
Design-Specific Transforms In Visualization

Eugene Wu*

Columbia University
Remco Chang†

Tufts University

D*=D.groupby(a;
aàc,sum(b)às)

D’ =D.groupby(a;aàc,sum(b)às)
tot =D’.groupby(sum(s))
D* =D’.map(s/totàperc)

.map(stack(perc)àd)

D’ =D.groupby(a;aàc,sum(b)às)
tot =D’.groupby(sum(s))
D* =D’.map(s/totàperc)

.map(stack(perc)àd)

mark: point
D.a à x
D.b à y

mark: rect
D*.c à x
0 à offset
D*.s à height

mark: arc
D*.c à color
D*.d à offset
D*.perc à angle
1 à radius

mark: rect
D*.c à color
D*.d à offset
D*.perc à height
1 à x

D
es

ig
n-

sp
ec

ifi
c

Tr
an

sf
or

m
s

𝒇(
)

Vi
su

al

En
co

di
ng

𝒆(
)

Ve
ga

-li
te

Sp

ec

“mark”: “bar”
“x”: {“value”: 1}
”color": {"field": “a”}
"y": {

"aggregate": “sum”,
"field": “b” }

“mark”: “arc”
”color": {"field": “a”}
”theta": {“field”: “b”}

“mark”: “bar”
“x”: {“field”: “a”}
"y": {

"aggregate": "sum",
"field": “b” }

“mark”: “point”
“x”: {“field”: “a”}
"y": {“field”: “b”}

Scatterplot Bar chart Pie chart Proportional stacked chart

A B C A B C

A
B

C A

B

C

Figure 1: Existing theoretical visualization models treat the process of mapping a data table to scatterplots, bar charts, pie charts,
and stacked bars as a single visual mapping step, as illustrated by the Vega-lite specifications. However, visual mapping crucially
involves two distinct substeps: design-specific transformations that calculate statistics and layout, and visual encoding that maps
data to marks. Separating and explicitly modeling design-specific transformations helps shed light on visualizations and their
relationship to other visualization designs as well as user tasks.

ABSTRACT

In visualization, the process of transforming raw data into visually
comprehensible representations is pivotal. While existing mod-
els like the Information Visualization Reference Model describe
the data-to-visual mapping process, they often overlook a crucial
intermediary step: design-specific transformations. This process,
occurring after data transformation but before visual-data mapping,
further derives data, such as groupings, layout, and statistics, that
are essential to properly render the visualization. In this paper, we
advocate for a deeper exploration of design-specific transforma-
tions, highlighting their importance in understanding visualization
properties, particularly in relation to user tasks. We incorporate
design-specific transformations into the Information Visualization
Reference Model and propose a new formalism that encompasses
the user task as a function over data. The resulting formalism offers
three key benefits over existing visualization models: (1) describing
tasks as compositions of functions, (2) enabling analysis of data
transformations for visual-data mapping, and (3) empowering rea-
soning about visualization correctness and effectiveness. We further
discuss the potential implications of this model on visualization
theory and visualization experiment design.

*e-mail: ewu@cs.columbia.edu
†e-mail:remco@tufts.edu

1 INTRODUCTION

The Information Visualization Reference Model (InfoVis Reference
Model) by Card et al. [10] is a foundational framework in the visu-
alization community towards understanding the mapping of data to
visual elements. The model (Figure 2(top)) semantically delineates
the primary phases of visualization: Data Transformation cleans,
reshapes, and summarizes the source dataset into data tables (for
example, to derive the desired information into a spreadsheet from a
large database), Visual Mapping constructs and places marks onto
the spatial substrate (for example to choose between a bar chart or a
pie chart), and View Transformation provides mechanisms to change
the properties of visual marks and/or manipulate the viewport.

Organizing the steps semantically has led to clean abstractions
that inform how modern visualizations are developed and evaluated.
Consider the process of visualizing a pie chart. Libraries such as
VegaLite, Plotly, and Matplotlib ask developers to define the data
transformations used to derive the table and simply specify the
visual mapping (see Figure 1)—the library is then responsible for
computing the group statistics, percentages, and mark placements
needed to construct and render the marks. The model also helps
researchers design graphical perception experiments that isolate the
effects of visualization designs by focusing on the visual mapping
step in isolation of data and view transformations (see a survey by
Quadri and Rosen [31]).

Despite these broad-ranging benefits, we observe that this se-
mantic delineation obscures the process of visual mapping in a way
that makes it difficult to reason about visualizations and their rela-
tionships to user tasks. Consider the four basic charts in Figure 1
that render a table with two numeric columns, D(a,b), and how the

Source
Data

Data
Table 𝐷

Visual
Abstraction 𝑉

Prepped
Table 𝑃

Design-specific
Transformations

Visual
Encodings

Data
Transformations

Views

View
Transformations

Task 𝑞 Task
Estimate 𝑞"

Source
Data

Data
Table

Visual
Abstraction

Visual
Mappings

Data
Transformations

Views

View
Transformations

Task
Information Visualization Reference Model

Transformation-centric Model

𝑓() 𝑒()

Figure 2: The proposed model in this paper differs from the Info-
vis Reference Model in two important ways: we decompose visual
mappings into design-specific transformations (e.g., stacking, quan-
tization, calculating statistics) from visual encoding, and we model
the task q(D) as a function over the input dataset that the user wishes
to estimate.

developer specifies their visual mappings. We choose Vega-lite [33]
because it is a representative specification that is used in practice and
research (e.g., [22, 27, 42]). From the specification, it would appear
that scatterplot is most similar to the pie chart, as they only differ in
the mark type and the visual attributes that a and b are mapped to,
and the bar chart is most similar to the proportional stacked chart, as
they only differ in that a is mapped to x instead of color. Yet, these
syntactic similarities are only superficial. For instance, the pie chart
and proportional stacked chart both encode the same information
and only differ in their encoding in a circular or a rectangular layout,
respectively.

