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Figure 1: Sector-based transformation of a UMAP embedding of the Iris dataset [1]. (a) 16 sectors and anchor points for a
selected sample are shown for the original scatterplot. The black anchor point at the bottom belongs to the highlighted sector
at the top. Samples are moved toward a sector’s anchor point based on the point density inside that sector. The resulting
displacement vector is shown in blue. (b) Initial displacement vectors for all samples. (c) Displacement vectors and trajectories
of samples after two iterations of the proposed algorithm. (d) Sample distribution and deformation trajectories after 8 iterations.

ABSTRACT

A high number of samples often leads to occlusion in scatter-
plots, which hinders data perception and analysis. De-cluttering
approaches based on spatial transformation reduce visual clutter by
remapping samples using the entire available scatterplot domain.
Such regularized scatterplots may still be used for data analysis
tasks, if the spatial transformation is smooth and preserves the orig-
inal neighborhood relations of samples. Recently, Rave et al. [21]
proposed an efficient regularization method based on integral im-
ages. We propose a generalization of their regularization scheme
using sector-based transformations with the aim of increasing sam-
ple uniformity of the resulting scatterplot. We document the im-
provement of our approach using various uniformity measures.

Index Terms: Scatterplot de-cluttering, spatial transformation.

1 INTRODUCTION

Bi-variate discrete data can be presented in a scatterplot as a set of
points. Variations and correlations of the points’ positions, density,
and inter-sample distances reflect important characteristics of the
data. However, high local density of samples in scatterplots can
lead to occlusion and visual clutter. Cluttered regions are difficult
to perceive, explore, compare, and characterize. Therefore, various
de-cluttering methods have been proposed over the last decades.
One approach for mitigating occlusion is to relax the positions of
samples in the scatterplot towards a uniform sample distribution,
which more effectively uses the available visual space. When not
handled with care, such a transformation of the scatterplot domain
may significantly change the structure of the visually represented
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data, which would make any data analysis meaningless. Therefore,
the construction of the regularizing mapping needs to preserve cer-
tain properties of the scatterplot.

Recently, Rave et al. [21] proposed a de-cluttering algorithm,
which iteratively changes the positions of the samples based on in-
formation about their global distribution. This information is en-
coded in a set of integral images (InIms). The authors have shown
that globally smooth transformations of the visual domain approxi-
mately preserve the initial ordering of the samples as well as several
other significant quality measures. Moreover, the proposed algo-
rithm has lower complexity and performs one order of magnitude
better in terms of execution time than competing approaches. Thus,
large datasets can be regularized at interactive rates using the pro-
posed algorithm.

InIms can be efficiently computed on the GPU. To compute
InIms, the visual domain is systematically split into four non-
overlapping quadrants. Then, the number of samples in each quad-
rant is computed. The disbalance of the number of samples rel-
ative to the areas of the quadrants determines a local displacement
needed to correct the disbalance. However, splitting the domain into
a higher number of subdomains may increase the spatial resolution,
provide more precise information about global sample distribution,
and result in a better regularizing transformation.

We propose a generalization of the method by Rave et al. [21]
by increasing its angular resolution, i.e., replacing InIms quadrants
with a larger number of sectors that partition the visual domain. We
further propose to operate on discrete samples, which eliminates
the need for a regularization radius as a parameter of the algorithm.
We demonstrate that the higher number of sectors increases the uni-
formity of the spatial arrangements of the samples in the resulting
scatterplot. We evaluate various quality measures, discuss the inter-
play of the parameters, and visualize the resulting transformation.

2 RELATED WORK

Ellis and Dix [9] identified three main groups of techniques for re-
ducing clutter in scatterplots. The first group of methods affects
the appearance of the samples in the plot by adjusting their size [27]



or opacity [10, 15], data down-sampling [6, 28], aggregation [16]
and clustering [19]. The second group of techniques uses anima-
tions to reveal all data samples to the observer at different times.
For instance, Chen et al. [2] suggested using flickering points in
multiclass scatterplots. Finally, the third group of methods uses a
spatial transformation to remap the samples over the visual domain
aiming at a more even sample distribution. Using spatial transfor-
mation has the advantage that it facilitates (up to some extent) the
simultaneous display of all individual samples, which is important
for interactions such as selection or brushing.

