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Figure 1: A Zoomable Level-of-Detail ChartTable, in which train delay metrics (columns) are represented as mini-charts for each
train (row). The time histogram at the bottom indicates the number of trains operating over a 24h period and can be used to
interactively filter trains by hour of day.

ABSTRACT

“Reactionary delay” is a result of the accumulated cascading effects
of knock-on train delays which is increasing on UK railways due to
increasing utilisation of the railway infrastructure. The chaotic na-
ture of its effects on train lateness is notoriously hard to predict. We
use a stochastic Monte-Carto-style simulation of reactionary delay
that produces whole distributions of likely reactionary delay and
delays this causes. We demonstrate how Zoomable Level-of-Detail
ChartTables – case-by-variable tables where cases are rows, vari-
ables are columns, variables are complex composite metrics that
incorporate distributions, and cells contain mini-charts that depict
these as different levels of detail through zoom interaction – help in-
terpret whole distributions of model outputs to help understand the
causes and effects of reactionary delay, how they inform timetable
robustness testing, and how they could be used in other contexts.

Index Terms: Level-of-detail, mini-charts, distributions, stochas-
tic modelling.

1 INTRODUCTION

We demonstrate how Zoomable Level-of-Detail ChartTables can
help interpret probabilistic Monte-Carto-style simulations of reac-
tionary delay and its effect on train lateness. “Reactionary de-
lay” is the result of the accumulated cascading effects of knock-
on train delays [10]. Its interdependent “knock-on” nature makes
its effects hard to predict, with resulting delays often longer than
the original delays. Reactionary delay is an increasing problem
on UK railways as the number of scheduled train services are in-
creasing [13]. Our approach to helping understand the impact of
reactionary delay is to use a stochastic “Monte-Carlo” style Agent-
Based Model (“SaviRPM”) that simulates trains running to a fixed
timetable. Each model run incorporates randomly generated pri-
mary delays (e.g. late departure due to passenger overcrowding)
based on historically-derived probabilities, where each run repre-
sents a possible alternative “day”, detailing primary delays, result-
ing reactionary delays and their impacts on other trains. We can use
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this for comparing timetables for robustness and resilience.
Key to our approach is to enable consideration of the distribu-

tion stochastic outputs using interactive visualisation. Agent-Based
Models (ABMs; particularly Individual-Based Models) are often
used to simulate individual behaviour to predict resulting larger-
scale processes [14]. We are modelling individual trains to help un-
derstand the accumulation of multiple knock-on effects at a system
level. Understanding mechanisms within such models are so chal-
lenging that rich probabilistic data are often reduced to high-level
summaries [6]. Information Visualisation and Visual Analytics are
often cited solutions to enable analysts to consider and interpret
more detail and nuance than through high-level summaries alone.

In our Zoomable Level-of-Detail ChartTables, rows are trains,
columns are composite metrics that quantify aspects of reactionary
delay, visually-represented as mini-charts within cells that repre-
sent the metric for each train across all model runs. Four types of
mini-chart (section 2.1) for four different metric types have visual
representations at two levels-of-detail depending on the zoom level
(Fig. 2). Vertical zooming changes the height of rows. Where rows
are narrow and numerous, low level-of-detail mini-charts sum-
marise across all trains. Where zoomed rows are wide/tall, high
level-of-detail mini-charts depict the distribution of model runs.

Whilst many of these design characteristics are not new, we show
how our design and interactions enable interpretation of probabilis-
tic Monte-Carlo-style simulation for identifying the effects of reac-
tionary delay. We show how they are helping the UK’s railway in-
dustry understand reactionary delay and inform timetable redesign
to reduce the effect of reactionary delay. We reflect more widely on
how Level-of-Detail ChartTables can be used in other more gener-
alised contexts to facilitate comparison and interpretation of com-
plex metrics and their distributions.

Our contributions are to: (a) present Zoomable Level-of-Detail
ChartTables, (b) describe a set of composite metrics and visual rep-
resentations (mini-charts) that capture different aspects of proba-
bilistic reactionary delay at different levels of detail, (c) demon-
strate their use for interpreting stochastic Monte-Carlo-style simu-
lation results, and (d) reflect on their potential wider use.