We observe that the core reason for this dissonance between vi-
sualization specifications and functions is that the Visual Mapping
step represents two distinct substeps. The first involves additional
transformations over the data tables in order to compute, e.g., desired
statistics and spatially place marks that are specific to the visualiza-
tion design. We term these Design-specific Transformations. The
second is the visual encoding that maps each row in the transformed
table to a mark and data attributes to mark attributes using simple
scaling functions.

Simply separating design-specific transformations and visual en-
codings leads to immediate insights into relationships between the
four charts. For instance, the scatterplot does not apply any addi-
tional transformations and directly encodes a, b to mark attributes.
In contrast, the pie chart requires a complex sequence of design-
specific transformations—it groups by a to derive per-group sums,
computes the total sum and uses it to derive per-group percentages,
and then stacks the percentage values— before encoding the derived
attributes c, d, and perc to mark attributes. We can see that the
stacked bar and pie chart are nearly identical and only slightly differ
in their visual encodings; both are related to the bar chart, which
also computes the per-group sum of a, but nothing further.

This separation also sheds light on the applicability of each chart
to different user tasks. For instance, pie charts are historically a con-
troversial chart type [17,24,30,36,40] with proponents on both sides.
Its visual encoding maps the derived perc and d (stacked perc) at-
tributes. Consistent with perception studies, we would expect the
pie chart to excel at percentage estimation tasks as compared to the
scatterplot and bar chart, but it is impossible to answer questions
about individual input values because they have been aggregated.

Based on the above observations, this paper proposes a Transform-
centric Model (Figure 2(bottom)) that extends the Infovis Reference

Model in two small but important ways. First, it expands visual
mappings to explicitly model design-specific transformations and
visual encoding, so that the visual abstraction V is the output of
applying design-specific transformations and visual encoding (sim-
ply another transformation) to the data table D. V is then rendered
and rasterized. Second, it proposes to also model a user task as a
function q(D) over the input data table D that the user attempts to
estimate using the rendered visual abstraction.

This separation makes it possible to analyze the relationship
between different visualization designs by comparing their design-
specific transformations and encodings separately. It also helps
inform experiment design: rather than measure user responses under
varying visual mappings, which confounds the impact of design-
specific transformations and visual encodings, experiments can vary
each in isolation for proper attribution. Further, it models both
visualization and tasks as functions over the data tables, and thus
provides a way to relate the two concepts.

The rest of this paper first introduces the transform-centric model
and then presents implications for visualization theory and evalua-
tion.

2 RELATED WORK

Our work on a transformation-centric model of visualization is
rooted in the rich literature on visualization theory, including work
on data-visual mapping, language design, tasks, and information
processing.

Bertin’s seminal work on the Semiology of Graphics lays the
foundation of the theory of information visualization by introducing
the concepts of data-visual mapping [5]. Many subsequent papers
and applications have built on this concept, enabling efficient auto-
matic construction of valid and informative visualizations from data
(e.g., [25–28, 37], to name a few). Modern popular visualization
libraries and languages, such as D3 [6], Vega [34], Vega-Lite [33],
ggplot [41], Mapplotlib [1], Plotly [2], and others, further facilitate
the specification and manipulation of data-visual mappings, foster-
ing the rapid development of visualizations that can be embedded in
websites or data analysis environments.

While the data-visual mapping concept is powerful, it primarily
addresses the properties of a visual mark, such as its size, color,
shape, etc. It does not adequately describe visualization layout de-
signs and how these layouts relate to a user’s task and analysis needs.
The InfoVis Reference Model by Card et al. [10] bridges some of
these gaps by observing that raw data can be processed using data
transformations into derived data, thus allowing a user to transform
their raw data into rows of information that are most relevant to their
tasks. It then applies visual mappings to derive a visualization, and
finally applies view transformations that manipulate the viewport
(e.g., pan, zoom, rotate, etc). To answer an analysis task, the user
interacts with controls to manipulate the data transformations, visual
mappings, or view transformations in order to achieve their desired
task.

The key limitation of this model is that it assumes that any vi-
sualization suitable for the transformed data can be chosen inter-
changeably (e.g., both bar charts and pie charts are viable options for
visualizing a bivariate dataset). For designers, this is convenient, as
each visualization can be described formally based on the data types
that it can support. The designer’s choice of which visualization is
“best” then depends on the user’s task and general design guidelines.
For example, a designer knows when to use a pie chart because “pie
charts are more effective at visualizing part-to-whole relationships
than bar charts” [16, 17].

Although this practice represents the state of the art in visual-
ization design (e.g., see the book by Munzner [29]), we observe
that these general design guidelines are often subjective, difficult
to replicate in empirical studies, and together lack a theoretical
underpinning of reasoning about the relationship between visualiza-

tions and tasks. Our work on a transformation-centric model aims
to address these limitations. Built on existing visualization theo-
ries and practices, we propose that by surfacing the design-specific
transformations, it becomes easier for visualization designers and
researchers to observe the specific transformed data being visual-
ized and understand how these transformations can aid or limit the
effectiveness of the visualization for different tasks.