Following the idea of de-cluttering by spatial transformation,
Keim et al. [12] let the user control and balance the degree of over-
lap and distortion in generalized scatterplots. Raidou et al. [20]
arranged samples on a rasterized canvas and used color to encode
local distortions. Cutura et al. [4, 5] mapped samples to the centers
of a grid using a space-filling curve. Hilasaca et al. [11] removed
overlaps of the glyphs and evaluated the proposed method using
several quality measures. The taxonomy by Ward [26] focuses par-
ticularly on displacement methods and emphasizes the importance
of user control on the distortion degree and smoothness of the trans-
formation.

Most recent transformation-based de-cluttering techniques re-
arrange samples in scatterplots on an auxiliary grid, e.g., [20, 5, 11].
While this may help to remove the overlap of glyphs, gridded order-
ing introduces artificial patterns and alignments when samples are
shown as dots. Thus, we advocate for a continuous transformation
of the visual space.

Often, occlusion is resolved locally, i.e., samples from overpop-
ulated regions are redistributed over neighboring free space. How-
ever, if locally available free space is insufficient, existing algo-
rithms like Hagrid [5] have to resolve the collisions. Resolving col-
lisions not only negatively impacts the computation time but also
distorts original data ordering. Thus, we conclude that transforma-
tions considering data distributions globally are preferable.

Finally, algorithms based on general error functional optimiza-
tion (e.g., Pixel-Relaxed Scatter Plots [20] and DGrid [11]) usually
have high complexity and scale poorly with the number of samples.
However, occlusion becomes an issue as the number of samples
increases. Therefore, the application of optimization algorithms
for large datasets is hardly possible, especially if interactivity is
required.

The de-cluttering method recently presented by Rave et al. [21]
overcomes the listed drawbacks of other approaches using InIms.
It iteratively moves samples according to their current global dis-
tribution. At each iteration, discrete samples are convolved with a
regularization kernel of proper scale and summed up to obtain a ras-
terized density distribution. Then, this density is encoded in a sys-
tem of InIms, which determine local samples’ displacements. The
method allows for de-cluttering datasets with millions of samples
at interactive rates. Thus, the approach by Rave et al. allows for
continuous transformation considering global distributions at inter-
active rates. We generalize the idea of Rave et al., inheriting all its
desirable properties, but improve the uniformity of the scatterplot’s
sample distribution.

3 DE-CLUTTERING USING INTEGRAL IMAGES

InIms, also called summed-area tables, were introduced by
Crow [3]. Viola and Jones [25] used InIms in image analysis for
object detection. Tilted InIms differ from classical InIms by rotat-
ing the summation areas by 45◦. Lienhart et al. [14, 13] presented
an efficient computation of tilted InIms on the CPU. Molchanov
and Linsen [18] used InIms and tilted InIms for map deformation.
Approximate InIms can be computed at arbitrary angles as studied
by Chin et al. [23].

The de-cluttering technique proposed by Rave et al. [21] exploits
InIms and tilted InIms to construct a smooth transformation based

on the global sample distribution that can be expressed by an ex-
plicit formula. Discrete samples are first convolved with a regular-
ization kernel of radius r resulting in a density distribution dr. The
density is rasterized on a texture of size 2k ×2k and a positive con-
stant d0 is added to all pixel values to avoid singularities. Then, sets
of InIms {α,β ,γ,δ} and tilted InIms {αt ,βt ,γt ,δt} are computed
by summing up values of texture d = dr +d0 over subdomains de-
picted in Fig. 2. Finally, the de-cluttering transformation can be
computed at each pixel location (i, j) using normalized coordinates
(x, y) = 2−k (i, j) according to the formula:

t(x, y) = (x, y)+ t(x, y; d)− t(x, y; d0), (1)

where

t(x, y; d) =
(
α ·q1(x, y) +β ·q2(x, y) +

γ ·q3(x, y) +δ ·q4(x, y) +

αt · (x, 1) +βt · (1, y) +

γt · (x, 0) +δt · (0, y)
)/

(2C)

