
Towards Reusable and Reactive Widgets for Information Visualization
Research and Dissemination

John A. Guerra-Gomez *

Northeastern University, Oakland Campus

Figure 1: Example Information visualization application built using reusable and reactive widgets. It allows users to load their data,
zoom, and filter using navio [8], process it with the UMAP algorithm [15, 7], and then brush on the generated Scatterplot to obtain
details on demand, all reactively on user interactions. The left side of the figure shows the application interface, while the right side
shows an overlay of some of the reactive widgets used to build it. Demo https://johnguerra.co/viz/umapPlayground/.

ABSTRACT

The information visualization research community commonly pro-
duces supporting software to demonstrate technical contributions
to the field. However, developing this software tends to be an over-
whelming task. The final product tends to be a research prototype
without much thought for modularization and re-usability, which
makes it harder to replicate and adopt. This paper presents a design
pattern for facilitating the creation, dissemination, and re-utilization
of visualization techniques using reactive widgets. The design pat-
tern features basic concepts that leverage modern front-end devel-
opment best practices and standards, which facilitate development
and replication. The paper presents several usage examples of the
pattern, templates for implementation, and even a wrapper for fa-
cilitating the conversion of any Vega [27, 28] specification into a
reactive widget.

Index Terms: Information Visualization, Software Components,
Reactive Components, Notebook Programming, Direct Manipula-
tion, Brush and Linking

1 INTRODUCTION

The information visualization community produces outstanding re-
search contributions that could greatly benefit society as a whole.
However, despite how effort-intensive it is to produce research soft-
ware prototypes as supporting materials for papers, these tend not
to get widely disseminated because they tend to be hard to reuse,
replicate, and integrate with other systems.

*e-mail: jguerra@northeastern.edu

This paper presents a software design pattern that the research
community could use to facilitate the dissemination of their re-
search contributions. The pattern leverages the concept of reac-
tive and modular widgets that follow simple specifications and can
be easily put together to build larger applications such as the ones
created in typical IEEE VIS systems or application papers. Fig-
ure 1 presents an example of such an application and an overlay of
the modular reactive widgets that were used to build it. As can
be seen in the source notebook https://observablehq.com/
@john-guerra/umap-playground, the UMAP playground is a
basic application that lets users process their own data using the
UMAP algorithm [15, 7]. Moreover, the application is completely
reactive, allowing users to change the hyperparameters of the algo-
rithm, as well as to change the attributes to be processed, filter the
data, and even brush in the scatterplot representation of the UMAP
result to obtain details on demand in a table [31]. All of these func-
tionalities are implemented by reusing reactive widgets highlighted
in the figure, that are interconnected to produce the final result. Us-
ing this architecture was not only simpler to build this interface,
but also allows the developer to exchange one of the widgets for
another one that supports the same functionality.

2 THE NEED FOR A NEW VISUALIZATION COMPONENT PAT-
TERN

Creating research prototypes is a fundamental part of conducting
research in information visualization. These prototypes are funda-
mental for conducting usability studies or controlled experiments,
or for releasing the prototype as supporting evidence of the contri-
butions two mention two examples. Upon publishing these proto-
types, researchers usually want to encourage the reusability of their
contributions and facilitate the dissemination and reproducibility
of their results. However, building such prototypes takes signif-

https://orcid.org/0000-0001-7943-0000
https://johnguerra.co/viz/umapPlayground/
https://observablehq.com/@john-guerra/umap-playground
https://observablehq.com/@john-guerra/umap-playground
mailto:jguerra@northeastern.edu

icant effort and time, and depending on how the prototype is re-
leased, these benefits are commonly not obtained. Take, for exam-
ple, SpaceTree [24] a renown visualization technique released in
2002 that allows users to explore large trees through rich interac-
tions. Even though the original project was released as a desktop
Java application, using the technique as part of another software
would require a skilled software developer to reimplement the core
concepts of the technique, and therefore not many SpaceTree im-
plementations are used out there. Moreover, even researchers who
want to evaluate how their proposed technique compares to Space-
Tree would not be able to test them, as there is no simple way of
integrating it into a web application used for testing.

