
Using OpenKeyNav to Enhance the Keyboard-Accessibility of
Web-based Data Visualization Tools

Lawrence Weru , Sehi L’Yi , Thomas C. Smits , and Nils Gehlenborg

Fig. 1: Drag-and-drop in OpenKeyNav demonstrated in Voyager 2. (A) After OpenKeyNav’s drag mode is initiated through a shortcut
key, the elements that can be dragged (Voyager’s data fields or “pills” in this case) are outlined and assigned shortcut key labels.
Pressing the corresponding key, e.g., “d” for Major_Genre (indicated with a black rectangle) selects the element to be dragged. (B)
Shelves where the element can be dropped are then assigned shortcut key labels and outlined. An element can be dropped by pressing
the corresponding key, e.g., “a” for the x-axis (indicated with a black rectangle). (C) After a shelf is selected, the pill is dropped on it.

Abstract—Many data visualization tools require a mouse. While such tools widen access to data communication and expression, their
implementations are difficult or impossible to use by people with certain disabilities who experience difficulties using a mouse. What if
people could use them as easily with a keyboard? We present OpenKeyNav, a zero-dependency JavaScript code library that exposes
a developer-friendly API for initiating keyboard accessibility enhancements. We demonstrate a usage scenario of OpenKeyNav for
improving the keyboard-accessibility of Voyager 2, an open-source web-based data visualization tool based on the shelf configuration
similar to industry-leading Tableau. Since mouse-driven interactions such as drag-and-drop are found in software in a broad range of
industries, the interaction methods we describe have potential implications for the education, employment, and autonomy of people
with motor disabilities in various fields. A demonstration is at https://voyager-keyboard-demo.github.io/. Its instructions are at
https://github.com/voyager-keyboard-demo/voyager-keyboard-demo.github.io/ The most up-to-date version of the preprint
can be accessed at https://osf.io/preprints/osf/3wjsa.

Index Terms—Accessibility, visualization, keyboard interaction, drag-and-drop interaction

1 INTRODUCTION

Data visualization tools often rely on mouse-only interactions. For
example, consumer-facing tools such as the widely used Tableau [8]
depend on drag-and-drop to enable users to create and explore visual-
izations without writing code. While such tools widen access to data
communication and expression, their implementations are often diffi-
cult or impossible to use by people that pointer devices aren’t designed
for, such as people with specific motor disabilities (PMDs). As a re-
sult, the developers enable some people to create data visualizations
with these tools while disabling PMDs from doing so, limiting their
participation in the data visualization field and their access to educa-
tion, jobs, social inclusion, and autonomy. These limitations harm our
most vulnerable populations disproportionately, given that the World
Health Organization (WHO) recognizes access to education and jobs

• Lawrence Weru, Sehi L’Yi, Thomas C. Smits, and Nils Gehlenborg are with
Harvard Medical School. E-mail: { lawrence_weru, sehi_lyi, tsmits, nils }
@hms.harvard.edu

as Social Determinants of Health, and the National Institutes of Health
(NIH) recognizes people with disabilities as a population with health
disparities.

One way to make data visualization authoring tools usable by a
broader range of people is to make them fully keyboard-accessible.
Keyboard-accessible software is also usable by people who use other
input interfaces, such as people who control their devices using their
voice, since many assistive technologies and alternative input devices
leverage the keyboard APIs.

Many data visualization authoring tools have a web interface, and
it is possible to make controls on websites and web apps keyboard-
accessible through semantic HTML and Accessible Rich Internet Ap-
plications (ARIA) [15] attributes in compliance with the Web Content
Accessibility Guidelines (WCAG) [14]. However, most web developers
do not develop WCAG-compliant websites and web apps. For example,
96% of the top 1,000,000 home pages have accessibility barriers [16],
suggesting that the root causes of an inaccessible web are systemic.
However, even if developers were to follow all of the web content ac-
cessibility guidelines, open problems in digital accessibility remain for
complex interactions, such as drag-and-drop and navigating complex

