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Fig. 1: We explore two main tasks related to chart-grounded Q&A: question answering (QA) and visual explanation generation (VEG).
QA leverages templated domain facts (DF) from the chart’s CSV file, whereas VEG relies on visual context (VC) from its JSON file. In
the first fine-tuning step, the charts’ underlying text files are injected into the language models (LMs). We then fine-tune the QA and
VEG steps on 90% of the charts, with 10% held out for testing during our evaluation in §4. To understand the robustness of our LMs to
natural language variation, we also perform a question paraphrasing task to rephrase our template-generated questions more naturally.

Abstract—Machine Learning models for chart-grounded Q&A (CQA) often treat charts as images, but performing CQA on pixel values
has proven challenging. We thus investigate a resource overlooked by current ML-based approaches: the declarative documents
describing how charts should visually encode data (i.e., chart specifications). In this work, we use chart specifications to enhance
language models (LMs) for chart-reading tasks, such that the resulting system can robustly understand language for CQA. Through a
case study with 359 bar charts, we test novel fine tuning schemes on both GPT-3 and T5 using a new dataset curated for two CQA
tasks: question-answering and visual explanation generation. Our text-only approaches strongly outperform vision-based GPT-4 on
explanation generation (99% vs. 63% accuracy), and show promising results for question-answering (57–67% accuracy). Through
in-depth experiments, we also show that our text-only approaches are mostly robust to natural language variation.

Index Terms—Machine Learning Techniques; Charts, Diagrams, and Plots; Datasets; Computational Benchmark Studies

1 INTRODUCTION

Charts convey information through representations that are both visual
and symbolic, with elements such as lines or bars representing domain
attributes. Compared to visual question answering (VQA) on natural
images, chart-grounded question answering (CQA) is more sensitive
to small pixel changes. For example, shuffling the colors of a car and
bike in a photograph only affects the properties of the two objects, but
shuffling the colors of a bar chart can completely alter its meaning [8].
Therefore, much of the progress in VQA for natural images may not
transfer well to even the simplest charts [1, 8, 9, 12, 14, 21, 23].

Despite the importance of language in chart analysis [5, 22], rela-
tively few VQA works have focused on CQA [6, 11, 24]. While the
majority of these CQA works choose to represent charts as images,
there have been very few early investigations on the usefulness of
charts’ declarative specifications as an alternative representation for
chart captioning [23], chart generation [13], and rudimentary CQA [10],
with the latter predating large language models (LMs).

As the first in this space, Kim et al. [10] rely on manually replacing
parts of a question that refer to visual elements by the attribute names
(e.g., changing the question “Which state has the largest orange bars?”
to “Which state has the max(19-24 years)?”), before running a rule-
based Q&A system for relational tables [17]. A limitation of this
approach is that CQA is only weakly grounded in the chart’s visual
context. For example, the question “Which state has the most young
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adults?” is not anticipated by their NLP rules, and thus not grounded
in a visual element. However, an ideal system should understand the
relationships “young adults” → “19-24 years” → “orange bars,” as
this mapping may be useful for generating visual explanations for
novice analysts, e.g., “California has the largest orange bars.”

In this work, we infuse chart specifications into LMs for their ability
to flexibly handle language, so that the resulting system can robustly
perform CQA tasks. Our contributions are: (1) Our experiments on two
tasks (question-answering and visual explanation generation) using two
families of LMs (GPT-3 [3] and T5 [18]) show that chart specifications
are an effective representation format for CQA; (2) We find that even
state-of-the-art Vision-powered LMs (VLMs), both pretrained and fine-
tuned (GPT-4 [16] and Pix2Struct [11]), struggle to capture the signal
that our text-only approaches can learn; and (3) We show that our
models remain mostly robust to natural language variation.