3 A TRANSFORMATION-CENTRIC MODEL

Our proposed transformation-centric model, summarized in Figure 3,
extends the InfoVis Reference model in two key ways (marked red
in Figure 2). The first disentangle visual mappings into explicit data
transformation and visual encoding steps—this sheds light on the
computational operations used to construct the visualization that
goes beyond encoding and rendering marks. The second models
analytic tasks as desired queries over the input dataset that are eval-
uated using the visualization—this unifies visualizations and tasks
under a common representation that is amenable to analysis.

To keep the exposition simple, we will exclusively focus on the
subset of the model that differs from the InfoVis Reference Model
(dashed red box in Figure 2). This is equivalent to assuming that
all data transformations in the reference model are folded into the
design-specific transformations, and that the view transformation is
an identity function.

3.1 The Basic Model
We start with the output of the data transformation step in the InfoVis
Reference model, a data table D(a1, . . . , an) that has n attributes.
Visual mapping is decomposed into two steps: the design-specific
transformation function f() produces a Prepared Table P = f(D),
and the subsequent encoding function e() turns data rows in P into
marks in pixel space. f() could be described by a set of data frame
operations (e.g., Figure 1) or a SQL query over D. For instance,
f() might aggregate prices by month, while e() then maps month to
the x-axis and aggregated prices to the y-axis of a bar chart. The
resulting visual abstraction V = e(P) = e(f(D)) is a table of mark
“rows” (e.g., SVG elements) that will ultimately be rendered in the
view that the user sees.

The key characteristic of this pipeline is that f() encapsulates all
logical transformations—filters, derivations, statistics, layout, and
even per-pixel aggregation [23]—so that e() is only responsible for
constructing one mark for each row in P, and assigns data attributes
to mark properties based on linear scaling functions from an at-
tribute’s domain to the target range in pixel space1. The output of
e() is a mark table that can be directly rendered (e.g., using an SVG
renderer) to produce an image. Under this model, all transforma-
tions related to the visualization are made explicit, and encoding is
simply another transformation operation that applies simple scaling
functions to data attributes.

Example 1 Figure 1 depicts design-specific transformations f() and
encodings e() for four common visualization types. The scatterplot
uses an identity function for f(). The bar chart sums b by a, while the
pie and stacked charts additionally compute percentages for each
group and sum the percentages. It is also immediately clear which
visualizations differ only in visual encoding (pie and stacked charts),
and which also differ in their design-specific transformations (scatter,
bar, and the rest).

3.2 Analytic Tasks as Proxy Queries
Let us now consider a subset of analytic tasks that can be formulated
as computations over the input data D. The user’s task is to answer
a question by calculating the desired value(s) or decision, expressed

1We restrict scaling functions to be linear so that non-linear transforma-
tions like log transforms are encoded in f().

as a function or query q(D) over the source data D. These include
low-level tasks in popular taxonomies [4] (e.g., identifying trends,
finding outliers, value reading) as well as the query and manipulate
task types in Brehmer and Munzner’s task typology [9].

Given only access to the visualization, the user attempts to answer
q(D) by formulating a strategy that involves some combination of
reading data values in the visualization and mental calculation. We
model this as a view-level proxy query q̃V(V) (or view proxy for
short) over the visual abstraction. We use the tilde above the q to
denote that it may be an estimate, and we use the comparison symbol
?∼ to denote that a strategy may not exist.

q(D) ?∼ q̃V(V) = q̃V(e(f(D)))

Example 2 The user wants to compare the ratio of A versus B
using the proportional stacked chart in Figure 1. One possible view
proxy q̃V is to estimate the length of A and B and perform mental
calculations to estimate their ratio. Talbot et al. [38] suggest that
users often compute the ratio A

A+B , which leads to a less accurate
estimate.

As suggested in the preceding example, a major challenge with
q̃V is that it is defined over the rendered visualization and relies
on discerning the user’s strategy. However, graphical perception
and cognitive studies only provide a partial understanding because
they measure properties of q̃V as a black box (e.g., latency, accuracy,
enjoyment) rather than exposing the individual steps that makeup q̃V.
Think-aloud protocols ask users to describe their thought process as
a way to surface their strategies and estimate q̃V, but they are time-
consuming and expensive, and the validity of think-aloud protocols
has been questioned [3, 32].

A benefit of formulating visualization as a sequence of design-
specific and encoding transformations and reducing the complexity
of the encoding is that we can analyze the step immediately before
encoding and rendering—the prepared data. This allows us to disen-
tangle encoding from computation by checking whether a strategy
exists given P. Since P is a table, the data-level proxy query q̃P(P)
(or data proxy for short) can be expressed as a SQL query over P
if it exists. Further, since it is independent of the user, q̃P could be
automatically derived from q, f,e by using standard query rewriting
techniques from data management [20].

q(D) ?∼ q̃P(P) = q̃P(f(D))

Example 3 Let us estimate the total percentage of groups A and B
in Figure 1. Since f(D) = D for the scatterplot, its q̃P would need
to compute the sum of b per a, translate the sums into percentages,

D 𝑃 V𝑒()𝑓()

𝑞#	"(𝑉)𝑞#	#(𝑃)q(𝐷) ~? ~?