https://orcid.org/0000-0001-6074-2098
https://orcid.org/0000-0001-7720-2848
https://orcid.org/0000-0002-5486-9890
https://orcid.org/0000-0003-0327-8297
https://voyager-keyboard-demo.github.io/
https://github.com/voyager-keyboard-demo/voyager-keyboard-demo.github.io/
https://osf.io/preprints/osf/3wjsa
https://hms.harvard.edu

interfaces.
Several interaction methods have been proposed in the literature

and implemented in the industry, such as browser plugins (e.g., Vim-
ium [6]), OS-level plugins (e.g., ShortCat [12]), and developer-level
integration [11]. However, these solutions do not facilitate complex in-
teractions like drag-and-drop, sometimes fail to identify every clickable
element, leave developers out of the equation unaware of these issues,
or impose unequal time burdens on keyboard users due to cumbersome
selection methods.

This paper introduces a novel interaction method for executing drag-
and-drop via keyboard. This method, along with a corresponding code
library OpenKeyNav, empowers web developers to implement this and
other interaction methods, such as clicking on clickable elements and
scrolling through scrollable regions. The novelty and main contribu-
tion of this method lies in its ability to facilitate complex interactions
exclusively, efficiently, and reliably via keyboard.

The proposed solution not only enables web developers to identify
and remediate keyboard-related accessibility failures quickly but also
provides enhanced keyboard functionality to improve the efficiency of
their web apps for people with motor disabilities and those who prefer
not to use a mouse.

2 RELATED WORK

If inaccessible websites are a systemic problem, then accessibility so-
lutions can be viewed as attempted interventions. Systemic problems
often require a series of interventions that address various intercon-
nected aspects of the system to create conditions for systemic change.

Keyboard-accessibility interventions can be classified by their point
of intervention in the web development and consumption system. Some
interventions target the builders of the web (web developers and de-
signers), who integrate them into their websites (such as style guides,
developer APIs and code libraries). Other interventions target the users
of the web, who adopt and use them to navigate various websites (such
as browser extensions or desktop software).

Somani et al. [11] introduce a developer-level intervention; a
JavaScript API that helps developers provide a keyboard-accessible
drag-and-drop interaction to end users. However, their proposed user
experience is not equivalent to the experience of mouse users. They
enable mouse users to directly select the element they want to drag
while requiring keyboard users to tab through potentially many ele-
ments to get to the one they want to drag. The time cost imposed on
keyboard users grows with the size of the list of draggable elements
and applicable drop targets and is multiplied by each drag-and-drop
interaction. Instead, OpenKeyNav focuses on creating an equivalent
experience for keyboard users, enabling them to select both the drag
element and the drop target directly.

End users may employ various browser-level and OS-level interven-
tions such as Vimperator [13], Conkeror [5], Hit-a-Hint [10], Short-
Cat [12], and Voice Control of OS X [2] to enable keycode-driven click-
ing of clickable elements. However, those tools may not identify all
clickable elements. Some OS-level interventions such as VoiceOver [1]
and JAWS [9] offer drag-and-drop commands, but they are not known
to operate reliably. As a result, keyboard users may default to seeking
workarounds that can impose greater physical, cognitive, or time de-
mands. While following accessibility best practices such as WGAC
and ARIA can help web developers ensure compatibility for standards-
compliant third-party navigation tools, it is not realistic for develop-
ers to test and provide support for every toolkit that end users might
use with their website to ensure compatibility. Lastly, debugging the
keyboard-accessibility of a website using these solutions is challenging
because these tools do not provide helpful debugging information to
developers.

3 PROPOSED SOLUTION

3.1 Keyboard-based Interactions

Drag-and-Drop Using a mouse, users can execute drag-and-drop
in four steps, (1) mousing over to the element they want to drag, (2)
clicking down on the element, (3) dragging the element to the drop
target, (4) releasing the click. With the proposed solution, users can

execute a three-step drag-and-drop using a keyboard by (1) typing a
developer-configurable key code such as “m” to enter drag mode, (2)
typing a dynamically generated unique key code, typically 1-2 letters,
to directly select a draggable element, (3) typing a similarly generated
key code to “drop” the element on that target. This interaction is
demonstrated in 4.1.