2 RELATED WORK

Given the widespread adoption of visualization grammars [2,20], recent
work on CQA has proposed leveraging such declarative specifications
rather than images [10, 13, 23]. More generally, text-to-text LMs can
belong to two categories: encoder-decoder LMs such as T5 [18] have
their generative component preceded by an encoder-only step tailored to
“understanding” and representing the LM input, making the combined
encoder-decoder architecture flexible even in smaller model sizes; as
size increases, decoder-only LMs such as GPT-3 [3] have become the
de facto standard for their ability to generate natural-sounding language.
For this work, we focus on Vega-Lite [20] as our visualization grammar,
and we choose one family of LMs from each category (i.e., T5 [18] and
GPT-3 [3]) to test the usefulness of chart specifications more broadly.

VLMs can also belong to two categories: uniquely large, pretrained
VLMs such as vision-based GPT-4 [16] can become the state-of-the-
art in many tasks that require vision by virtue of their scale; while
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image-encoder-text-decoder VLMs such as Pix2Struct [11] can achieve
the same by being amenable to fine-tuning on custom task data. We
choose GPT-4 [16] and Pix2Struct [11] as baselines representing each
category for their recent impact in chart-related tasks and analyze the
errors of the most competitive baseline when comparing performances.
Tang et al. [23] contribute the work closest to ours, as they use chart
specifications for chart captioning and compare to previous-generation
VLMs not designed for charts [4]. We not only compare against two
state-of-the-art VLMs that claim to work on charts [11, 16], but our
focus on CQA also allows us to test the robustness of our models to
variations in how questions are phrased, unlike captioning.

3 METHODS FOR CHART-GROUNDED Q&A
First, we formally describe our two main CQA tasks (question answer-
ing and visual explanation generation), as well as a third task (question
paraphrasing) to evaluate the quality of our fine-tuned LMs (Figure 1);
second, we discuss the process for designing our dataset; third, we
describe the LM fine-tuning scheme applied in our experiments in §4,
and our process for generating more natural questions from our dataset.

3.1 Task Definitions
We adopt a “closed-book exam” [19] configuration for our LMs, in
order to extend their underlying knowledge with chart-related infor-
mation before performing the main task. We use LMstep to denote the
order in which each fine-tuning step is performed.

3.1.1 Question Answering (QA)
We define question-answering as a function of the data displayed on
the chart (i.e., “domain facts”) and the questions asked. Domain facts,
originally stored in CSV format, are converted into natural language
using templates. Question-answering examples are similarly generated.
Figure 1 shows one example; the underlying templates are provided in
the supplemental material. If DF and QA are the domain facts and QA
training sets, question-answering is LM1(DF) followed by LM2(QA).

3.1.2 Visual Explanation Generation (VEG)
Visual explanation generation considers a chart’s visual context (VC)
and the question-answer pair that requires a visual explanation. Visual
contexts, stored as JSON chart specifications, are converted into natural
language via templates. Questions, answers, and explanations are
similarly transformed (see the supplemental material). If VC and V EG
are visual contexts and visual explanation generation training sets, we
define visual explanation generation as LM1(VC) then LM2(V EG).

3.1.3 Question Paraphrasing
Some template-generated questions may seem unnatural, despite being
factually correct. For example, the questions “For which state is the
value for population the highest when segment is 19-24 years?” and

“Which state has the most young adults?” both have the same meaning,
but the latter is rated as more natural by our three human judges in §4.
Given that LMs can generate language with great fluency [3], we
leverage this ability to paraphrase our template-generated questions
more naturally while preserving their meaning. We model this task as
a function of a template-generated question (qtemp); to help the LM
remain semantically grounded on the chart domain, we also include
a chart description (cdesc). Thus, question paraphrasing is defined as

“cdesc. qtemp. Rephrase it more naturally: → qnat ,” where qnat is the
rephrased question and GPT-3 DaVinci (175B parameters) the base LM.

3.2 Dataset Design
No previously published dataset with chart specifications has all the
characteristics needed to investigate CQA through the lens of LMs.
We thus draw on the strengths of two recent datasets to design ours:
VisQA [10] explores CQA and includes naturally arising questions, but
is too small for LM fine-tuning. Conversely, NVBench [13] is richer
in scale and domain diversity, but focuses on generating SQL queries
from chart descriptions. Similar to Obeid and Hoque [15], we note
from VisQA that bar charts with one quantitative attribute on the y-axis
and two categorical attributes (as seen in Figure 2) ensure a minimum

Fig. 2: Visualization of distribution-related questions on an illustrative bar
chart. On the left, users can ask about values across same-color bars.
On the right, users can ask about values within a chart panel.