Data query View proxy
(user)

Data proxy

Vis Mapping

Task

Data
Prepared

Data
Visual

Abstraction

Figure 3: Summary of the Transformation-Centric Model. An an-
alytic task is defined as a query over D, and can be answered by a
query over the prepared table P or by the user using a rendering of
the visual abstraction V.

id g v

1 A 3

2 A 5

3 B 2

g c

A 2

B 1

x height

100 100

200 50

D 𝑃 V𝑒()𝑓()

𝑚𝑎𝑟𝑘: 𝑏𝑎𝑟
𝑔 → 𝑥, c → height

D.groupby(g;
count()àc)

Figure 4: Point marks that render counts by g.

and then add the percentages for A and B. The q̃P for the bar chart
needs to compute and sum the percentages, while using the pie and
proportional stacked bar chart only requires summing two values.

The notion of a data-level proxy query is useful because its exis-
tence serves as an “upper-bound” on what the user will be capable
of answering from the visualization. This is because q is a function
of only D, V does not contain more information than P because the
encoding step e() is a trivial mapping, and there is no bound to the
complexity of q̃P. Thus, if it is not possible to compute q using P
(q̃P does not exist), then it is not possible to answer q using V and
thus, V is inappropriate for q.

Example 4 The user wants to know the number of rows
per value of a in Figure 1, which can be expressed as
q =D.groupby(a;count()→c). Given the outputs of the design-
specific transforms, we see that q̃P is only defined for the scatter plot
because the other visualizations group by a but only compute the
sum in each group. Thus, they are inappropriate for q.

Example 5 Figure 4 is a scatterplot of counts by g. If the task is
to estimate the count of group A, the data proxy would filter using
g = ‘A’ and read the value of attribute c, while the view proxy might
find the point for A and read its value from the mark’s y-position.
If the task is to estimate the average v in each group g, P cannot
compute the statistic, so no such data proxy nor view proxy can exist.

3.3 Simplifying the InfoVis Reference Model
The InfoVis Reference Model in Figure 2 starts with data transfor-
mations of the source data to derive a data table before applying
visual mappings (we refer to this transformation as t()), while the
Transform-Centric Model deconstructs the visual mappings into
design-specific data transformations f() followed by visual encoding,
e(). Since t() and f() are both transformations on data, we can “fold”
f() into t(). This results in the original Reference Model with the
change that the source data derives the prepared table, and that visual
mappings are now well-defined encodings. In this sense, this paper
has not increased the complexity of the original InfoVis Reference
Model, but rather clarifies the semantics of the visual mappings and
the relationship between visualizations and analytic tasks.

4 IMPLICATIONS OF THE MODEL

We now present several implications and potential applications of
the transform-centric model.

4.1 The No Free Lunch Conjecture
Assuming the view-level proxy query q̃V exists, we can reframe
its earlier definition in terms of function composition to see how
the user task q decomposes into the view proxy q̃V, encoding e(),
and design-specific transformation f() steps: q ∼ q̃V · e · f Since the
complexity of e() is fixed, the work to compute the task is necessarily
delegated to the visualization (through f()) or to the user (through
q̃V). This leads us to the following conjecture:

Conjecture 1 (No Free Lunch) For any given task, either the hu-
man or the computer has to perform the necessary computation.
In general, humans prefer to engage the “fast brain” and avoid
unnecessary mental tasks [15]. As a result, humans will tend to
consider a visualization as “effective”, “easy to use”, or “good” if
the computer does the computation and the visualization directly
encodes the desired information.

At one extreme, the visualization fully pre-computes the user’s
task. This means the task result is visually encoded as a mark prop-
erty in V and, barring a poor encoding choice, can be answered via a
visual lookup. Checking this is also straightforward: suppose q(D) is
a scalar (e.g., the user wants to compare two statistics or estimate the
slope of a trend), then the visualization has precomputed the task if
q(D) ∈ fi(D). The simplest variation of this is if f = q, whereupon the
visualization simply renders the task answer. At the other extreme,
f() is the identity function and the full burden of the task is left to
the user.

Example 6 (Pie charts and “parts-to-whole” relations) Why is
a pie chart better than a bar chart at visualizing “parts-to-whole”
relations? Suppose the task is to estimate the percentage of A:
q=D.filter(a=‘A’).groupby(sum(b))/D.groupby(sum(b)).
Using the pie chart in Figure 1 is a visual lookup because the
percentage is encoded as the angle, whereas the bar chart user
would need to perform mental arithmetic that divides the A bar with
the sum of all three bars.

Between the extremes, the visualization can also pre-compute part
of the task. For instance, Example 3 describes the case where the pie
chart and proportional stacked chart directly encode the percentages
for A, B, and C, so the user only needs to estimate A + B. The bar
chart also partially pre-computes the sum of each group, but the user
must perform the rest of the calculations.

Some types of pre-computation can also hinder the user. One type
is an adverse transform that is not only not needed for answering
q, but forces the user to invert the transformation. For instance,
if the user wants to compare the percentages of groups B and C
in Figure 1, the proportional stacked chart’s additional stacking
operation causes the bars to be misaligned, which is detrimental
to user judgement [38]. In contrast to adverse transforms, where
it is still possible for the user to estimate their task (albeit with
more difficulty), lossy transforms make this impossible. Common
examples include aggregating to a granularity that is too coarse,
or smoothing a line when the details are important. These two
types makes clear that user task error can be due to very different
reasons: one is due to additional effort/difficulty to “invert” adverse
transforms, while the other is because the user is forced to estimate
values given partial information.