(2)

Equation 2 weights the eight anchor points with the values of the
InIms and divides by the total mass C = ∑d(i, j), where anchor
points q1, q2, q3, q4 are shown in Fig. 2. The displacement map t
can be computed at the samples’ locations using bi-linear interpo-
lation. After changing the positions of all samples according to the
interpolated t, the density d can be re-computed for the next iter-
ation. Thus, the samples are pulled towards the respective anchor
points based on the global sample distribution. The iterative map-
ping stops when the sample distribution becomes nearly uniform.

Figure 2: Left: The four InIm coefficients are computed at location
(x,y) by summing up a density function over respective rectangular
regions. Right: The four tilted InIms are computed for the same
location by summing up the density over tilted regions. (Image
reproduced from Molchanov and Linsen [18].)

4 SECTOR-BASED TRANSFORMATION

The deformation vector t(x,y;d) in Eq. (2) is computed by mul-
tiplying classical InIms and tilted InIms with respective anchor
points and summing them up. When considering the first four and
the last four terms in Eq. (2) separately, one can relate them to left
and right schemes in Fig. 2, correspondingly. In each case, the scat-
terplot domain is partitioned into four non-overlapping right-angled
sectors around position (x,y). Then, values of InIms represent cu-
mulative mass in each of the sectors. Equation (1) detects the imbal-
ance of the sample distribution around (x,y) by comparing t(x,y;d)
with its counterpart computed for ideal uniform density distribution
d0.

Splitting the domain into four sectors is dictated by using an effi-
cient algorithm for computing (tilted) InIms on the GPU by Rave et
al. [21]. However, an important research question is left open: How
does increased angular resolution (i.e., splitting the domain into a
larger number of sectors) affect the rate of the regularization, uni-
formity, and other quality metrics of the resulting layout? Our work



answers these questions by proposing a sector-based transformation
and performing respective numerical experiments.

Furthermore, the de-cluttering algorithm by Rave et al. depends
on three parameters: regularization radius r, texture size exponent
k, and additive constant density d0. The authors performed an ex-
tensive study on the effect of varying r and d0 and gave explicit rec-
ommendations for choosing values of these parameters. The choice
of k mainly depends on the available hardware characteristics. In
our work, we propose to operate directly with the original discrete
distribution of samples in the scatterplot, thus eliminating the need
for all three parameters, i.e., regularization radius r, the additive
density d0, and the texture size exponent k.

Our proposed algorithm performs the following steps: First, we
split the domain into m sectors Si(xu) of equal angles around each
sample xu = (xu,yu) in the scatterplot. Then, we count the number
of samples si(xu) in each sector Si(xu). Each sector’s centerline
intersects the boundary of the scatterplot domain at two points. Of
those two, the intersection point which does not lie inside the sec-
tor is chosen as the anchor point qi(xu), see Fig. 1(a). Then, the
image of sample xu at each iteration can be found according to the
following formula:

t(xu) = xu +∑
i

qi(xu) ·
(

si(xu)

n
− |Si(xu)|

|S |

)
, (3)

where |Si| is the area of sector Si and |S | is the total area of the
scatterplot domain. The iterations stop when the required level of
uniformity of the sample distribution or the maximal number of it-
erations is reached, depending on the application environment and
the user preferences. The proposed de-cluttering procedure allows
for a smooth transition between the initial and fully regularized lay-
outs to maintain a mental map of the performed deformation.