Accuracy
Task Model Qtest

temp Qtest
nat Gain or Loss

QA T5-Large 57.54% 58.52% +1.5%
GPT-3 Curie 67.54% 48.36% -28.4%

VEG T5-Large 99.02% 73.28% -26.0%
GPT-4 Vision 63.01% - -

Pix2Struct 12.26% - -

Table 1: For question-answering (QA), our fine-tuning scheme for T5-
Large is 57.54% accurate, which increases to 67.54% with a model 17
times larger (GPT-3) on Qtest

temp; for visual explanation generation (V EG),
our fine-tuning scheme for T5 is 99.02% accurate, much higher than
vision-based GPT-4 (63.01%). When evaluating on Qtest

nat , performance
ranges from a 1.5% gain (T5 on QA) to a 28.4% loss (GPT-3 on QA).

diversity of visual elements. NVBench has 359 bar charts of this type,
with an average of 3.94 colored bars per chart, spanning 105 domains.
Thus, we define our focus for this work on this set of bar charts.

Further analyzing VisQA, we note that most human-generated ques-
tions about bar charts are related to distributional aspects of the quanti-
tative attribute. We use this observation to define the following scope
for our CQA: We include questions about (1) minimum and maximum
values across visual elements of the same color (Figure 2, left) and
(2) minimum and maximum values within a chart panel (Figure 2, right).
Importantly, these two types of questions are well-studied in the visual-
ization literature—for example, refer to Figure 5 in Xiong et al. [26].

Overall, we use templates on 359 bar charts from Luo et al. [13] to
generate 9,885 domain facts (DF), 7,310 question-answer pairs (QA),
3,989 visual contexts (VC), and 7,310 question-answer-explanation
triples (V EG) as defined in §3.1.1

3.3 Fine-Tuning QA and VEG
For both question-answering and visual explanation generation, the
first fine-tuning step (LM1) includes 100% of the knowledge-related
data, i.e., LM1(DF) comprises 100% of DF and LM1(VC) 100% of
VC. For the second step (LM2), we hold out 10% of the charts for test-
ing. Thus, LM2(QA) comprises ∼90% of QA for question-answering
and LM2(V EG) has ∼90% of V EG for explanation generation. As de-
scribed in §3.1, questions are part of the prompt for both QA and V EG.
We denote the 6,700 template-generated questions during training as
Qtrain

temp and the 610 held-out questions for evaluation as Qtest
temp.

We manually rephrase Qtest
temp to produce a human-generated test set

Qtest
nat to evaluate the robustness of an LM-based approach in §4. Ini-

tially, LMs are fine-tuned only on Qtrain
temp with template-generated ques-

tions. A perfectly robust LM would have performance on Qtest
nat ≈Qtest

temp.
However, an LM can still be considered robust if it suffers a slight per-
formance loss (i.e., performance on Qtest

nat < Qtest
temp) and can recover

with additional data from the distribution of Qtest
nat . To test this hypoth-

esis, we apply question paraphrasing on Qtrain
temp to produce Qtrain

nat with
more naturally-phrased questions. We then progressively augment our
initial LMs with parts of Qtrain

nat while measuring performance on Qtest
nat .

1Our dataset is publicly available at: https://github.com/vbursztyn/
charts-as-text-for-chartqa
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Fig. 3: Accuracy on Qtest
nat vs. the percentage of Qtrain

nat data added for
fine-tuning. The dashed line shows the accuracy on Qtest

temp, serving only
as an upper-bound. There is a consistent recovery of lost performance
when adding additional data for fine-tuning (up from 73.28% to 88.69%);
notably, the largest improvement in performance occurs when adding
only 10% of the data (up from 73.28% to 81.80%).

