts. For
the sake of brevity, we refer to o(c; t) as outages. The temperature
will be denoted as: T (t;x,y), for location x,y at time t. Note that x
and y are discrete locations and that the time resolution of t varies
between the outage data (15 minutes) and the weather data (one
hour).

4.1 Preprocessing
Browsing the timeline for large datasets at interactive speeds re-
quires appropriate data management. The goal of this preprocess-
ing step is to allow quick access to outages at a specific time step in
a specific county. Since outages are sparse by nature, we only need
to store data for time steps in which at least one outage has occurred
in a specific county. Through experimentation, we found an array
of dictionaries, where every dictionary corresponds to a county to
be viable. Within each county, we use a numeric representation of



Figure 2: Views on the timeline showing (a) the initial configuration
showing all counties for the full time range, (b) focused on a smaller
time range, (c) user selection of a subset of counties, and (d) the se-
lection results . For all views, the color indicates the outage severity
o(c; t)., and the chart below shows the median temperature.

the time step as keys and the outages as values, keeping the memory
footprint low. The temperature data was stored using a similar ap-
proach. This use of dictionaries facilitates fast and parallel requests
for outages o(c; t) and temperatures T (t;x,y) with a rapidly varying
value of t. To further improve the interactive experience and avoid
recomputing, the data is cached.

4.2 Map View
Understanding spatial relationships is vital when analyzing geo-
graphic data. This view aims to provide the user with geograph-
ical context (cf. (a) in Figure 1) by rendering county boundaries
for the selected state. We chose to display the outage o(c; t) for the
currently selected time step using a choropleth map where o(c; t)
is normalized by the estimated number of customers. Temperature
data can be can be blended in to assess the spatial distribution of the
temperature between different areas (cf. the top row of Figure 4). In
addition, we display the boundary of the Texas Interconnection, as
its isolated status played an important role for the specific use case
we will investigate. This view is intended for investigating specific
times and allows users to quickly find the geographic location of
counties that have noteworthy outage behavior.

The map view supports zooming to focus on specific areas, as
well as mouse hovering to read precise temperatures if the markers
are currently active. The investigated time step can be set in the
sliders below (cf. (e) in Figure 1) or in the timeline view.

4.3 Timeline View
The timeline view (cf. (b) in Figure 1) allows the user to ex-
plore customer outages in more depth. It uses a heatmap for which
the horizontal axis corresponds to time and the vertical axis corre-
sponds to counties. The time frame displayed in this view can be
set by using a double slider. The counties are initially sorted alpha-
betically by name. They can also be sorted by outage o(c; t) at the
current time step (indicated by a vertical black line), which can be
selected by the user with a slider (e) or by clicking on the heatmap.
The horizontal red line indicates the threshold for most affected
counties that can be set using a slider (e). A mouse hover reveals
the county name, the exact outage percentage, and timestamp for
any point on the heatmap. Zooming by mouse selection (locked
to the vertical axis) allows the user to focus on specific counties.
Zoomed in, county names are appropriately displayed and can be
selected, highlighting them in the map view.

To reduce noise and provide a more simplified view of the

Figure 3: Example different aggregation level settings for Limestone
county, Texas, USA for a date range of 2021-02-14 – 2021-02-20. (cf.
subsection 4.3)

heatmap, we introduced aggregation level settings, as seen in Fig-
ure 3. As o(c; t) is a time domain representation, an extensive
toolbox of smoothing approaches from signal processing theory is
available. For this work, we utilized the wavelet transform, which
shares commonality with the more widely applied Fourier trans-
form. As the resulting frequency domain representation applies
the frequency components to the whole signal, we lose information
about the signal variation over time. This is a fundamental draw-
back of techniques related to frequency domain representation, as
signals cannot be localized in the time and frequency domains si-
multaneously [19]. As o(c; t) can vary greatly, especially as in the
present case study, these variations express themselves locally. The
wavelet transform mitigates the issue of locality by estimating the
frequency domain locally using a decaying weight function. Us-
ing wavelets, our smoothing technique can robustly filter locally
expressed high-frequency outages o(c; t) as shown in Figure 3. In
this work, smoothing refers to the aggregation of the temporal high-
frequency content of o(c; t). Haar wavelets [17] are sufficient and
provide a fast computation for an interactive modification of the fil-
tering level. In the following, refer to the values of the aggregated
outage signals as (outage) severity.

Initially, this aggregation is turned off, and users can make a
conscious decision to examine the aggregated data instead of the
raw numbers. When aggregation is active, it also affects sorting by
outage severity. This allows for a comparison of the higher-level
outages. We assume the aggregation to be particularly useful when
the data is unknown as it allows the user to reveal large-scale outage
fluctuations in long time intervals, thus providing an overview.