On the other hand, D3 [4], Vega and Vega-lite [28, 27, 10], are
some of the most widely used tools for information visualization
development, in part because of its usage of web standards, modu-
larity and easy adaptation to other software. A great example of this
is the success of the Altair project [34], an adaptation of the Vega-
lite grammar for the Python programming language that is widely
used. As researchers, our goal should be to release software proto-
types that are modular, reusable, and can be easily embedded into
other software. For this, multiple researchers [11, 36, 32] have at-
tempted to release visualization plugins and libraries in hopes that
they can be reused. However, these have experienced limited adop-
tion, probably because they don’t leverage modern standards and
some of them rely on outdated programming technologies.

This paper proposes a model for releasing information visual-
ization software using reusable and reactive widgets, adhering to
modern web development standards and best practices. Instead of
creating large monolithic software applications for testing our con-
tributions, this paper proposes to build and release modular widgets
that could be easily integrated into new applications. These could
even be easily included in the testing framework of the next re-
searcher who wants to test and compare new ideas with the state
of the art. If designed correctly, these widgets can be put together
to create the larger visualization solutions such as the ones that are
commonly published in our field, while facilitating distribution and
reproducibility. Moreover, following these reactive widget mod-
els could simplify prototype development by facilitating reusabil-
ity even inside our research teams. If, on top of that, we add de-
veloping these applications in Notebook-based platforms, the po-
tential for speeding up development can be increased even more.
As an example, see this video that demonstrates how to go from
nothing to an interactive and configurable visualization applica-
tion in less than 20 minutes using Observable Notebooks https:
//www.youtube.com/watch?v=mxEEktWyl5o&t=26s.

One of the most interesting features of information visualization
is direct manipulation and the ability to coordinate multiple views
via brush and linking. This proposed widget design facilitates this
type of development by implementing coordinated views through
interconnected reactive widgets. Each widget will have a clear
function in the larger application, input and output data, and will
emit and listen for standard input events to coordinate the rest of the
application. Each widget will output an HTML element and some
selected data, which would facilitate interconnection even with ap-
plications written in other programming languages such as Python
via libraries such as Anywidget [14].

3 RELATED WORK

The visualization community is well acquainted with the concepts
of reusability and modularization. D3 [4] and the Vega grammar
family [28, 27] are great examples of successful research contribu-
tions that have been widely disseminated and follow a very modu-
lar approach. The widget pattern presented here follows a similar
approach, advocating the importance of building research contri-
butions using reusable widgets. Moreover, this work contributes
a technique to facilitate the interconnection of these widgets by

means of reactivity based on Web standard events. The design pre-
sented by this work also takes great inspiration from the concept
of collaborative notebook-based programming introduced by Mike
Bostock et al. with Observable [2, 23], particularly with the idea
of Custom Inputs [22] and Synchronized inputs [21], and previous
ideas towards reusable charts [17]. This paper takes this idea even
further, prioritizing core interactive visualization concepts such as
direct manipulation [29, 30] and brush and linking [32, 5, 1, 26, 37],
to facilitate interconnection of visualization components and the
construction of larger applications. The reactive visualization wid-
gets design proposed here is designed for JavaScript, following the
de facto standard for front-end development, but it can also be eas-
ily expanded to other programming languages such as Python by
using libraries such as Anywidget [14]. This could facilitate the
dissemination of other proposed ideas such as [36, 13, 11].

The approach of this work is different from others as Wong-
suphasawat’s grammar for components [36] in the fact that we focus
on JavaScript components using Web Standards rather than creating
a new grammar, which could facilitate the adoption of the pattern.