3.4 Fine-Tuning Question Paraphrasing
We use the following training set to fine-tune GPT-3 DaVinci for ques-
tion paraphrasing: given the formulation “cdesc. qtemp. Rephrase it
more naturally: → qnat ,” we populate qtemp and qnat with Qtest

temp and
Qtest

nat respectively; we retrieve cdesc from the corresponding charts [13].
We apply the resulting LM to the questions in Qtrain

temp with decoding
temperature = 0.7 and max sequence length = 40, producing Qtrain

nat .

4 EXPERIMENTS

We run experiments to address three research questions.
RQ1: How well do LMs perform on the two CQA tasks?
RQ2: How helpful are chart specifications compared to images?
RQ3: How robust are these models to natural language variation?

4.1 Procedure and Measurements
The details for fine-tuning T5 [18], GPT-3 [3], and Pix2Struct [11] are
described in the supplemental material. We use greedy decoding to
evaluate both tasks. For question-answering, we consider a test question
to be correctly answered if the generated tokens match the ground-truth.
For visual explanation generation, explanations are invariant except
for the color and size of the visual element associated with the answer
(e.g., “the largest orange bars”); we consider a test pair to be correctly
explained i.f.f. it includes the visual element’s correct color and size.
This approach is similar to how previous works measured factuality in
generated text, e.g., the RG metric in Wiseman et al. [25]. We refer to
these definitions over a given test set as the “Accuracy” in Table 1.

We recruit three human judges to evaluate the question paraphrasing.
Each judge rates the same sample of 100 automatic paraphrases in two
ways: (1) Using a scale from 1 (dissimilar) to 3 (similar), how much the
paraphrases preserve the meaning of the original template-generated
question (i.e., a measure of semantic similarity); and (2) between the
template-generated question and the rephrased one, which one is more
natural, or if they are equally natural (i.e., a measure of naturalness).

For RQ1 (performance) and RQ2 (comparison), we evaluate the
two CQA tasks (question-answering and visual explanation generation)
on Qtest

temp, i.e., held-out questions that follow the same template seen
in training. For RQ3 (robustness), we evaluate our models on Qtest

nat ,
i.e., the manually rephrased questions. To understand if an LM-based
approach can recover from a potential performance loss in the face of
more natural questions, we progressively add automatic paraphrases
(i.e., parts of Qtrain

nat ) to our fine-tuning scheme while we measure how
these additions affect the performance on Qtest

nat .

4.2 Results: Question Answering (QA)
Table 1 shows the results for two base models: T5-Large (737M param-
eters) and GPT-3 Curie (13B parameters). T5-Large achieves 57.54%
test accuracy on Qtest

temp. This result is substantially above any random

Fig. 4: A confusion matrix of errors made by GPT-4. As shown in Fig. 5,
error #1 (returning orange instead of blue ) and error #3 ( green rather
than cyan ) are the most common. GPT-4 often conflates adjacent rows
in the legend, which is responsible for 79% of errors. Notably, the results
rarely mention the color cyan ; the one instance actually refers to “teal,”
which was deemed close enough given color-naming ambiguities.

baselines: test questions span the two categorical attributes of each bar
chart, so the space of possible answers is even bigger than that of colors.
On the other hand, the result is still far from the 100% upper-bound.
To test if LM scale affects performance, we also include GPT-3 Curie;
with 17.5 times more parameters, performance improves to 67.54%.

4.3 Results: Visual Explanation Generation
T5-Large achieves 99.02% accuracy on Qtest

temp (Table 1), which confirms
that our method is extremely successful at this task, i.e., LM1(VC)
successfully injects the charts’ visual contexts into T5, and LM2(V EG)
can learn to access them to generate factually correct explanations.

4.4 Text-only T5 vs. VLMs
Table 1 contrasts the near perfect performance of our text-only approach
to visual explanation generation (with 99.02% accuracy) vs. the much
larger vision-based GPT-4 (63.01%). As detailed in Section 5.1, 79%
of the errors from GPT-4 are due to mistaking rows that are adjacent in
the legend. As detailed in the supplemental material, fine-tuning the
recent Pix2Struct on 90% of Qtrain

temp yields only 12.26% accuracy on
Qtest

temp, confirming the struggles of a VLM in the same size category as
T5-Large. Pix2Struct shortcuts to “blue” in 44% of its explanations.