Scrollable Regions Using a mouse, users can execute a scroll
in two steps, (1) mousing over to the region they want to scroll, 2)
scrolling the region element with scroll wheel (trackpad swipe), or the
scrollbar that appears. Traditionally, users must achieve keyboard focus
on an element inside of a scrollable region before they can scroll the
region using spacebar or arrow keys. To get there, users are required
to tab through keyboard-focusable elements on the page in the order
they appear in the DOM Dense interfaces such as data visualization
authoring tools can have hundreds of focusable elements on the page,
imposing a time burden. With the proposed solution, users can cycle
through scrollable regions by entering a keycode, such as “s,” quickly
moving the active focus to the bounding box of the next scroll region,
increasing efficiency by skipping over all of the tab stops in-between.
Then, the user can scroll the region using spacebar or arrow keys as
usual.

Click Using a mouse, users can click on an element in two steps,
(1) mousing over to the element they want to click, (2) clicking on
it. With the proposed solution, users can execute a two-step drag-and-
drop using a keyboard by (1) typing a developer-configurable key code
such as “k” to enter click mode, (2) typing a dynamically generated
unique key code, typically 1-2 letters, to click the element they want to
click. While similar interactions are seen in browser extensions such
as Vimium [6], Shortcat [12], and Voice Control [2], this developer-
level intervention provides an improved user experience using collision
detection to minimize keycode labels covering the clickable elements
or other labels, as well as outlining the elements being labeled. Its
debug mode helps developers identify inaccessible interactive elements
so that they can remediate them.

Debug Mode A debug mode is on by default which highlights
the mouse-clickable elements that aren’t keyboard-focusable. When
people develop web elements that are mouse-clickable but not keyboard-
focusable, they limit the groups of people who can interact with those
elements, violating WCAG guidelines. Such accessibility failures are
often attributed to the accessibility barriers remaining invisible to devel-
opers. A keyboard-accessibility developer tool creates an opportunity
for exposing keyboard-related accessibility barriers of a webpage to
its developers. This default setting, which can be disabled in produc-
tion, makes such accessibility barriers visible to developers so they can
remediate them during development.

3.2 Developer Integration

OpenKeyNav is a zero-dependency JavaScript code library that exposes
a developer-friendly API for initiating keyboard accessibility enhance-
ments, as well as customizing parameters (e.g., a modifier key, color or
labels).

4 DEMONSTRATION

In this demonstration, OpenKeyNav is implemented into Voyager 2 [17],
an open-source data visualization authoring tool The demonstration
showcases the authoring of a complex data visualization exclusively
via keyboard from start to finish, highlighting the effectiveness and po-
tential impact of the proposed solution. The demonstration is available
as a hosted TypeScript React application at https://voyager-keyboard-
demo.github.io/.

A hypothetical persona, Alex, works as a data analyst for a hypo-
thetical film production company. During a recent meeting, senior
executives at Alex’s company express concerns about the declining
box office revenue and mixed audience reviews of their recent movie
releases, highlighting the need for a more data-driven approach for
their next project. They appoint Alex to create data visualizations using
the default Movies dataset in Voyager. Unfortunately, Alex recently
developed a repetitive strain injury (RSI). The long hours spent at the

https://voyager-keyboard-demo.github.io/
https://voyager-keyboard-demo.github.io/

Fig. 2: Data visualization in Voyager. (A) The channel configuration for
the Target Starting Graph. (B) The Target Starting Graph.

computer and continuous mouse usage exacerbate the underlying strain
in their wrist and hand, causing significant pain. With this condition,
it is difficult for Alex to use a mouse effectively, but they can still use
their keyboard.

Here, we demonstrate how the interaction methods and code library
introduced in this paper enable Alex to create a data visualization
efficiently using a keyboard, ensuring they can continue their work
despite their RSI challenges.