4 DEFINING THE REACTIVE VISUALIZATION COMPONENT
DESIGN

As shown in Figure 2, a reactive and reusable widget should include
the following characteristics:

• Input data It could receive some input data (usually an array
of objects in tidy format [35], but of course it could be in any other
format) and configuration options, which are commonly passed as
an object. Listing 4 lines 2-6. It is common to include an initial
value as part of the options object.

• HTML Element It must return an HTML Element [19] that
represents the view of the widget in the application. Listing 4 lines
12 and 41, variable target.

• Reactive Value It could hold some internal value that will
convey the user’s interactions with the widget. e.g. selecting a
subset of the data by selecting a mark in the visualization. This
value should be returned as the value attribute of the returned ob-
ject. Listing 4 lines 8, 29 to 35, variable internalValue. By fol-
lowing this rule the widget would work nicely with Observable’s
viewof operator [22, 3], while still can be easily used in vanilla
JavaScript, e.g. https://observablehq.com/@john-guerra/
search-checkbox#useVanillaJS.

• input events Emit standard input events [18] when the reac-
tive data changes, e.g. the user selected different elements. It also
should listen to input events which should trigger a redrawing of
the reactive value, e.g. move the brush position.

• Exposed extras, e.g. a color palette created for the visualiza-
tion widget, or the different scales.

This widget definition leverages many of the best practices of
Observable’s Inputs, but it isn’t limited to the platform. Since all of
it is based on open modern Web standards, it can work seamlessly
with vanilla JavaScript applications, as well as with frameworks
such as React [16], or Svelte [25].

4.1 Patterns for connecting widgets

The key advantage of using reactive widgets is to be able to com-
bine them to build larger applications. One could use a reactive
widget that features direct manipulation, and then easily connect it
with other coordinated reactive widget to show selected items using
brush and linking. Connecting reactive widgets is straightforward
in Observable as described in the following examples, but might as
well be applied in other modern Web environments by listening and
reacting to standard input events.

• Parent-children. You have one widget whose reactive
value output is the input of another one. The children’s widget
should be immutable and will be recreated every time the parent
changes. A common example of this is a filtering widget https://

https://www.youtube.com/watch?v=mxEEktWyl5o&t=26s
https://www.youtube.com/watch?v=mxEEktWyl5o&t=26s
https://observablehq.com/@john-guerra/search-checkbox#useVanillaJS
https://observablehq.com/@john-guerra/search-checkbox#useVanillaJS
https://observablehq.com/@john-guerra/faceted-search

1 function ReactiveWidgetTemplate(
2 data,
3 {
4 value = 0 // following observable inputs, the

→ value option contains the intial value
5 } = {}
6) {
7 // • The interval value selected by the user

→ interaction
8 let intervalValue = value;
9

10 // • The HTML element that we will return
11 // ♣ Add here the visual representation of your

→ widget
12 let target =

→ htl.html<output>${intervalValue}</output>
13 <button onClick=${() =>

→ setValue((intervalValue +=
→ 1))}>+</button>;

14

15 // • Usually you have a function to reflect in
→ the UI the current value

16 function showValue() {
17 // ♣ Add here the code that updates the

→ current interaction
18 target.querySelector("output").value =

→ intervalValue;
19 }
20

21 // • And a function to update the current
→ internal value. This triggers the input
→ event

22 function setValue(newValue) {
23 intervalValue = newValue;
24 showValue();
25 target.dispatchEvent(new CustomEvent("input",

→ { bubbles: true }));
26 }
27

28 // • The value attribute represents the current
→ interaction

29 Object.defineProperty(target, "value", {
30 get() { return intervalValue; },
31 set(newValue) {
32 intervalValue = newValue;
33 showValue();
34 }
35 });
36

37 // • Listen to the input event to show the
→ current interaction

38 target.addEventListener("input", showValue);
39

40 // • Finally return the html element
41 return target;
42 }

Listing 1: Reactive Widget Template. Please, see https://
johnguerra.co/reactiveWidgets/ for an interactive code ex-
ample, with helper functions, and D3 and Vega Lite examples.