4.5 Results: Question Paraphrasing
The assessments from our three independent human judges had a Fleiss’
Kappa of 0.61, which indicates substantial agreement. In terms of
semantic similarity, rephrased questions were considered to preserve
the meaning (score of 3) of the original, template-generated questions
88.33% of the time, while the meaning was considered lost (score of 1)
only 7.7% of the time, for an average score of 2.81 (out of 3).

In terms of naturalness, rephrased questions were considered more
natural 82.33% of the time versus only 5% for template-generated ques-
tions. This result confirms that, in preparation for RQ3 (robustness),
our method can successfully rephrase template-generated questions to
be more natural, while preserving their original meaning.

4.6 Approach Robustness
Table 1 compares the performance on Qtest

temp vs. Qtest
nat . Interestingly, we

note results as diverse as a marginal performance gain—from 57.54% to
58.52%—and relative losses of 26% (for visual explanation generation)
and 28.4% (for question-answering with GPT-3, which is potentially
more prone to overfitting). Despite this variation, LMs fine-tuned with
our scheme remain relatively accurate with natural language variation.

Figure 3 shows what happens when T5 is given additional fine-tuning
data from Qtrain

nat . We progressively add to our fine-tuning scheme 10%,
30%, 50%, and 100% of Qtrain

nat , while measuring performance on Qtest
nat .

We plot a dashed line to show the original performance on Qtest
temp. In-

terestingly, we find a consistent recovery of the lost performance which



Error #1: Mentioned orange bar, while blue was the correct one.
GPT-4 Text Prompt: “Explain how the answer is obtained mentioning the bar color. Question: In which 
service is the value for Brentwood the lowest? Answer: Greater Anglia. Explanation:”
GPT-4 Completion: “The answer is obtained by identifying the Brentwood bar (orange) and comparing 
its height across different services. The lowest value for Brentwood is observed in the ‘Greater Anglia’ 
category, where the orange bar is the shortest.”
Ground-truth: “The smallest blue bar is when services is Greater Anglia.”

Error #2: Mentioned red bar, while orange was the correct one.
GPT-4 Text Prompt: “Explain how the answer is obtained mentioning the bar color. Question: In which 
service is the value for Broxbourne the highest? Answer: Greater Anglia. Explanation:”
GPT-4 Completion: “The answer is obtained by identifying the tallest bar associated with Broxbourne, 
which is indicated by the color legend. In this bar chart, the red bar represents Broxbourne, and the 
tallest red bar is under ‘Greater Anglia,’ indicating that this service has the highest value for Broxbourne.”
Ground-truth: “The biggest orange bar is when services is Greater Anglia.”

Error #3: Mentioned green bar, while cyan was the correct one.
GPT-4 Text Prompt: “Explain how the answer is obtained mentioning the bar color. Question: What is the 
biggest classify when services is London Overground? Answer: Three Rivers. Explanation:”
GPT-4 Completion: “The answer is obtained by identifying the tallest bar within the ‘London Overground’ 
category on the bar chart. The tallest bar is green, which corresponds to ‘Three Rivers’ in the legend, 
indicating that Three Rivers is the biggest classify when services is London Overground.”
Ground-truth: “The cyan bar is the biggest one when services is London Overground.”

GPT-4 Image Prompt:

Fig. 5: This stacked, multi-color bar chart depicts the counts of the attribute “classify” on the y-axis, across different services on the x-axis. This
example (“bar_chart_518” in the released data) has eight errors out of twenty-four test cases. The three errors illustrated here demonstrate one
way that vision-based GPT-4 fails, i.e., by mentioning an adjacent color in the legend rather than the correct color. The same GPT-4 Image Prompt is
used in all cases, paired with each GPT-4 Text Prompt. The resulting GPT-4 Completion can be compared with the Ground-truth.

substantially narrows the previously noted gap: 99.02% vs. 88.69%.
Most importantly, we find that a large part of this recovery happens
when adding only 10% additional data: 73.28% vs. 81.80%.

