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Figure 1: Comparison of various confgurations of the Tree Colors algorithm. (a) shows the original confguration. (b) uses 
adjusted ranges for chroma and luminance to achieve maximum chroma at the leaves without leaving the gamut. (c) uses a 
proportional hue split for better discriminative power within sub-trees but sacrifcing discriminative power between sub-trees. 
(d) uses local interpolation of chroma and luminance to achieve equal visual importance of leaf nodes while sacrifcing the equal 
visual importance of nodes on the same hierarchy level. (e) combines the proportional hue split with local interpolation. 

ABSTRACT 

To improve the perception of hierarchical structures in data sets, 
several color map generation algorithms have been proposed to take 
this structure into account. But the design of hierarchical color 
maps elicits different requirements to those of color maps for tabu-
lar data. Within this paper, we make an initial effort to put design 
rules from the color map literature into the context of hierarchical 
color maps. We investigate the impact of several design decisions 
and provide recommendations for various analysis scenarios. Thus, 
we lay the foundation for objective quality criteria to evaluate hier-
archical color maps. 

Index Terms: Guidelines, Color, Graph/Network and Tree Data. 

1 INTRODUCTION 

The investigation of hierarchical data is a frequent subject in many 
applications, such as analysis of fle systems [2], biological data, or 
political maps [20]. To improve the perception of the underlying 
hierarchical structure, several color map generators have been pre-
sented in the past to capture the structural properties of such data. 
However, we do not have objective criteria to evaluate hierarchical 
color maps. The development of color maps in visualization re-
search follows established design rules and many efforts have been 
made to defne quantitative criteria that measure the quality of a 
color map [6], but the inherent structure of hierarchical data elicits 
different requirements. Thus, these design rules and measures can 
not be applied to hierarchical color maps as-is. Within this paper, 
we make an initial effort to translate common design rules from the 
color map literature to the context of hierarchical color maps. We 
discuss these quality considerations based on the example of the 
Tree Colors [17] method and present possible adjustments to the 
algorithm to improve the quality of the resulting color map under 
certain conditions. 

We further consider the focus of the analysis in hierarchical data 
sets. To that end, we distinguish between top-down and bottom-up 
analysis within our elaborations. We defne top-down analysis tasks 
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as those tasks that focus on the top levels of a hierarchy. Within top-
down analysis the hierarchy usually represents nested sets of data 
points. Analysts compare these sets and drill down into sets of in-
terest to gain insight into relationships between and within those 
sets. Bottom-up analysis, on the other hand, focuses on gaining in-
sight about the hierarchy’s leaves. The hierarchical structure itself 
is used as context information, or as aggregation mechanism to re-
duce visual clutter. Bottom-up analysis is frequently encountered in 
non-hierarchical visualizations of hierarchical data, where the hier-
archy is used to flter the data before making comparisons on the 
element level. This distinction in analysis focus elicits different de-
sign goals for color maps striving to support either of the two cases. 
In summary, our main contributions are: 

• the translation of color map design rules to the context of hi-
erarchical color maps. 

• the distinction between top-down and bottom-up analysis of 
hierarchical data along with its impact on the individual de-
sign rules. 

• the proposition of adjustments to the Tree Colors algorithm to 
improve the resulting color map’s quality under certain con-
ditions. 

2 THE HCL COLOR SPACE 

Within this paper, we elaborate potential design decisions in terms 
of the HCL color space. The HCL color space belongs to the class 
of perceptual color spaces [25]. It is based on the CIELab color 
space, which was designed to model colors close to the way they are 
perceived by the human visual system. HCL is a cylindrical trans-
formation of CIELab with more intuitive dimensions. This cylinder 
spans luminance values along its height, chroma along its radius, 
and hues along its circumference. Although it should be noted that 
different hues reach their maximum chroma at different luminances, 
which causes the color space to have a very irregular shape. The 
volume of displayable colors (the gamut) can also differ between 
display devices. Nevertheless, this color space is frequently uti-
lized in color map research, because it is almost perceptually uni-
form [10] and intuitive to use. The HCL color space is implemented 
in popular software libraries such as the colorspace [23] package 
for R and Python as well as D3.js [4] and can be interactively ex-
plored with hclwizard1. 

1https://hclwizard.org/ 

https://hclwizard.org/
mailto:joern.kohlhammer@igd.fraunhofer.de
mailto:tobias.mertz@igd.fraunhofer.de


3 RELATED WORK 

3.1 Color Map Quality 

Over the years, the majority of the research effort in design rules 
for color maps has focused on one dimensional quantitative color 
maps. Bujack et al. [6] present a survey over a large volume of these 
studies and compile a list of common design rules. They also map 
the most prevalent design rules to quantitative quality measures. 
Similarly, Bernard et al. [1] present design rules and quantitative 
measures for two dimensional quantitative color maps. In contrast, 
qualitative color maps have received less attention. The basic de-
sign rules have remained the same over the years: keep chroma and 
luminance constant and vary hue across categories [9, 24]. Based 
on this approach, many color map generators have been proposed 
to include additional criteria, such as mark type [16], color concept 
associations [15], color names [13], object proximity in the visual-
ization [12], and aesthetic criteria [8]. But so far, such design rules 
and quality measures have not been applied to hierarchical color 
maps. Within this paper, we consider the collection of design rules 
shared between Bujack et al. [6] and Bernard et al. [1], namely Or-
der, Discriminative Power, Uniformity, Equal Visual Importance, 
Background Sensitivity, and Device Independence. 