5 RESULTS

We compare our sector-based transformation approach to the
InIms-based de-cluttering algorithm by Rave et al. [21]. The qual-
ity measures presented in Fig. 4 and in Fig. 7 were computed for the
same 2,832 scatterplot layouts from the UCI repository [8] used by
Rave et al. [21]. We used the suggested combination of the algo-
rithm parameters, namely r = 8, k = 10, and d0 = n/(2k × 2k) for
the InIms-based de-cluttering.

Uniformity. Improving the uniformity of the resulting scatter-
plot layout was the main goal of our approach. The visual evalua-
tion of the sample distribution shows that our regularization algo-
rithm using 64 sectors results in a more even sample distribution of
an artificial dataset than the InIms-based approach, see Fig. 3. Cor-
ners of the rectangular domain represent singularities affecting the
sample distribution in their neighborhoods. Mitigating the effects
of non-smooth domain boundary can be a direction of future work.

To quantify and compare the regularity of the samples’ positions,
we first apply the same procedure as Rave et al.: We split the scat-
terplot domain into bins of size 4× 4 pixels, find the number of
samples in each of these bins, and compute the standard deviation
of these values from the mean number of samples per bin. For a
perfectly uniform distribution of samples, the standard deviation
should vanish.

Another quality measure of samples’ uniformity is the Ripley
function [22]

L2(y) =
∥S ∥
n2π

∑
u ̸=v

wuv · I(∥xu −xv)∥< y), (4)

where wuv is a correction coefficient due to boundary effects [7]
and I(y) is the indicator (or characteristic) function. When L(y)
is evaluated for values of y between zero and half of the domain’s

(a) original (b) InIms-based (c) sector-based

Figure 3: De-cluttering scatterplot with artificial data (a) using the
InIms-based approach by Rave et al. [21] (b) and using our sector-
based regularization with 64 sectors (c). Our approach demon-
strates a more even distribution of samples and mitigated boundary
effects. Future work may address the distribution artifacts near the
corners of the boundary.

shortest dimension (value 0.5 in scatterplot coordinates), deviation
from uniformity of the sample distribution can be evaluated as

0.5 

0

|L(y)− y| dy ≈ 1
10 ∑

i=1,...,10
|L(0.05 · i)−0.05 · i|,

where we approximate the integral by computing L(y)− y for 10
evenly spaced values of y between 0.05 and 0.5.

Results of the uniformity estimations based on the standard de-
viation of the binned number of samples and the Ripley function
are presented in Fig. 4. The paired Wilcoxon test shows that our
method is significantly better for both measures.

Figure 4: Comparison of uniformity measures for InIms-based and
our sector-based regularization methods. The improvements in both
quality measures are statistically significant. For context, we also
provide the measures for the original scatterplot. Datasets from the
UCI repository were used.

Sparsity. The uniformity of the sample distribution can be re-
lated to the area of free space around each sample. In a perfectly
uniform scatterplot, these values should be close to |S |/n for all
samples. We propose using sparsity as another uniformity mea-
sure for comparing the scatterplots’ layouts. For each sample xu,
we find an associated radius Ru as the minimum of the sample dis-
tance to the domain boundary and half its distance to the nearest
neighbor. Using the hexagon-packing model, we compute the area
of the sample-centered hexagon as hu = 3.46 ·R2

u. Note that these
sample-centered hexagons do not overlap and entirely belong to the
scatterplot domain. Then, we sum up the areas of all hexagons and
relate the sum to the total domain area by computing

sparsity = ∑
u

hu

|S |
.



Sparsity values close to unity correspond to a highly uniform sam-
ple distribution since the total area of non-overlapping hexagons is
close to the domain area.

Figure 5 shows how the sparsity depends on the number of itera-
tions (left) and the number of sectors (right). Increasing the number
of iterations for a fixed number of sectors (512) and a fixed num-
ber of points (4,096) results in a monotonic increase of sparsity. In
particular, the sparsity linearly grows when doubling the number of
iterations. For a fixed number of iterations (8), sparsity increases
with the number of sectors up to 64 sectors and then remains sta-
ble. We observe that datasets with a lower number of points show a
stronger sparsity increase. Synthetic datasets used for these numer-
ical tests can be found in the supplementary material.