Figure 2: Reusable reactive widget should receive some input data,
and return an HTML element (view) and an output value (selected
data). Reactive widgets will listen and re-render when receiving stan-
dard HTML input events (ear) and will emit an input event when the
user selection changes.

observablehq.com/@john-guerra/faceted-search, which
filters data before passing them on to another widget to show details
on demand. In this case, the children will not be sending changes
to the parent.

viewof selected = FacetedSearch(data);
Histogram(selected);

• Synchronized inputs via Inputs.bind. When having two wid-
gets that represent the same reactive data in different ways, they
can be connected using a convenience function Inputs.bind [20] as
demonstrated in https://johnguerra.co/reactiveWidgets/
#count. Inputs.bind listens for input events from one of the inputs
and updates the reactive values of the other widget. However, it
selects one widget as primary and dispatches only input events on
that one to avoid infinite loops.

viewof selection = BrushableHistogram(cars, {
x: (d) => d[xAttr],
value: [12, 32] // initial position

})
Inputs.bind(
BrushableHistogram(cars, { x: (d) => d[xAttr]
→ }),
viewof selection

)

• Shared mutable value
One final alternative to synchronizing two widgets when they are

equally important is to create a shared mutable store and synchro-
nize both widgets to it.

viewof shared = Inputs.input(initialValue);
Inputs.bind(WidgetOne(data), viewof shared);
Inputs.bind(WidgetTwo(data), viewof shared);

4.2 Types of components

The main type of widget proposed in this paper is a direct manipu-
lation, reactive and reusable visualization widget that lets users use
the visualization as an input or selector. However, as in any com-
mon component design, widgets can specialize for common tasks
needed for building visual analytics applications. Other common
widgets and components that would fit well would be:

Input Wrapper. A module that can wrap a widget to
make it, for example, persistent on local storage on the
browser as demonstrated on https://observablehq.com/
@john-guerra/persist-input. This module would accept a

https://observablehq.com/@john-guerra/faceted-search
https://johnguerra.co/reactiveWidgets/
https://observablehq.com/@john-guerra/faceted-search
https://johnguerra.co/reactiveWidgets/
https://observablehq.com/@john-guerra/faceted-search
https://observablehq.com/@john-guerra/faceted-search
https://johnguerra.co/reactiveWidgets/#count
https://johnguerra.co/reactiveWidgets/#count
https://observablehq.com/@john-guerra/persist-input
https://observablehq.com/@john-guerra/persist-input

// ------ With Observable ------
viewof selection = MyWidget(data, {opt1: val1, ...});
// viewof selection returns the html element
Inputs.table(selection);
// selection contains the widget's user selection

// ------ Vanilla Javascript ------
const target = MyWidget(data, { opt1: val1, ...});
document.querySelector("#target")

.appendChild(target);
target.addEventListener("input",

() => showOutput(target.value));
// target.value contains the user's selection

Listing 2: Example code for using reactive widgets.

widget as an input, and output another one augmented, which fa-
cilitates the development of more complex behaviors.

Data Wrangling widgets. This is a specialization of wid-
gets whose main focus is to take some data and wrangle it into
different formats; e.g. group tabular data by attributes to cre-
ate hierarchies https://observablehq.com/@john-guerra/
multi-auto-select or a widget that filters data https://
observablehq.com/@john-guerra/faceted-search

Custom Input widgets. Widgets that don’t rely on visualizations
but rather on augmented input controls collect users’ input; e.g.
Selecting many attributes at once with search capabilities https:
//observablehq.com/@john-guerra/search-checkbox.