5 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Our work introduces initial results for CQA using chart specifications,
a resource largely overlooked by previous ML-based approaches [7].
We find that such specifications store useful signal that—in the case of
visual explanation generation—can be almost perfectly learned by even
T5-Large, an encoder-decoder LM under 1B parameters. While natural
language variation in the input can hurt performance, §4.6 shows how
systems based on the proposed fine-tuning scheme could remain mostly
robust and quickly recover. Importantly, our models compare favorably
on visual explanation generation to even the most competitive VLM
(vision-based GPT-4), whose errors we analyze in-depth below. We
believe these findings can motivate larger-scale investigations on the
usefulness of chart specifications—and to this end, we discuss the
limitations of our work further below.

5.1 Vision-based GPT-4 Error Analysis
Figure 4 shows the confusion matrix of all errors comparing the ground
truth value and completion generated by GPT-4. As a case study for the
types of errors, consider the example visualization in Figure 5. Each
chart in our dataset corresponds to questions about the biggest/smallest
value for each nominal variable; for this example, our dataset includes
twenty-four questions related to the “services” and “classify,” and
eight of these twenty-four questions produce errors (33.3%). Figure 5
illustrates three of these errors for the same base chart. GPT-4 receives
both the chart image and the text prompts as input, and generates
completions that should mention the correct visual elements. However,
in error #1 (2 of 8 errors), the blue bar is the correct one, but GPT-4
focuses on the one below it in the legend ( orange ); in error #2 (1 of 8),
orange is correct, but GPT-4 again focuses on the one below ( red );

and in error #3 (5 of 8 errors), cyan is correct, but GPT-4 once again
focuses on the one below ( green ). Across all of the errors in Figure 4,
GPT-4 conflates adjacent rows, like in this example, in 79% of cases.

The bar charts along each side of the confusion matrix in Figure 4
show the total values for the ground truth and completion for each color;
while blue corresponds to the most ground truth results, orange is
the most common completion produced by GPT-4. Notably, the results
rarely mention the color cyan , despite this color corresponding to 75
of 530 questions in our test set (14.15%). The charts in our dataset all

leverage Vega-Lite’s tableau10 color scheme; our test set includes
30 charts with the following breakdowns for the number of available
colors: two color, blue and orange (nine); three color, add red (one);
four color, add cyan (five); five color, add green (eight); six color, add
yellow (seven). Interestingly, for the four color test cases, all sixteen

questions that have a ground truth of cyan instead return green ,
which is not visible in the provided legend. In future work, we would
like to explore how consistent these errors are in the face of shuffled or
variable color schemes to better understand the cause of these errors.

5.2 Exploring New Questions and Chart Types
In this in-depth case study, we focus on only one chart type, multi-color
bar charts, which is selected due to their diversity of visual elements,
as recognized by prior work [15]. However, in current question-answer
pairs, attributes with a single value have the same maximum and mini-
mum (Figure 5, errors #1 and #2). We also see value in broadening the
scope to other types of charts, especially if they introduce questions
that could be more challenging for LMs (e.g., on multi-color line charts,
this extension could include questions with comparisons on continuous
ranges such as “How many times do the red and blue lines intersect?”).

Additionally, as explained in §3.2, we generate our questions based
on an analysis of VisQA [10]. Despite being human-generated, their
sample of 629 questions is still relatively limited, making the resulting
dataset an approximation of the questions that humans would ask. A
more expensive crowd-sourcing method could help expand the dataset
to address this limitation.

6 CONCLUSION

In summary, we find initial evidence that using chart specifications
to enhance LMs with chart-reading ability is a promising direction in
CQA. We answer RQ1 (performance) positively for visual explanation
generation, while we see room for improvement for the challenging
question-answering task. RQ2 (comparison) is answered positively, as
our smaller, text-only approach outperforms GPT-4 by a large margin
(99% vs. 63% accuracy), showing that even a state-of-the-art VLM
can still struggle with image representations. We also answer RQ3
(robustness) mostly positively, as LMs retain most of their performance
in the face of more natural questions, and can continue to improve
with augmented fine-tuning. Such robustness is not possible with the
previously published rule-based approach [10]. Finally, motivated by
these findings and analyses, we release our dataset upon publication
and outline spaces for future work.
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