2 ZOOMABLE LEVEL-OF-DETAIL CHARTTABLES

This work arose from a series of workshops and projects starting in
2018. A workshop run by Rail Safety & Standards Board (RSSB)
(which funds applied research for the UK Railway Operators) es-
tablished a need for a better understanding of reactionary delay to
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Figure 2: Four metric types depicted by four different mini-charts. Each has both low and high level-of-detail (LoD) variants. In all cases here,
the high LoD variant on the right shows the detail of the top five rows of the low LoD on the left (outlined in a blue dotted line). An appropriate
threshold then vertically zooming rows determines which variant is used.

help improve punctuality. They published a call for applied re-
search. We partnered with two UK Train Operating Companies
(Great Western Railways and Greater Anglia) and our research pro-
posal – to investigate the feasibility of combining stochastic Agent-
Based Modelling with highly interactive visualisation – was ac-
cepted and funded by RSSB. Our approach was shown to be fea-
sible and further funded projects (to develop the ideas) and private
consultancy (see acknowledgements; to apply and assess the feasi-
bility, robustness and resilience of alternative timetables). Through-
out, interactive visualisation has been key for validating and inter-
preting the modelling and the work has been deeply embedded in
industry needs. Early stages of the work used Koh et al’s user-based
approach of workshops, followed by iterative prototyping loosely
based on the AGILE principles of short development/feedback cy-
cles and continual re-prioritisation. This work now underpins con-
sultancy and the software (“SaviRPM”) as well as is being licensed
to RSSB and a Train Operating Company for their use. In this
short paper, we specifically focus on the Zoomable Level-of-Detail
ChartTable technique from this work.

We established some requirements to drive our designs:

R1: Depict multiple metrics. Multiple aspects of lateness help us
quantify delays, establish consequences, and identify prob-
lematic trains. Metrics include those that relate to delays
caused by the train, delays suffered by the train, many of
which can be expressed as minutes and as passenger minutes
(the latter weighted by the number of expected passengers).

R2: Summarise composite metrics. Although some metrics are
single values, many are composite and cannot be expressed
with a single number. See section 2.1 the metric types we
used.

R3: Depict distribution of metrics across trains. This is to help
rank trains based on their delay metrics; i.e. their different
contributions to delays or vulnerability to delay.

R4: Depict distribution of metrics across model runs. This is
to help use consider the consistency of different types of de-
lays between model runs and to help where there are plausibly
likely serious worse cases. This aspect of probablistic mod-
elling is often neglected, yet considered important.

For R1, we used the commonly-used case-by-variable table [15]

where cases (trains) are rows and variables (metrics) are columns,
enabling multiple metrics to be considered.

R2, R3 and R4 call for a solution that can depict complex met-
rics. Our solution is to use mini-charts that are embedded within
cells. These depict composite metric values using different chart
types for different metric types. Bertin demonstrated the value of
depicting data using visual variables [3]. Mini-charts in tables are
widely used for both single value metrics [12], for multiple levels of
abstraction [2] and for more complex metrics that summarise var-
ious types of aggregations [5, 7, 8]. Mini-charts are also used in
multivariate geographical mapping [18, 16, 17].

R3 and R4 call for a solution succinctly summarises both the
metric value per train (R3) and also its distribution across model
runs (R4) for that train. Our solution uses mini-charts with two
levels-of-detail variants that correspond to these options represent-
ing two different abstractions [2]. R3 also calls for identifying the
most problematic trains and considering the distribution of metric
values across all train. Our solution is to sort trains based on the me-
dian or variance values of the specific metric. This helps identify
problematic trains in terms of different metrics and the distribution
trains (Fig. 3). Red horizontal decile lines delineate the cumulative
delay causes/suffered by trains in 10% chunks (Fig. 3). Tooltips
provide the numbers where required (e.g. Fig. 6).