5 APPLICATION EXAMPLES

This section presents a series of examples that serve as case studies
to validate and demonstrate the flexibility and generalizability of
the proposed reactive widget design for information visualization.
The examples range from more examples of widgets that followed
the pattern and are ready to use by the community, to larger applica-
tions that implement them. Moreover, we present a wrapper widget
that can be used to transform any Vega [28] or Vega-lite [27] spec
into a reactive widget.

SpaceTree https://observablehq.com/@john-guerra/
spacetree is a re-implementation of many of the original paper’s
features [24] while exposing a reusable and reactive widget that
can be easily used to allow users to explore and select elements in
a large hierarchy. The reactive value of this widget is the currently
selected path.

UMAP Playground https://observablehq.com/
@john-guerra/umap-playground shown on Figure 1 an
application that demonstrates the UMAP [15] implementation
UMAP-js [7] library using the USDA’s nutrients dataset [33]. It fea-
tures several reusable components, including data-input https:
//observablehq.com/@john-guerra/data-input which
allows users to load data files from different formats and
parse them; multi-auto-select https://observablehq.com/
@john-guerra/multi-auto-select for selecting the attributes
to be considered in the UMAP; navio [8] for visualizing and
filtering the tabular data; and many other inputs from Observable’s
standard Input library [22].

5.1 IEEEVIS 2023 Papers Explorer

This example https://observablehq.com/@john-guerra/
ieeevis-2023-papers features the IEEEVIS 2023 Conference
papers organized by their text (title, type, and abstract) similarity
using sentence embeddings computed with HuggingFace’s trans-
formers.js library [12]. It applies dimensionality reduction algo-
rithms using Cutura’s Druid.js [6]. All of this is completely com-

Figure 3: IEEE VIS 2023 Papers embeddings explorer interface. Built
with the Reactive Widgets design pattern presented in this paper.

puted in the browser, even the embeddings. It features widgets for
filtering the papers, changing the models’ parameters, and even fil-
tering the dimensionality reduction space. Part of the application
interface can be seen in Figure 3.

5.2 Creating reactive widgets with Vega

Vega-Selected https://observablehq.com/@john-guerra/
vega-selected is a convenient function to facilitate the creation
of reactive widgets using the pattern described in this paper. It
accepts a any visualization described as a JSON Vega specification
as an input, and returns a reactive widget that will expose all the
user’s selections made in the visualization. It works well both with
Vega’s point and interval selections and has been tested even with
complex faceted and layered visualizations. Its main limitation is
that it exposes the selected data using Vega’s internal signals and
data structures which can be overwhelming. It was designed this
way to support any type of Vega specification, however, it should
be straightforward for a programmer to extract the selected data
once the specification is defined, as shown in the examples. It can
be easily used with any derivative of Vega that can output a Vega
JSON specification.

5.3 IEEEVIS Observable Tutorial
An initial version of the concepts described in this paper can be
found in the Quick and Effective Visualization Prototyping with Re-
active Notebooks IEEEVIS 2021 tutorial [9]. More information
about reactive programming can be found there.

6 CONCLUSION

This paper presents a new reusable and reactive widget design pat-
tern that aims to facilitate the dissemination and replication of tech-
nical research contributions in the visualization field. The presented
design facilitates the development of larger applications while also
allowing other researchers and the community as a whole to take
advantage of our contributions. This proposal leverages the power
web standards to guarantee its generalizability and perseverance
over time. We hope that this contribution will enrich our commu-
nity and motivate more dissemination of our contributions, while
also improving the replicability of experimental results by other re-
searchers who could more easily include widgets into their own
applications.