Figure 5: Sparsity values for scatterplots of synthetic datasets.
Left: Sparsity increases monotonically with the number of iter-
ations (number of points 4,096 and number of sectors 512 are
fixed). Right: The positive effect of increasing number of sectors
is stronger for datasets with fewer points (number of iterations 8 is
fixed).

Overplotting. Overplotting can be computed as the difference
between the total number of samples and the number of occupied
pixels, divided by the total number of samples [21]. The results of
the numerical tests for synthetic datasets are shown in Fig. 6. The
overplotting rapidly vanishes when iteratively applying the regular-
ization mapping for a fixed number of samples and sectors. When
increasing the number of sectors, the maximal value of the over-
plotting over all datasets approaches zero.

Figure 6: Overplotting values for scatterplots for synthetic datasets.
Left: Overplotting rapidly vanishes with increasing the number of
iterations (number of points 4,096 and number of sectors 512 are
fixed). Right: Overplotting decreases (even for outliers) with in-
creasing number of sectors (number of iterations 8 is fixed).

Ordering and Trustworthiness. Preserving the neighborhood
relations of the original samples’ in the regularized layout is cru-
cial. Some quantitative measures of local samples’ structure are
trustworthiness [24] and orthogonal ordering [17]. Results of the

numerical tests are presented in Fig. 7. Both quality measures were
used by Hilasaca et al. [11] and Rave et al. [21] to evaluate the
results. For the proposed sector-based approach, these measures
demonstrate a statistically significant decrease, i.e., ordering and
trustworthiness are better preserved by the InIms-based method.

Figure 7: Left: Preservation of ordering in the layouts computed by
InIms- and our sector-based methods. Right: Trustworthiness of the
resulting de-cluttered layouts for the two methods when compared
to the initial configuration. Datasets from the UCI repository were
used.

We note that ordering can be changed by a solid rotation of
the original layout with no changes in relative samples’ positions.
However, such transformation has no effect on the represented data
structures and therefore does not constitute an issue for data anal-
ysis tasks despite a decrease of the ordering value. The observed
decrease in the trustworthiness measure after regularization can be
partially explained by the reduction of spatial gaps between clus-
ters. So, samples originally located at the boundary of a cluster
become neighbors of the boundary samples of other clusters. This
side effect of the regularization procedure does not influence the
data analysis provided original clusters can be identified in the reg-
ularized layout. Rave et al. [21] thoroughly discussed several ap-
proaches for visual encoding of original cluster structures after de-
cluttering. Therefore, an insignificant decrease in the trustworthi-
ness measure should be considered acceptable. Thus, we argue that
ordering and trustworthiness are no proper descriptive quality mea-
sures for de-cluttering algorithms that use spatial transformations.

6 CONCLUSION AND DISCUSSION

We proposed a sector-based transformation as a generalization to
the state-of-the-art de-cluttering algorithm by Rave et al.[21]. Our
numerical experiments showed that using our sector-based regular-
ization scheme with a sufficiently large number of sectors signif-
icantly improves the uniformity of the resulting scatterplot. The
computation times for our approach are higher when compared to
Rave et al., but for a fair comparison we would need to optimize
our approach including a GPU implementation, which we leave for
future work. The current implementation reaches interactive frame
rates for up to a few thousand points.

The proposed generalization directly operates with discrete sam-
ples. Thus, the three parameters of the original method – the reg-
ularization radius r, the texture size exponent k, and the additive
constant density d0 – are no longer needed. Our algorithm only
requires the specification of the number of sectors. We analyzed
the behavior with an increasing number of sectors and believe that
a recommended value for this parameter can be determined once
the computation time of the algorithm has been optimized in future
work.
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