We close this subsection by noting that the above examples are
all based on the same four visualizations in Figure 1. Yet, each is
either effective or ineffective based on the user task and how much
the visualization has productively pre-computed parts of it. This
leads us to our second conjecture:

Conjecture 2 (Visualization Utility is Task-dependent)
Visualization “Utility” is orthogonal to considerations such as
perceptual accuracy or cognitive load. It is correlated to the extent
that f() pre-computes the user task in such a way that q̃V is as
simple to visually estimate as possible.

4.2 Pre-computation and Task Flexibility
Taken in isolation, the previous subsection implies that the visualiza-
tion should always pre-compute the user’s task because it shifts the
work from the user to the visualization. However, the no free lunch
conjecture is specific to a single visualization and single task. If we
consider a set of tasks—perhaps those that the designer expects the

user is interested in—then the benefits of pre-computation are not
always clear because “specializing” the visualization for one query
in the task may come at the cost of making another query harder or
impossible.

Example 7 A scatterplot is popular for bivariate data, and has
been documented to support a large range of tasks reasonably well
as compared to other bivariate visualization designs. However,
practitioners have found scatterplots to be difficult to use for many
everyday visualization consumers. Notably, the New York Times has
stopped using scatterplots in their visualization designs, citing its
high difficulty of use for their readers. Both of these observations
make sense because f() is the identity. The visualization can techni-
cally answer any question D can (to the granularity of a pixel), but
all of the work is delegated to the user. In this regard, a scatterplot
is broadly useful but burdensome because it is a “blank slate.”

In contrast, the pie and proportional stacked charts in Figure 1
greatly simplify tasks involving parts-to-whole tasks. However, it is
not useful for other tasks, such as those involving count statistics.
In this sense, these visualizations can be considered more “task-
specific”.

Observation 1 (Task Flexibility vs Task Effectiveness)
Visualization design entails a trade-off between task-specific
efficiency (e.g., pie chart) and flexibility (e.g., scatterplot). When
using flexible visualizations, leveraging visualization proxies as
view-level strategies can reduce the perceived difficulties for some
subsets of tasks. In either case, it is important to make the set
of intended tasks explicit so that the visualization design can be
properly assessed.

Example 8 To illustrate the implications of this observation, let us
consider four increasingly larger sets of tasks, where each set adds
to the one before it, that a designer considers before choosing a
visualization (from the list of visualizations in Figure 1).

• (T1) Report the percentage of a specific group: The task com-
putes a single scalar, so the designer can compute the percentage
value and report it.

• (T2) Report the percentage of some groups: Since there are only
three groups A, B, C, the designer can again compute the statistic
and report it (perhaps as an infographic).

• (T3) Calculate the sums or differences (of percentages) between
any two groups: The user may wish to estimate the total per-
centage of several groups or compare the percentages of different
groups. Since enumerating the results of all tasks can be unwieldy,
the designer can instead compute the percentages of each group
and encode them as e.g., a pie chart, proportional stacked chart,
or unstacked proportional chart. The user is free to perform
the calculations themselves, but the visualization aids them by
pre-computing the percentages.

• (T4) Calculate the sums or differences of any statistics between
any two groups: A single static visualization is unlikely to support
arbitrary statistics of the groups, and introducing interactions to
choose or define the desired statistic may be helpful. The visual-
ization still aids the user by pre-computing the desired statistics,
but the user can still perform the calculations visually.

4.3 Where Do Tasks Come From?
The notion of starting visualization design with a set of tasks is
convenient because they are well-defined, amenable to automatic
analysis, and form the basis of the concepts of view and data proxies.
On the other hand, end users rarely start with a concrete task that
can be formulated as a query—so where do these tasks come from?

Although a visualization end-user may not start with a specific
query, we argue that visualization authors of new visualizations and

Figure 5: New York Times visualization that tells a data story about
the post-pandemic surge in child migrants.

Figure 6: WireVis system to detect fraudulent banking activity.

dashboards, as well as developers of new visual analysis, exploration,
and authoring systems (e.g., Tableau, Looker), implicitly design
toward a potential set of tasks. The set of such tasks can vary from a
handful of queries to the set of all possible SQL queries.

Infographics and Data Stories are designed with an intended mes-
sage and a set of questions that the author wants the user to consider.
For instance, Figure 5 describes a jump in the number of child mi-
grants after the Covid-19 pandemic (2021 and beyond). The story
and set of tasks compare the number of migrants before, the begin-
ning, and after the start of the pandemic. The bar chart is likely
chosen to aid these comparisons.

Visual Analytics Systems often start with need-finding studies or
end-user surveys to understand the analytic tasks that the system
should support. However, these tasks are usually described infor-
mally. For instance, WireVis [11] is a coordinated visualization
system designed to help bank analysts discover fraudulent activity
based on the keywords in the wire transactions (Figure 6). The sys-
tem prepares the raw transaction data by clustering accounts using
the keywords in their transaction activity. When the user searches by
or chooses a keyword, the lower left view plots the amount of activity
for each cluster that contains the keyword over time. The view and
intended set of tasks can be fully expressed as a parameterized SQL
query that groups by cluster and date, whose filter is parameterized
by keyword and cluster id. Similarly, the other views are designed
to support analysis functionality that can also be expressed as sets
of parameterized queries.