4.1 Keyboard-Accessible Drag-and-Drop

The executives request an analysis of which movie genres are per-
forming well in terms of revenue and audience ratings. Alex wants to
recreate a graph that their marketing manager shared to explore more
effective visualizations It visualizes the genre (Major_Genre), gross
revenue (US_Gross), and rating (IMDB_Rating) for each film in the
dataset. Alex is comfortable with data visualization authoring tools
like Voyager [17], which allow users to control the structure and ap-
pearance of visualizations by placing “pills” representing data “fields”
on different encoding “shelves” (visual channels) via drag-and-drop
interaction. To create the Target Starting Graph in Fig. 2B, Alex needs
to place the Major_Genre pill in the x-axis, US_Gross in the y-axis,
and IMDB_Rating as the color channel (Fig. 2A).

Drag Mode Such drag-and-drop actions typically require a mouse,
but with OpenKeyNav Alex can move these pills using their keyboard
by leveraging the accessible drag-and-drop interaction. Alex types a
developer-configurable keyboard command, in this case “m” to enter
drag mode (Fig. 1A). In drag mode, draggable elements are labeled
with dynamically generated keyboard shortcuts. These labels are given
a strong contrast ratio and a dual-tone outline that is distinguishable on
both light and dark backgrounds by default. Typing the key combination
of one of these labels selects the respective element as the element to
be dragged. Once a draggable element is selected, its drop zones (i.e.,
droppable regions) are similarly given dynamically-generated keyboard
commands.

Drag-and-Drop Alex wants to place Major_Genre on the x-axis,
so they type the shortcut for selecting the Major_Genre pill (in this
case, “d”) (Fig. 1A) to begin moving it. The software gives the pill
a visible indicator that it is being dragged. Then the software labels
the pill’s drop targets with keyboard shortcuts (Fig. 1B). Developers
often add drag effects to their user interfaces. In the case of Voyager,
drop zones are highlighted green when a draggable element is dragged
with a mouse. These effects should also be shown to keyboard users
executing a drag and drop. OpenKeyNav dispatches a concoction of
mouse drag events such as “mousedown” and “dragstart”, to help
trigger any user interface changes.

Alex types the dynamically-generated keyboard shortcut for the
x-axis drop target (“a”), dropping the selected pill into the intended
encoding shelf (Fig. 1C).

Through this simple interaction, they are able to drag and drop the
three pills to their respective shelves, quickly and efficiently. They
can author the desired data visualization using just a few keyboard
commands. Notably, they did not have to memorize any of the keyboard
commands used inside drag mode, as they were presented on a just-in-

time basis. This reduced cognitive load increases the accessibility of
the interaction method.

Sticky Drag Sometimes Alex wants to move a pill around while
observing the output, as part of an exploratory strategy to data visu-
alization authoring. He doesn’t want to go in and out of drag mode
each time he wants to move the same pill around. Alex can use a
modifier key while initiating drag mode to enter a sticky drag mode,
in this case “Shift”, which enables Alex to move the selected drag-
gable element to different drop zones. When in this mode, he can type
the keyboard commands of the drop targets as usual to move the pill
around without exiting drag mode. This is especially useful when Alex
wants to quickly see how different visual channels produce different
visualization outputs using the same field.

Tab to Drag While in Sticky Drag mode, he can press the Tab
key to move the pill to the next drop target. A modifier key, in this
case shift, in combination with Tab, moves the pill to the previous drop
target. This enables them to keep their eyes on the data visualization
output and tab around to see different possibilities.

Click Mode In order to produce the intended visualization, Alex
needs to add a “bin” function to the US_Gross pill, and a “mean”
function to the IMDB_Rating pill. When a user clicks on the dropdown
on the respective pill, these functions appear in a popup menu.

While it is possible to click on such elements using the spacebar
when they are keyboard-focusable and properly-coded with semantic
HTML, placing keyboard focus on the right element is not trivial.
Traditional keyboard navigation requires tabbing through the elements
on the page in sequence before placing keyboard focus on the desired
element. For highly interactive web-apps with potentially hundreds of
clickable elements on a page, having no option besides tabbing through
each of them can impose a disability tax in terms of time costs.