https://observablehq.com/@john-guerra/multi-auto-select
https://observablehq.com/@john-guerra/multi-auto-select
https://observablehq.com/@john-guerra/faceted-search
https://observablehq.com/@john-guerra/faceted-search
https://observablehq.com/@john-guerra/search-checkbox
https://observablehq.com/@john-guerra/search-checkbox
https://observablehq.com/@john-guerra/spacetree
https://observablehq.com/@john-guerra/spacetree
https://observablehq.com/@john-guerra/umap-playground
https://observablehq.com/@john-guerra/umap-playground
https://observablehq.com/@john-guerra/data-input
https://observablehq.com/@john-guerra/data-input
https://observablehq.com/@john-guerra/multi-auto-select
https://observablehq.com/@john-guerra/multi-auto-select
https://observablehq.com/@john-guerra/ieeevis-2023-papers
https://observablehq.com/@john-guerra/ieeevis-2023-papers
https://observablehq.com/@john-guerra/vega-selected
https://observablehq.com/@john-guerra/vega-selected
https://Druid.js
https://formers.js

SUPPLEMENTAL MATERIALS

All supplemental materials are available on Observable at https:
//johnguerra.co/reactiveWidgets/, released under a MIT li-
cense. In particular, they include (1) The Reactive Widget code
template, (2) a helper function to facilitate development of widgets,
(3) D3 examples and templates, (4) Vega Examples and helper func-
tion, (5) Vanilla JavaScript example for usage outside Observable,
(6) Other applications and widget examples.

REFERENCES

[1] M. Q. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for
using multiple views in information visualization. Proceedings of the
Workshop on Advanced Visual Interfaces, pp. 110–119, 2000. doi: 10.
1145/345513.345271 2

[2] M. Bostock. A Better Way to Code. Introducing d3.express: the inte-
grated discovery environment, 4 2017. 2

[3] M. Bostock. A Brief Introduction to Viewof / Observable — Observ-
able, 2019. 2

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 12 2011. doi: 10.1109/TVCG.2011.185 2

[5] b. Chris North and B. Shneiderman. A taxonomy of multiple window
coordination. Technical report, University of Maryland, College Park,
5 1997. 2

[6] R. Cutura, C. Kralj, and M. Sedlmair. DRUIDJS- A JavaScript Library
for Dimensionality Reduction. Proceedings - 2020 IEEE Visualization
Conference, VIS 2020, pp. 111–115, 10 2020. doi: 10.1109/VIS47514.
2020.00029 4

[7] Google PAIR. PAIR-code/umap-js: JavaScript implementation of
UMAP, 2019. 1, 4

[8] J. A. Guerra-Gomez. navio — A d3 visualization widget to help
summarizing, exploring and navigating large network visualizations,
2018. 1, 4

[9] J. A. Guerra-Gomez. Quick and Effective Visualization Prototyping
with Reactive Notebooks. Observable IEEEVIS 2021 tutorial, 2021.
4

[10] J. Heer. Vega-Lite API — vega-lite-api, 2019. 2
[11] M. Hogräfer and H. J. Schulz. ReVize: A library for visualization

toolchaining with vega-lite. Italian Chapter Conference 2019 - Smart
Tools and Apps in computer Graphics, STAG 2019, pp. 129–139,
2019. doi: 10.2312/STAG.20191375 2

[12] HuggingFace. Transformers.js, 2022. 4
[13] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wongsuphasawat, and

K. Patel. Mage: Fluid moves between code and graphical work in
computational notebooks. UIST 2020 - Proceedings of the 33rd An-
nual ACM Symposium on User Interface Software and Technology, pp.
140–151, 10 2020. doi: 10.1145/3379337.3415842 2

[14] T. Manz. manzt/anywidget: jupyter widgets made easy, 2023. 2
[15] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction, 2 2018. doi:
10.48550/arXiv.1802.03426 1, 4

[16] Meta. React, 2013. 2
[17] Mike Bostock. Towards Reusable Charts, 2012. 2
[18] Mozilla Developer Network. Element: input event - Web APIs —

MDN, 2024. 2
[19] Mozilla Developers Network. HTML elements reference - HTML:

HyperText Markup Language — MDN, 2024. 2
[20] Observable. inputs/src/bind.js at main · observablehq/inputs, 2021. 3
[21] Observable. Synchronized Inputs / Observable — Observable, 2022.