Exploration Systems let the user quickly answer a broad set of
tasks. For instance, Tableau’s VizQL [37] was designed to support
business analytic queries, namely SQL filter group-by queries that
can be expressed by a data-cube [19]. The visual analytic interface’s
shelf-based interactions were then designed to “fill in” the grouping

(a) 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 is not invertible.
Can’t answer some tasks e.g., read-value.

𝑃 V
𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

D D
V1𝑒!

𝑃
V2𝑒"

𝑓

(b) 𝑓 is fixed, 𝑒 varies.
Can attribute effects to encoding

D
𝑃! V1

𝑓!

𝑃" V2

𝑒
𝑓"

(c) 𝑓 varies, 𝑒 is fixed.
Can attribute effects to transform

D
𝑃! V1

𝑒!𝑓!

𝑃" V2
𝑒"

𝑓"

(d) both 𝑓 and 𝑒 vary. Can’t
attribute effects to individual steps

Figure 7: Application of Transformation-centric Model to experimental design. (a) Non-invertible data transformations restrict the tasks that
the visualization can answer. Fixing one step and varying the other allows experimental effects to be attributed to (b) data transformation or (c)
encoding. (d) Varying both steps can evaluate end-to-end effects but cannot be attributed to an individual step.

expressions, filters, and aggregation functions.
Prior works have proposed data-driven ways to learn a set of tasks
from a historical query log [14], analyses executed in a Jupyter
Notebook [39], or from natural language using large language mod-
els [12]. Chen et al. [13] propose a Data Interface Grammar to
compactly represent sets of queries and describe a formal mapping
from any DIG grammar to the set of valid interactive visualization
interfaces.

5 IMPLICATIONS FOR VISUALIZATION EVALUATION

In this section, we discuss the implications of the proposed
transformation-centric model for visualization evaluation. First,
we demonstrate how this model can be used to assess the appro-
priateness of evaluation designs when comparing visualizations for
a given task. Second, we suggest that applying a cost model can
lead to a quantitative measurement of visualization effectiveness for
specific tasks

5.1 What is Measured When Comparing Visualizations?
When evaluating different visualization designs, we should consider
design-specific transformations and visual encoding as separate ex-
perimental factors. As such, two visual mappings only make sense
to compare if they differ in only one of the factors, or if all combi-
nations are evaluated. Below we provide examples of visualization
comparisons and discuss how our proposed model can be used to
describe their appropriateness.
Evaluating Data Transformations. Consider the task “read the
value of a data point” using a scatterplot and a bar chart. For a
scatterplot, the x- and y-values of a data point can be readily read
from the visualization. Conversely, for a bar chart, it is not possible
to read the values of any individual data point because (1) the bar
chart visualizes the sum of the values, and (2) the sum operation
is not invertible – that is to say, a viewer cannot perform the men-
tal arithmetic to reverse the operation and retrieve the values of
each data point (see Figure 7(a)). In this sense, we state that it is
inappropriate to compare a scatterplot and a bar chart for this task.
Evaluating Perceptual Effectiveness. Consider the task “compare
two values” using a pie chart and a proportional stacked bar chart.
The two visualizations require the same preparatory computations
and visualize the same resulting derived information. However, the
two differ in their visual encodings, with a pie chart using wedges in
a Polar coordinate and the proportional stacked bar chart using rect-
angles in a Cartesian coordinate system. In this sense, we note that
it is appropriate to compare a pie chart and a stacked bar chart for
the given task. Since the preparatory computations and the derived
information are the same, the comparison between the two visual-
izations effectively measures the relative perceptual effectiveness
of their visualization encodings (see Figure 7(b)).
Evaluating Mental Arithmetic. Consider the task “read the value
of a bar” using a bar chart and a proportional stacked bar chart. For
a bar chart, the visualization encodes the desired information, which
a viewer can readily retrieve. For a proportional stacked bar chart,

assuming that the user knows the sum (sum(s)), the user can inverse
the mapping function from proportions information back to absolute
values. In this sense, we note that it is appropriate to compare
a bar chart and a stacked bar chart for the given task. However,
since the two visualizations use similar visualization elements, a
comparison between a bar chart and a proportional stacked bar chart
is effectively measuring the cost of the mental arithmetic to invert
the sum operation (see Figure 7(c)).
Evaluating Multiple Criteria. Consider the task “read the value
of a bar/wedge” as before, but instead of comparing a bar chart
with a stacked bar chart, we compare a bar chart with a pie chart.
Same as before, for a bar chart, the visualization encodes the desired
information, which a viewer can readily retrieve. However, when
compared a pie chart, two criteria are measured at the same time –
the cost of mental arithmetic and perceptual effectiveness. Mental
arithmetic represents the cost of inverting the mapping function nec-
essary for a pie chart (same as a proportional stacked bar chart), and
perceptual effectiveness represents the relative costs of encoding the
data as rectangles versus wedges/circles. Although this evaluation is
technically appropriate, it conflates two criteria in the evaluation,
rendering the outcome less informative (see Figure 7(d)).