To avoid having to tab through the interface to click on a desired
element and achieve an equivalent experience to mouse users, Alex
types a developer-configurable keyboard shortcut, in this case “k”, to
enter click mode. (Figure). Like browser extensions such as Vimium
or OS-level software such as Shortcat, click mode labels the clickable
elements on the page with keyboard shortcuts, enabling Alex to click the
dropdown for the US_Gross pill (Figure). Entering click mode again,
he can click the “bin” function. He does the same to add the “mean”
function to the IMDB_Rating pill. Since this software is a developer
tool, the developers ensured clickable elements were fully functional
when integrating the tool. Browser extensions and other third-party
tools that the developers do not integrate into their websites cannot
ensure compatibility, limiting their reliability. However, developers
who integrate a keyboard-accessibility tool into their websites take
ownership of the user experience, helping to ensure a reliable one.

4.2 Developer-Friendly API

To enable keyboard-accessible data visualization authoring for Alex and
others, developers in Alex’s company add OpenKeyNav, a JavaScript
code library, to their self-hosted instance of Voyager, an open-source
React app written in TypeScript.

Simple Setup Inside of App.tsx, the developers import the li-
brary and configure it.

// App.tsx:
import OpenKeyNav from ’openkeynav’;

If drag-and-drop is not needed, all that is required to initiate the code
library with all default settings is:

// App.tsx > componentDidMount():
const openKeyNav = new OpenKeyNav();
openKeyNav.init();

Drag-and-Drop To initiate with drag-and-drop configured, the
developers use standard CSS selectors to define the field pill drag-
gable elements (fromElements) and their encoding shelf drop
zones (toElements). Voyager has two types of field pills, regular
and "wildcard." All pills can be dropped into encoding shelves, but
only regular field pills can be dropped into Voyager’s "filter" pane.
Using OpenKeyNav, the developers define two from-to pairs, one for
regular field pills, and another for wildcard field pills. All field pills
are given a field-pill class name. Wildcard field pills are given an
additional wildcard class name.

openKeyNav.init({
modesConfig:
{ move: { config: [
{ fromElements: ".field-pill",
toElements: ".encoding-shelf, .filter-pane" },
{ fromElements: ".field-pill.wildcard",
toElements: ".encoding-shelf" }

]}}
});

For more granularity, OpenKeyNav’s API provides additional pa-
rameters to define the draggable elements’ selection criteria, such as
direct children inside a fromContainer, or resolveFromElements,
which accepts a function that returns a list of DOM elements on the
page to be treated the same as fromElements. Developers can also
define exclusion criteria (fromExclude).

In Drag Mode, after a draggable element and its drop target are
selected, the code library mimics the mouse’s drop behavior. In the
case of Voyager, this removes the need for a callback function. However,
a callback function can be used to ensure the proper actions occur
after the drop.

Developers can configure the visual appearance of the key code
labels and focus ring , and some of the key codes .

5 DISCUSSION

Safety Assistive technologies not only remove access barriers but
also minimize health risks. Computer technologies can be designed
to interface with our bodies in ways that cause physiological harm.
Notable examples include seizures triggered by flashing lights for
individuals with photosensitive epilepsy, neck and back pain from
poor ergonomic posture during extended computer use, migraines and
computer vision syndrome from prolonged screen exposure, and sleep
disruption and reduced melatonin production from exposure to blue
light at night. These effects can be especially harmful for people with
musculoskeletal disorders, visual impairments, and sleep disorders, and
in the case of evening blue light exposure of women who are pregnant,
the reduced birth weight of infants. [7]

Keyboard interfaces that require significantly more actions for key-
board users compared to mouse users impose a disproportionate phys-
ical, cognitive, and time burden on keyboard users. The increased
physical burden of such keyboard interfaces can lead to repetitive stress
injuries such as carpal tunnel syndrome or "Emacs pinky." Keyboard
interfaces commonly require users to memorize a long list of shortcuts,
what they do, and when they can use them. In addition to increasing
stress for users, such high demands on working memory, cognitive load,
attention and focus, and organization and planning can create access
barriers for individuals with executive function impairments. Increased
time demands can create barriers for completing tasks.