To summarise the technique: in Zoomable Level-of-Detail
ChartTables, rows are trains, columns are composite metrics that
quantify aspects of reactionary delay, visually-represented as mini-
charts within cells that represent the metric for each train across
all model runs. Four types of mini-chart (section 2.1) for differ-
ent metric types have visual representations at two levels-of-detail
depending on zoom level (Fig. 2). This semantic zoom (variant
of zoom that is not purely geometric [1]) applies only on the y-
axis, changing the height of rows but leaving their widths intact.
Where rows are narrow and numerous, low level-of-detail mini-
charts summarise across all model runs. Where zoomed rows are
wide/tall, high level-of-detail mini-chart depict the details of the
whole distribution of model runs within that train.

This is a similar approach to Rao and Card’s “Table Lens” [15] in
which they demonstrate single value metrics where bar (charts) are
used for low level-of-detail compact summaries, directly expressed
numbers for high level-of-detail, with level-of-detail zooming that
applies to subsets of rows and/or column to give focus+context.
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Figure 3: Subset of metrics zoomed out to the top 20% of trains
that caused most delay, sorted that metric, showing the “drop-off”
indicating that a few trains cause most delay. See annotations for
observations.

Figure 4: Four examples of high LoD “LatenessTProfileCharts” (Fig.
2b) showing different lateness consistency between model runs.

Our use differs in three ways: (a) we have more complex met-
rics; (b) low and high levels-of-detail are used to summarise across
model runs and to show distributions between model runs respec-
tively (instead of charts vs numbers); and (c) and we apply the level-
of-detail zooming on rows only (instead of rows and column) across
the whole table (instead of subsets of rows). Our emphasis is their
use for helping interpreting probabilistic model outputs.

2.1 Mini-chart designs
Our metrics fall into four types, each with a different graphical rep-
resentation for both level-of-details, as shown in Fig. 2:

(a) LatenessChart (Fig. 2a) is used where there is a single value
per model run; e.g. reactionary delay minutes caused. The low LoD
variant summarises this across the model runs as a marks depicting
median and standard deviation. The high LoD variant is a dotplot,
with a dot for each model runs. Animated jitter [4] reduces mis-
leading effects of overplotting.

(b) LatenessTProfileChart (Fig. 2b) depicts the lateness of a
train over the course of its journey. The low LoD variant is a tem-
porally binned heatmap coloured by average lateness throughout its
journey with a diverging blue/red colour scheme for early/late sta-
tion stop lateness. In Fig. 2b, the first (at the top) train is on-time
throughout its whole journey, whereas the second train starts off
late and does not recover after a sharp increase in lateness early in
its journey, perhaps indicating a problematic station. The high LoD
variant is a line graph where each line represents a model run. In
Fig. 2b, the on-time nature of the first train is reflected in all model
runs, but for the second train, the model run delays diverge after
the aforementioned sharp increase in lateness. Fig. 4 shows some
alternative high LoD LatenessTProfileCharts with observations.

(c) LatenessFreqChart (Fig. 2c) shows the average frequency
of late station stops within lateness categories (using the UK rail-
way industry’s categorisation of “early”, “0-1min”, “1-3min’, etc
[11]; see Fig. 2c). The lateness categories are green for <1min late
categories and red for >1min late categories, with lightness indi-
cating the ranked lateness of these ordinal categories. The low LoD
variant uses proportional bar length to indicate the average number
of station stops in each lateness category (the more dark red, the
later the train). In the high LoD variant, this is rotated vertically

and one per model run is displayed side-by-side indicating whether
there is consistency across model runs. In the high LoD variant in
Fig. 2c, the second train is consistently late at station stops whereas
the third train is sometimes late and sometimes not.