5.2 Data Proxies and Analytic Shortcuts
The preceding examples have assessed the effectiveness of a vi-
sualization’s pre-computation by describing the steps involved in
answering the task from the perspective of the data-level proxy query
(data proxy). The underlying implication is that the difficulty of
using the visualization is proportional to the complexity of the data
proxy. For instance, parts-to-whole calculations are a simple read
operation using a pie chart but require mental arithmetic when using
a scatterplot or bar chart. Since the data proxy can be described as a
sequence of primitive operations (e.g., filter, read, calculate, etc.),
it may be possible to assign costs to each operation to estimate the
difficulty of the data proxy, and consequently to the view-level proxy
query. Such a “cost model” is analogous to those used to evaluate
user interfaces [18] and SQL queries [35], and could e.g., serve as
a null model for evaluating visualization task-effectiveness, rank
visualization designs, or evaluate the difficulty of multi-step tasks.

Of course, a key drawback of this idea is that users are not
computers—they make use of visual and cognitive heuristics, as well
as domain expertise and experience. How can this be adequately
modeled in a way that is useful?

Consider the task of estimating the slope of the regression line fit
to a set of points in Figure 8. The left side pre-computes the task by
fitting and rendering a line so the user can directly read the slope. In
contrast, expert visualization users may develop analytic shortcuts,
such as the use of visual features as proxies to solving the complex
mental arithmetic [21,43] (right side). Thus, although the scatterplot
does not require pre-computation, the task is easy to perform by
using such shortcuts [7, 8].

One way to model this is by extending the set of primitive oper-
ations with a library of meta-operations that are cheap for the user
to evaluate and cover multiple steps in the data-level proxy query

Figure 8: Two approaches to estimate the slope of the best linear-fit
line. (Left) the visualization pre-computes and renders the best fit
line, (right) expert users use analytic shortcuts to estimate the slope.

q̃P. Different expertise levels can be modeled as different libraries
of meta-operators.

Application to Experiment Design. We now sketch a potential way
where a cost model can be used to derive a baseline when evaluating
visualization effectiveness for specific tasks. Given a task, we can
use the cost model to find the lowest cost strategy, and use that as a
“null model” of the user’s expected strategy for answering the view
proxy. If the results of a user study coincide with the null model,
then it suggests that the user is using the lowest cost strategy i.e.,
a rational strategy. If the results are worse than predicted by the
null model, then it suggests that the user is performing an inefficient
strategy, perhaps due to the visual design. Again, it may be possible
to enumerate a handful of higher-cost strategies to design follow-up
experiments to isolate the specific strategy that user uses. Finally,
if the results are better than predicted, it suggests that the user is
performing analytic shortcuts that can be further investigated.

6 CONCLUSIONS AND DISCUSSION

In this paper, we present a transformation-centric model that extends
the Information Visualization Reference Model (InfoVis Reference
Model) by Card et al. [10]. Our model separates design-specific
transformations from visual encodings, offering two theoretical
framings—a view-level proxy query and a data-level proxy query—
for considering how transformed data and the resulting visualizations
can be used to address a user’s data tasks. Based on our model, we
propose the “No Free Lunch” conjecture for visualization design and
a framework based on the trade-off between pre-computation and vi-
sualization task flexibility. Finally, we argue that this model provides
clearer insights into the relationships between different visualiza-
tion designs based on a theoretical cost model and informs better
experiment design by isolating visual encoding and transformations.

REFERENCES

[1] Matplotlib: Visualization with python. https://matplotlib.org/.
[2] Plotly: Data apps for production. https://plotly.com/.
[3] O. Alhadreti and P. Mayhew. Rethinking thinking aloud: A compar-

ison of three think-aloud protocols. In Proceedings of the 2018 CHI
conference on human factors in computing systems, pp. 1–12, 2018.

[4] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic ac-
tivity in information visualization. In IEEE Symposium on Information
Visualization, 2005. INFOVIS 2005., pp. 111–117. IEEE, 2005.

[5] J. Bertin. Sémiologie graphique: les diagrammes, les réseaux, les
cartes. 1967.

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE transactions on visualization and computer graphics,
17(12):2301–2309, 2011.

[7] D. Braun, R. Chang, M. Gleicher, and T. von Landesberger. Beware
of validation by eye: Visual validation of linear trends in scatterplots.
IEEE transactions on visualization and computer graphics, 2024. Ac-
cepted to VIS 2024.

[8] D. Braun, A. Suh, R. Chang, M. Gleicher, and T. von Landesberger.
Visual validation versus visual estimation: A study on the average
value in scatterplots. In 2023 IEEE Visualization and Visual Analytics
(VIS), pp. 181–185. IEEE, 2023.

[9] M. Brehmer and T. Munzner. A multi-level typology of abstract vi-
sualization tasks. IEEE transactions on visualization and computer
graphics, 19(12):2376–2385, 2013.

[10] S. K. Card, J. Mackinlay, and B. Shneiderman. Readings in information
visualization: using vision to think. Morgan Kaufmann, 1999.

[11] R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E. Suma,
C. Ziemkiewicz, D. Kern, and A. Sudjianto. Wirevis: Visualization
of categorical, time-varying data from financial transactions. In 2007
IEEE symposium on visual analytics science and technology, pp. 155–
162. IEEE, 2007.

[12] Y. Chen, R. Li, A. Mac, T. Xie, T. Yu, and E. Wu. Nl2interface:
Interactive visualization interface generation from natural language
queries. arXiv preprint arXiv:2209.08834, 2022.