Keyboard accessibility interventions must aim to minimize cognitive
load, physical burden, and additional time demands. For reducing
cognitive load, this toolkit leverages mitigation strategies such as visual
aids, on-demand shortcuts, and uniform design. For reducing physical
burden, the novelty of OpenKeyNav’s keyboard-accessible drag and
drop is that users can directly select their intended element and drop
zone, without needing to traverse a series of elements through repetitive
key presses. To reduce the physical and cognitive burden on users
who rely on magnification, OpenKeyNav’s labels and elements scale
with the browser zoom and re-flow to avoid collisions with each other,
remaining clear and usable in a range of scales. To minimize additional

time demands, the time complexity of this keyboard-accessible drag-
and-drop is comparable to that of the mouse-based action, since the
number of steps a user takes does not increase with the number of the
selectable elements. The number of steps required for keyboard-based
clicking is also comparable to mouse-based clicking.

Effectiveness As of today, there is no automated way to ensure
that a website is fully accessible, and this tool does not attempt to
function as an automated one. Instead, it observes a need for behavior
change among the builders of the web, who usually do not test their
websites for keyboard-accessibility. The web is an inaccessible envi-
ronment because people publish inaccessible code. With a debug mode
turned on by default, this keyboard-accessibility toolkit attempts to
function as a behavior change intervention, encouraging developers
to test their websites for keyboard-accessibility when they integrate
this tool. An accessibility intervention that targets the website-building
process and interacts with the builders themselves stands a chance at
producing positive, sustainable, systemic change.

Limitations Formal user tests are not yet conducted. It is important
to keep the focus on the lived experience of people with disabilities.
Evaluation, refinement, and user testing can help ensure that the fo-
cus remains on the impact on people’s quality of lives instead of the
technology.

Future work may include user studies with target populations in-
cluding people who use a range of assistive technologies, as well as
exploring opportunities for co-designing. The feature roadmap includes
exploring support for more mouse interactions such as hovering on
hoverable elements and dragging sliders, as well as providing customiz-
able keyboard navigation aids such as skip links. Optimized key code
combinations can improve accessibility for people with fine motor
skill impairments, people with dyslexia, or people who use switch-
input devices. End-user-defined shortcuts and guided tutorials can
potentially improve usability. OpenKeyNav is under active develop-
ment and refinement and is designed to evolve in response to user
needs. The most up-to-date version of the preprint can be accessed at
https://osf.io/preprints/osf/3wjsa.

6 CONCLUSION

Data visualization tools have become critical in various industries,
underscored by SalesForce’s 2019 acquisition of industry-leading
Tableau [8] for $15.7 Billion [4].

Web apps in various fields have similar mouse-driven interactions
that can benefit from such a tool. OpenKeyNav was originally devel-
oped to provide a keyboard-accessible user experience in a note-taking
app [3], which has a different user interface than data visualization
tools. Therefore such a tool has a broad range of applications including
but not limited to e-learning tools, video games, web development and
design tools, content management systems, project management soft-
ware, e-commerce platforms, business intelligence dashboards, general
websites and web apps, and assistive technologies.

7 ACKNOWLEDGMENTS

We are grateful to Trevor Manz, Huyen Nguyen, David Kouril, PJ
Van Camp, Eric Moerth, and Sofía Rojas for assistance with exposure
to prior art, research goals and aims, informal testing, and general
feedback. We thank the creators of Voyager for open sourcing their
tool, enabling it to be used as part of the demonstration.

REFERENCES

[1] Apple. Use VoiceOver to drag and drop items on
Mac. https://support.apple.com/guide/voiceover/
drag-and-drop-items-vo14056/mac. Accessed: 2024-9-2. 2

[2] Apple. Voice Control: Use Voice Control on your iPhone, iPad, or
iPod touch. https://support.apple.com/en-us/111778. Accessed:
2024-7-24. 2

[3] Aster Enterprises LLC. Columns. https://app.columnsapp.com/.
Accessed: 2024-7-26. 4

[4] D. Clarke. Making data coherent drives salesforce’s $15.3 billion deal
for tableau. https://www.nytimes.com/2019/06/10/technology/
salesforce-tableau-deal.html, jun 2019. Accessed: 2024-7-26. 4

https://osf.io/preprints/osf/3wjsa
https://support.apple.com/guide/voiceover/drag-and-drop-items-vo14056/mac
https://support.apple.com/guide/voiceover/drag-and-drop-items-vo14056/mac
https://support.apple.com/en-us/111778
https://app.columnsapp.com/
https://www.nytimes.com/2019/06/10/technology/salesforce-tableau-deal.html
https://www.nytimes.com/2019/06/10/technology/salesforce-tableau-deal.html