2
[22] Observable. Observable Inputs — Observable documentation, 2024.

2, 4
[23] J. M. Perkel. Reactive, reproducible, collaborative: computational

notebooks evolve. Nature, 593(7857):156–157, 5 2021. doi: 10.1038/
d41586-021-01174-w 2

[24] C. Plaisant, J. Grosjean, and B. Bederson. SpaceTree: supporting ex-
ploration in large node link tree, design evolution and empirical evalu-
ation. In IEEE Symposium on Information Visualization, 2002. INFO-

VIS 2002., pp. 57–64. IEEE Comput. Soc, 1998. doi: 10.1109/INFVIS.
2002.1173148 2, 4

[25] Rich Harris. Svelte • Cybernetically enhanced web apps, 2016. 2
[26] J. C. Roberts. Exploratory Visualization with Multiple Linked Views.

Exploring Geovisualization, pp. 159–180, 1 2005. doi: 10.1016/B978
-008044531-1/50426-7 2

[27] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
Lite: A Grammar of Interactive Graphics. IEEE Transactions on Vi-
sualization and Computer Graphics, 23(1):341–350, 1 2017. doi: 10.
1109/TVCG.2016.2599030 1, 2, 4

[28] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega:
A Streaming Dataflow Architecture for Declarative Interactive Visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
22(1):659–668, 1 2016. doi: 10.1109/TVCG.2015.2467091 1, 2, 4

[29] B. Shneiderman. The future of interactive systems and the emer-
gence of direct manipulation†. Behaviour & Information Technology,
1(3):237–256, 7 1982. doi: 10.1080/01449298208914450 2

[30] B. Shneiderman. Direct Manipulation: A Step Beyond Programming
Languages. Computer, 16(8):57–69, 8 1983. doi: 10.1109/MC.1983.
1654471 2

[31] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In Proceedings 1996 IEEE Symposium on
Visual Languages, vol. 0, pp. 336–343. IEEE Comput. Soc. Press, Los
Alamitos, CA, USA, 1996. doi: 10.1109/VL.1996.545307 1

[32] M. Sun, A. Namburi, D. Koop, J. Zhao, T. Li, and H. Chung. To-
wards Systematic Design Considerations for Visualizing Cross-View
Data Relationships. IEEE Transactions on Visualization and Com-
puter Graphics, 28(12):4741–4756, 12 2022. doi: 10.1109/TVCG.2021.
3102966 2

[33] A. R. S. US Department of Agriculture. Nutrient Data Laboratory,
2016. 4

[34] J. VanderPlas, B. E. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,
A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert. Al-
tair: Interactive Statistical Visualizations for Python. Journal of Open
Source Software, 3(32):1057, 12 2018. doi: 10.21105/JOSS.01057 2

[35] H. Wickham. Tidy Data. Journal of Statistical Software, 59(10), 2014.
doi: 10.18637/jss.v059.i10 2

[36] K. Wongsuphasawat. Encodable: Configurable Grammar for Visu-
alization Components. Proceedings - 2020 IEEE Visualization Con-
ference, VIS 2020, pp. 131–135, 10 2020. doi: 10.1109/VIS47514.2020.
00033 2

[37] J. S. Yi, Y. A. Kang, J. T. Stasko, and J. A. Jacko. Toward a
deeper understanding of the role of interaction in information visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
13(6):1224–1231, 11 2007. doi: 10.1109/TVCG.2007.70515 2