[13] Y. Chen, J. Tao, and E. Wu. Dig: The data interface grammar. In
Proceedings of the Workshop on Human-In-the-Loop Data Analytics,
pp. 1–7, 2023.

[14] Y. Chen and E. Wu. Pi2: End-to-end interactive visualization interface
generation from queries. In Proceedings of the 2022 International
Conference on Management of Data, pp. 1711–1725, 2022.

[15] K. Daniel. Thinking, fast and slow. 2017.
[16] W. C. Eells. The relative merits of circles and bars for representing

component parts. Journal of the American Statistical Association,
21(154):119–132, 1926.

[17] S. Few and P. Edge. Save the pies for dessert. Visual business intelli-
gence newsletter, pp. 1–14, 2007.

[18] K. Gajos and D. S. Weld. Supple: automatically generating user
interfaces. In Proceedings of the 9th international conference on
Intelligent user interfaces, pp. 93–100, 2004.

[19] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery, 1:29–53, 1997.

[20] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10:270–294, 2001.

[21] L. Harrison, F. Yang, S. Franconeri, and R. Chang. Ranking visu-
alizations of correlation using weber’s law. IEEE transactions on
visualization and computer graphics, 20(12):1943–1952, 2014.

[22] J. Heer. Agency plus automation: Designing artificial intelligence into
interactive systems. Proceedings of the National Academy of Sciences,
116(6):1844–1850, 2019.

[23] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: a
visualization-oriented time series data aggregation. Proceedings of the
VLDB Endowment, 7(10):797–808, 2014.

[24] R. Kosara. In defense of pie charts. https://eagereyes.org/blog/
2011/in-defense-of-pie-charts, 2021.

[25] J. Mackinlay. Automating the design of graphical presentations of
relational information. Acm Transactions On Graphics (Tog), 5(2):110–
141, 1986.

[26] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic pre-
sentation for visual analysis. IEEE transactions on visualization and
computer graphics, 13(6):1137–1144, 2007.

[27] D. Moritz, C. Wang, G. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints:
Actionable and extensible models in draco. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis), 2019.

[28] T. Munzner. A nested model for visualization design and validation.
IEEE transactions on visualization and computer graphics, 15(6):921–
928, 2009.

[29] T. Munzner. Visualization analysis and design. CRC press, 2014.

https://matplotlib.org/
https://plotly.com/
https://eagereyes.org/blog/2011/in-defense-of-pie-charts
https://eagereyes.org/blog/2011/in-defense-of-pie-charts

[30] C. Nussbaumer. Death to pie charts. http://www.

storytellingwithdata.com/2011/07/death-to-pie-charts.

html, 2011.
[31] G. J. Quadri and P. Rosen. A survey of perception-based visualization

studies by task. IEEE transactions on visualization and computer
graphics, 28(12):5026–5048, 2021.

[32] J. Ramey, T. Boren, E. Cuddihy, J. Dumas, Z. Guan, M. J. Van
Den Haak, and M. D. De Jong. Does think aloud work? how do
we know? In CHI’06 extended abstracts on Human factors in comput-
ing systems, pp. 45–48, 2006.

[33] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics, 23(1):341–350, 2016.

[34] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE transactions on visualization and computer graphics, 22(1):659–
668, 2015.

[35] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pp. 23–34, 1979.

[36] H. Siirtola. The cost of pie charts. In 2019 23rd International Confer-
ence Information Visualisation (IV), pp. 151–156. IEEE, 2019.

[37] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases.
IEEE Transactions on Visualization and Computer Graphics, 8(1):52–
65, 2002.

[38] J. Talbot, V. Setlur, and A. Anand. Four experiments on the percep-
tion of bar charts. IEEE transactions on visualization and computer
graphics, 20(12):2152–2160, 2014.

[39] J. Tao, Y. Chen, and E. Wu. Demonstration of pi2: Interactive visualiza-
tion interface generation for sql analysis in notebook. In Proceedings
of the 2022 International Conference on Management of Data, pp.
2365–2368, 2022.

[40] E. R. Tufte. The visual display of quantitative information, vol. 2.
Graphics press Cheshire, CT, 2001.

[41] H. Wickham. A layered grammar of graphics. Journal of computational
and graphical statistics, 19(1):3–28, 2010.

[42] K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang, and J. Wen-
skovitch. Survey on the analysis of user interactions and visualization
provenance. In Computer Graphics Forum, vol. 39, pp. 757–783. Wiley
Online Library, 2020.

[43] F. Yang, L. T. Harrison, R. A. Rensink, S. L. Franconeri, and R. Chang.
Correlation judgment and visualization features: A comparative study.
IEEE transactions on visualization and computer graphics, 25(3):1474–
1488, 2018.

http://www.storytellingwithdata.com/2011/07/death-to-pie-charts.html
http://www.storytellingwithdata.com/2011/07/death-to-pie-charts.html
http://www.storytellingwithdata.com/2011/07/death-to-pie-charts.html

	Introduction
	Related Work
	A Transformation-Centric Model
	The Basic Model
	Analytic Tasks as Proxy Queries
	Simplifying the InfoVis Reference Model

	Implications of the Model
	The No Free Lunch Conjecture
	Pre-computation and Task Flexibility
	Where Do Tasks Come From?

	Implications for Visualization Evaluation
	What is Measured When Comparing Visualizations?
	Data Proxies and Analytic Shortcuts

	Conclusions and Discussion