[5] Conkeror developers. Conkeror: a keyboard-oriented, highly-
customizable, highly-extensible web browser. http://conkeror.org/.
Accessed: 2024-7-24. 2

[6] S. B. Ilya Sukhar, Phil Crosby. Vimium: A browser extension that provides
keyboard-based navigation and control of the web. https://github.
com/philc/vimium. Accessed: 2024-7-24. 2

[7] Izci Balserak, B., Hermann, R., Hernandez, T. L., Buhimschi, C., Park,
C. Evening blue-light exposure, maternal glucose, and infant birthweight.
Annals of the New York Academy of Sciences, 1515(1):276–284, 2022. doi:
10.1111/nyas.14852 4

[8] I. Salesforce. Tableau: Business Intelligence and Analytics Software.
https://www.tableau.com/. Accessed: 2024-7-24. 1, 4

[9] F. Scientific. JAWS Hotkeys. https://www.freedomscientific.
com/training/jaws/hotkeys/. Accessed: 2024-9-2. 2

[10] slaypni. Hit-a-Hint: Surf web with a keyboard. https:
//chromewebstore.google.com/detail/moly-hah/
pjoacnohgednppackhamgfalpkffeeek?hl=en. Accessed: 2024-
7-24. 2

[11] R. Somani, J. Xin, B. Bhaskar Deo, and Y. Huang. Building keyboard
accessible drag and drop. In Proceedings of the 16th international ACM
SIGACCESS conference on Computers & accessibility - ASSETS ’14.
ACM Press, New York, New York, USA, 2014. doi: 10.1145/2661334.
2661342 2

[12] Sproutcube. ShortCat: The universal command palette for your Mac.
https://shortcat.app/. Accessed: 2024-7-24. 2

[13] M. Stubenschrott. Vimperator: A Firefox browser extension with strong
inspiration from the Vim text editor. http://vimperator.org/. Ac-
cessed: 2024-7-24. 2

[14] W3C. Web Content Accessibility Guidelines (WCAG) 2.1. https:
//www.w3.org/TR/WCAG21/, 2023. 1

[15] W3C. WAI-ARIA Overview. https://www.w3.org/WAI/
standards-guidelines/aria/, 2024. 1

[16] WebAIM. The webaim million; the 2024 report on the accessibility
of the top 1,000,000 home pages. https://webaim.org/projects/
million/, Mar 2024. Accessed: 2024-7-25. 1

[17] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting Visual
Analysis with Partial View Specifications. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, CHI ’17, pp.
2648–2659. Association for Computing Machinery, New York, NY, USA,
May 2017. doi: 10.1145/3025453.3025768 2, 3

http://conkeror.org/
https://github.com/philc/vimium
https://github.com/philc/vimium
https://doi.org/10.1111/nyas.14852
https://doi.org/10.1111/nyas.14852
https://www.tableau.com/
https://www.freedomscientific.com/training/jaws/hotkeys/
https://www.freedomscientific.com/training/jaws/hotkeys/
https://chromewebstore.google.com/detail/moly-hah/pjoacnohgednppackhamgfalpkffeeek?hl=en
https://chromewebstore.google.com/detail/moly-hah/pjoacnohgednppackhamgfalpkffeeek?hl=en
https://chromewebstore.google.com/detail/moly-hah/pjoacnohgednppackhamgfalpkffeeek?hl=en
https://doi.org/10.1145/2661334.2661342
https://doi.org/10.1145/2661334.2661342
https://shortcat.app/
http://vimperator.org/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://webaim.org/projects/million/
https://webaim.org/projects/million/
https://doi.org/10.1145/3025453.3025768

	Introduction
	Related Work
	Proposed Solution
	Keyboard-based Interactions
	Developer Integration

	Demonstration
	Keyboard-Accessible Drag-and-Drop
	Developer-Friendly API

	Discussion
	Conclusion
	Acknowledgments