4.4 Generation Outage and Temperature View

The generation outage view displays the time series of generation
outages (pink) and load shedding as a stacked chart. Together, these
two add up to the total unavailable energy.

Below the Timeline View, we display a temperature plot, which
shares the same timeline as its x-axis. On this timeline, we plot
the temperatures of the entire observed area (bounding box around
Texas). We chose to use the median temperature because temper-
atures in southern Texas and surrounding areas (Mexico and Gulf
of Mexico) are substantially higher than in the rest of the area (cf.
Figure 4), and the median was more robust to those temperature
differences than the mean. The alignment of this view with the
heatmap above allows the user to evaluate the impact of tempera-
tures on power outages.

5 CASE STUDY

We demonstrate OutVis at the example of the Uri outages and sum-
marize relevant visualizations in Figure 4. Note that the time steps
(a,b,d,e,f) were chosen on the basis of the FERC report, while (c)
was determined based on the median temperature. The week of
February 8 started with a generation deficit for 35 GW due to on-
going planned and forced outages, as well as seasonal shut-downs.
Cold temperatures and freezing rain on February 10 and 11 caused
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Figure 4: UI elements from different stages of the Uri outages, combined into an illustration. The bottom section shows parts of the timeline
view (selecting the 10% most affected counties above the red line), the generation outages view, and the median temperature for the entire
timeseries, with vertical lines marking seven significant times. The upper section shows the temperatures and outages in each of the time steps.

ice buildup on wind turbine blades and other equipment and in-
creased that outage to 48 GW [23]. At 20:30 on the second day (a),
we begin to see outages in some counties, specifically Limestone
(below the red line) and Edwards (near the top). Over the next
few days, natural gas production and processing started to fail (not
shown here) due to freezing, slowly depleting the reserves needed
for direct heating and natural gas-based power generation. As tem-
peratures continued to plummet, and energy consumption increased
dramatically in response, resulting in an all-time winter peak load
of 69,871 MW. This resulted in a series of cascading failures and
load shedding, beginning in the early hours of February 15 (b). The
fuel shortage triggered several generator failures and ERCOT be-
gan manual load shedding procedures [14] in small increments of
1 GW at a time. With energy demand nearing supply to the point
of depleting the entire safety buffer, the network frequency became
so unstable that it triggered automated load shedding (shut-offs) in
more generators, further escalated the problem. The load shedding
was increased up to a maximum of 20 GW (c) in order to prevent
further frequency-related outages, which could have caused a com-
plete blackout of the Texas Interconnection. This sharp increase
can be seen in the heatmap, where outages jump from very low
to large percentages of each county. This level of load shedding
was maintained for several days until temperatures increased and
gas supplies began to stabilize (d). Many counties continued to be
heavily affected, but as temperatures began to increase, some of
them saw a decrease in outages. The stabilized grid with decreas-
ing loads allowed ERCOT to reduce load shedding slowly at first
(e) and then entirely (f). When the temperatures finally returned to
typical winter temperatures (g), the majority of customers returned
to full service.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a tool to interact and explore the out-
age data in the context of the winter storm Uri. While the timeline
view provides an overview over the temporal dynamics of normal-
ized outages energy availability and temperature, the user is able to
interactively investigate the details. The interactive wavelet-based
aggregation allows the user to explore general trends in outages in-
dicating severity. The temporal correlations between temperature,
power generation, and outages are clearly identifiable. The useful-
ness of the prototype is showcased in the case study presented.

In the future, we will also include a timeline for gas produc-
tion and processing to contextualize the present data in terms of
heating demands. We will also investigate how well the wavelet-
based severity related to metrics related to major outages. To our
knowledge, there is currently no formal definition of a major out-
age. As power generation could also be impacted by other weather
scalars than temperature, we will add additional features, for ex-
ample, wind which is useful for hurricanes. Improvements to the
map view to more easily see temperature data in conjunction with
outage data will also be investigated. We also want to investigate
techniques related to the concept of episodes. As discussed in the
work by Andrienko et al. [3], episodes are sets of time series of
multiple attribute values. Using this concept, we will investigate
adding different information related to local weather and visualiz-
ing these appropriately with a focus concurrency with the timeline.
In addition, the uncertainty of estimated customers in relation to the
EAGLE-I data needs to be quantified and communicated. Finally,
since population behavior has an influence on power demand and,
by extension, supply, we plan to integrate a more detailed analysis
of human mobility [4].
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