(d) AffectTrainsChart (Fig. 2d) shows the trains that either af-
fect or are affected by the row’s train and how much delay each
train is affected or suffered. For this description, let us assume these
are the trains causing the delay. The low LoD variant is a stacked
barchart where each sub-bar represents a train that causes delay to
this row’s train, where its length indicates the magnitude of delay
this caused to this train. In the high LoD variant, this is rotated ver-
tically and there is a bar for each model run. Each sub-bar coloured
by the train number/identifier so that consistent hues indicate that
exactly the same trains are involved in the different multiple model
runs. The first train in Fig. 2d for the low LoD variant is only sig-
nificantly delayed by two trains (one much more than the other).
However the inconsistent colours in the high LoD variant indicates
that these are different trains in different model runs. For the fourth
train, the low LoD variant indicates that one one train causes the
delay (one bar) and the high LoD variant confirmed that this is the
same train in all cases. Such insights help decide which trains to
focus on for mitigating actions.

In general, the low LoD variants use the x-axis to facilitate com-
parison between trains (rows), and high LoD variants use of the
y-axis to facilitate comparison between simulation runs. In the
high LoD variants, model runs are ordered by model run num-
ber/identifier so that the y-position of the bar across charts corre-
sponds to the same model run. This is important as it help enable a
‘bad day’ to be identified across charts, especially with interactions
that highlight identical model runs over the whole table (section
2.2). Model runs can also be sorted by the value for the metric in
help indicate the numerical distribution between model runs.

2.2 Interactions

Semantic zoom. The zooming behaviour is a key contribution of
this paper and enables these ChartTables to be used to study the
distribution of metric value between trains and between model runs
of the same train. Its operation has already been described. In Fig.
2, each metric type has its low and high level-of-detail visul variant
shown side-by-side. Which variant is display depends on the zoom
level with a threshold that varies by metric type. In Fig. 2, the high
LoD variant is zoomed such that only the top four rows remain
visible. In Fig. 3, the ChartTable is zoomed out to trains that cause
20% of the overall delay, enabling the distribution of a given metric
between trains to be assessed.

Sorting. Trains can be sorted by metric based on the median
or dispersion across model runs. This enables the most or least
problematic trains to be identified and the consistency of that metric
between the simulation runs and the relationship to other metrics
can be determined. See Fig. 3 and Fig. 5.

Scaling. All the cells contain mini-charts. Each metric/column
has its own x and/or y axes, which are scaled between zero and the
95th percentile by default. Each column can have its range easily
adjusted. The mouseovered cell will always show the entire mini-
chart, overlapping its surroundings if necessary.

Tooltips. Tooltips are a standard means for providing details on
demand; an example is supplied in Fig. 6.

Train filtering allows filtering by train identifier and category.
Temporal filtering. The histogram at the bottom of the table

in Fig. 1 shows the number of trains by category that are active
throughout the day. Moving the mouse over the histogram filters
the trains by those active at that time, preserving the sorting and
scaling in the ChartTable.

Highlighting. Highlighting is an interactive technique for asso-
ciating data points across the table. Fig. 6 illustrates that selecting
a train and an “AffectTrainChart” metric results all trains/rows in



Figure 5: Example sorted by “average station stop lateness” with
observations made on other aspects of lateness for these trains.

Figure 6: “Highlighting” interaction that identifies two of the trains
involved with the train identified with the mouse cursor.

view involved in the metric being highlighted (actually others “lo-
lighted”) making it easier to access the metric values for this train.
The same technique is also used for identifying the same model
runs across the table to help assess the impact of “bad day” model
runs across the dataset.

3 EXPERIENCES, DISCUSSION AND FURTHER WORK

3.1 Reflections on our use of the technique
Alternative ‘cases’. The examples presented here have cases
(rows) as trains. By summarising the model output by station stops,
we have also used station stops as cases/rows where the metrics
characterise the delays at these locations. This important comple-
mentary information enables us to identify problematic locations.
For example, identifying key “pinch-point” stations at which reac-
tionary delays lead to huge impacts on other parts of the network
gives clues to possible solutions.

Visual scalability. We have been able to deal with hundreds
of simulation runs and thousands of trains, including the ability to
zoom-out to all trains. A limitation of our implementation is the
requirement for at least one pixel per train and model run (the latter
with high LoD variants). We can improve the visual scalability
by appropriately sampling trains and model runs where not enough
pixels are available to depict them all. This may need to happen
dynamically, depending on zoom level.