https://johnguerra.co/reactiveWidgets/
https://johnguerra.co/reactiveWidgets/
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://observablehq.com/@observablehq/a-brief-introduction-to-viewof
https://observablehq.com/@observablehq/a-brief-introduction-to-viewof
https://observablehq.com/@observablehq/a-brief-introduction-to-viewof
https://observablehq.com/@observablehq/a-brief-introduction-to-viewof
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bcf13f637343dfc4e2a2c67e312a4007543d23e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bcf13f637343dfc4e2a2c67e312a4007543d23e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bcf13f637343dfc4e2a2c67e312a4007543d23e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bcf13f637343dfc4e2a2c67e312a4007543d23e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bcf13f637343dfc4e2a2c67e312a4007543d23e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bcf13f637343dfc4e2a2c67e312a4007543d23e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bcf13f637343dfc4e2a2c67e312a4007543d23e4
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://doi.org/10.1109/VIS47514.2020.00029
https://github.com/PAIR-code/umap-js
https://github.com/PAIR-code/umap-js
https://github.com/PAIR-code/umap-js
https://github.com/PAIR-code/umap-js
https://navio.dev/
https://navio.dev/
https://navio.dev/
https://navio.dev/
https://observablehq.com/@john-guerra/observable-ieeevis-tutorial?collection=@john-guerra/observable-ieeevis-tutorial
https://observablehq.com/@john-guerra/observable-ieeevis-tutorial?collection=@john-guerra/observable-ieeevis-tutorial
https://observablehq.com/@john-guerra/observable-ieeevis-tutorial?collection=@john-guerra/observable-ieeevis-tutorial
https://observablehq.com/@john-guerra/observable-ieeevis-tutorial?collection=@john-guerra/observable-ieeevis-tutorial
https://vega.github.io/vega-lite-api/
https://vega.github.io/vega-lite-api/
https://vega.github.io/vega-lite-api/
https://doi.org/10.2312/STAG.20191375
https://doi.org/10.2312/STAG.20191375
https://doi.org/10.2312/STAG.20191375
https://doi.org/10.2312/STAG.20191375
https://doi.org/10.2312/STAG.20191375
https://doi.org/10.2312/STAG.20191375
https://doi.org/10.2312/STAG.20191375
https://doi.org/10.2312/STAG.20191375
https://huggingface.co/docs/transformers.js/index
https://huggingface.co/docs/transformers.js/index
https://huggingface.co/docs/transformers.js/index
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://github.com/manzt/anywidget
https://github.com/manzt/anywidget
https://github.com/manzt/anywidget
https://doi.org/https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://react.dev/
https://react.dev/
https://react.dev/
https://bost.ocks.org/mike/chart/
https://bost.ocks.org/mike/chart/
https://bost.ocks.org/mike/chart/
https://developer.mozilla.org/en-US/docs/Web/API/Element/input_event
https://developer.mozilla.org/en-US/docs/Web/API/Element/input_event
https://developer.mozilla.org/en-US/docs/Web/API/Element/input_event
https://developer.mozilla.org/en-US/docs/Web/API/Element/input_event
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://github.com/observablehq/inputs/blob/main/src/bind.js
https://github.com/observablehq/inputs/blob/main/src/bind.js
https://github.com/observablehq/inputs/blob/main/src/bind.js
https://observablehq.com/@observablehq/synchronized-inputs
https://observablehq.com/@observablehq/synchronized-inputs
https://observablehq.com/@observablehq/synchronized-inputs
https://observablehq.com/documentation/inputs/overview
https://observablehq.com/documentation/inputs/overview
https://observablehq.com/documentation/inputs/overview
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://doi.org/10.1109/INFVIS.2002.1173148
https://svelte.dev/
https://svelte.dev/
https://svelte.dev/
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1080/01449298208914450
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://doi.org/10.1109/TVCG.2021.3102966
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/sr11-sr28/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/sr11-sr28/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/sr11-sr28/
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.21105/JOSS.01057
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/VIS47514.2020.00033
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515

	Introduction
	The need for a new visualization component pattern
	Related Work
	Defining the reactive visualization component design
	Patterns for connecting widgets
	Types of components

	Application examples
	IEEEVIS 2023 Papers Explorer
	Creating reactive widgets with Vega
	IEEEVIS Observable Tutorial

	Conclusion