Sorting. In our implementation, sorting is limited to simple
point/dispersion value to summarise the metric by train. We are
implementing sorting based on different points on the numerical
distribution. For example, 80th percentiles are sometimes used for
identifying plausibly likely “bad days”.

Historical data. Train lateness data is routinely collected and
used to assess past performance. We can use these data in ChartTa-
bles, where real days replace model runs and where the distribution
of lateness is based on what actually happened. Since only the ef-
fects of delays are recorded, there is a lack of detail on the mech-
anism of the delays afforded by our model. However, the Train
Operating Companies we worked with found visual analysis of his-
torical data, albeit with fewer metrics.

3.2 Potential uses in other contexts
Interpreting probabilistic model outputs. Stochastic Monte-
Carlo-style ABMs are in widespread use, generating large amounts

of data, usually too much to consider in detail [6]. In most cases,
these can be summarised in a case-by-variable structure. The “al-
ternative case” point above illustrates the flexibility of summarising
model outputs by different case-types and interpreting them within
ChartTables. Since our four metric types are specific to our appli-
cation, it is likely that additional mini-chart designs will be needed.

Other data and other mini-charts. Using other model outputs
or datasets with ChartTables will likely necessitate different or addi-
tional mini-charts. Fortunately, the design space of such mini-charts
is enormous [9]. They can be based on existing visualisation idioms
(as most of ours were) or customised designs. The orientation of the
variables and cases in the table (rows/columns) influences the effec-
tiveness of the use of the x- and y-axes. Where rows are cases, using
x- axis for low LoD variant facilitates comparison across rows. For
high LoD variants, using the y-axis facilitates comparison between
model-runs within cases.

Other levels-of-detail. Although two LoDs were appropriate for
our use, different conceptualisations of LoD will be appropriate in
other contexts; for example, corresponding to levels of abstraction
[2], aggregation and/or hierarchical data [5, 7, 8].

3.3 Use in the UK railway industry

The original purpose of our work with the UK railway industry was
to develop and determine the feasibility of an ABM/visualisation
approach to understanding reactionary delay. We expected the
value to industry to be strategic, such as identifying general guide-
lines for timetable design. However, we found that its use more
operationally was more important to the Train Operating Compa-
nies we worked with. They were interested in investigating specific
timetable proposals and identifying problematic trains with reasons,
and using these to tweak then test these modified timetables. Al-
though much of the analytical work was been carried out by Risk
Solutions, Zoomable LoD ChartTables play an important narrative
role when presenting modelling results to clients.

Feedback has been positive. Simon Greenwood (Performance
Manager, GWR) finds them “really helpful, being able to see where
reactionary delays were likely to be, and where they were com-
ing from, delivered new insights and helped us see where to fo-
cus our attention” and Marc Ware (Performance Manager, Greater
Anglia) stating that “it helped us work through a very complex sys-
tem to understand the individual levers we have to use to deliver
change”. Actionable evidence is also valued, with Mark Walker
(Performance Manager, ARL) citing the “useful evidence to sup-
port our discussions with Network Rail about designing a better
timetables” and Marc Ware saying “this is giving us the evidence
we need. . . and focus on building a more robust timetable. . . that we
have to do collaboratively”.

We are now licensing software that incorporates the ABM and
visualisation, so some of those responsible for designing more ro-
bust timetables will now be using them analytically. Risk Solutions
are running training session and collecting feedback which is di-
rectly informing further development.

4 CONCLUSION

Studying reactionary delay in trains is a good example of how visual
analytics can help analysts consider nuance and variation in data
that is normally averaged out. Tabular layouts are a simple, familiar
and effective means to represent variables and cases. Mini-charts
provides a huge range of possibilities for representing multivariate
composite metrics and data distributions, including qualifications
of uncertainly. Zoom-based level-of-detail variants of these mini-
charts enabled us to consider distributions of summaries by case
and and distributions within cases of Monte-Carlo-style stochastic
model outputs. There is plenty of scope to generalise to other ap-
plication areas.
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