3.2 Hierarchical Color Maps 

The frst instance of an inherently hierarchical color map that we 
could fnd is the proximity-based coloring introduced by Fua et 
al. [7]. They implemented a multi-scale parallel coordinates visu-
alization that uses a hierarchical color map to color the individual 
polylines based on their similarity. To achieve this coloring, they 
collected all visible elements in a cluster hierarchy using an in-order 
tree traversal. Then they linearly assigned hue values to the nodes 
in the resulting list, causing similar colors to be assigned to a par-
ent and its children. However, this algorithm is only applicable to 
binary trees und relies purely on the hue as discriminator. Never-
theless, most algorithms for hierarchical color maps work similarly. 

The structure-based coloring in InterRing [22] applies a bottom-
up approach to assign hue values to the leaf nodes frst. The inner 
nodes of the hierarchy are then assigned the weighted average color 
of their children. However, this approach can cause inner nodes of 
the hierarchy to have the same color as one of their descendants. 

The Hyperbolic Wheel [11] computes the hues of the frst hi-
erarchy level based on the relative sub-tree sizes. Colors are then 
assigned recursively to children by adding a fxed offset to the par-
ent’s hue value. The brightness of hues is decreased linearly with 
the depth in the tree, while the saturation is kept constant. Due to 
the constant offset, this approach sometimes assigns the same color 
to nodes on adjacent sub-trees. 

The Tree Colors algorithm [17] also assigns hues recursively. It 
divides the available range of hues among the children of a node, 
leaving a gap between the nodes to improve the distinguishability 
of neighboring sub-trees. Each node is then assigned the center hue 
value of its range. Chroma and luminance are varied linearly with 
the depth of the hierarchy. While this approach presents a simple 
solution to the shortcomings of its predecessors, they only consider 
hierarchies with a depth of three in their publication. 

To deal with cases of larger hierarchies, Waldin et al. [20] pro-
posed Cuttlefsh. Cuttlefsh implements a dynamic approach that 
supports a semantic zoom into the data. This algorithm is initial-
ized with a set of currently visible groups of items, extracted from 
the hierarchical data structure. The range of hues is then divided 
among the groups and items are placed equidistantly within the hue 
range of their group. When the user navigates the view, the col-
oring is recomputed with the updated set of items. To improve 
visual consistency, Cuttlefsh rotates the hue ranges to minimize 
distances between child and parent hues. This approach improves 
distinguishability of the visible items signifcantly, as it can utilize 
the free color space of invisible sub-trees. However, because of this, 

the algorithm can only compute colors for the currently visible set 
of hierarchy nodes. Coloring an entire hierarchy with this approach 
is not possible. 

4 QUALITY CONSIDERATIONS 

Before we start dealing with the design rules, we will frst put the 
approaches into the context of best practices from the color map 
literature. We compare the design goals of hierarchical color maps 
with those from one dimensional and two dimensional color maps 
to judge whether the presented approaches apply the available color 
channels in a manner that is consistent with best practices. The Tree 
Colors method [17] will serve as example for these considerations. 
Tennekes and de Jonge state three design goals for the algorithm: 

1. Assign unique colors to all nodes within the hierarchy. 

2. Assign similar colors to parent nodes and their children. 

3. Encode the depth of a node in the tree within the node’s color. 

The frst goal matches with design practices for quantitative or 
categorical color maps. We do not design color maps that assign 
the same color to different values or categories either, as this would 
create ambiguities in lookup tasks. Yet multiple of the described 
hierarchical color maps in Section 3.2 fail to achieve this goal. 

The second goal is mirrored by the other approaches discussed 
in Section 3.2, while the third goal is also achieved by the Hyper-
bolic Wheel [11] and Cuttlefsh [20]. These latter two goals can be 
interpreted as a hierarchical equivalent to the principle of rows and 
columns introduced by Trumbo [19], which states that a two dimen-
sional color map representing a two dimensional data set should 
allow users to perceive the two data dimensions distinctly. In that 
sense, the two dimensions in a hierarchical structure are the vertical 
dimension along the hierarchy’s depth and the horizontal dimension 
along the nodes on an individual hierarchy level. The vertical di-
mension is discrete and quantitative while the horizontal dimension 
is categorical with groups of items (sibling nodes) that are related. 

Best practices from one dimensional color maps imply to uti-
lize luminance or saturation for the vertical dimension with lumi-
nance achieving a better discriminative power [21]. For categori-
cal color maps, as mentioned in Section 3.1, the best practice is to 
vary the hue while keeping the other two color attributes constant. 
For the horizontal dimension in hierarchical data, this makes even 
more sense, considering the fact that using hue as primary discrim-
inator introduces hue banding [21]. Hue banding is a perceptual 
phenomenon that causes a continuous color map to be perceived as 
several cohesive segments. As described above, there are groups 
of related items (siblings) within the horizontal dimension of hier-
archical data. Aligning the hue bands with the structure of the hi-
erarchy, therefore, should improve the perception of these cohesive 
groups. These considerations are in concordance with Brewer’s rec-
ommendations for two dimensional color maps with a quantitative 
and a categorical dimension [5]. They also reaffrm the intentions 
behind the approaches detailed in Section 3.2. 

However, to fnd the best implementations for these design goals, 
we need design rules and quality criteria for hierarchical color 
maps. In the following, we investigate the vertical and horizontal 
dimension of hierarchical color maps in both top-down and bottom-
up analysis scenarios with respect to the design rules: 

• Order 

• Discriminative Power 

• Uniformity 

• Equal Visual Importance 

• Background Sensitivity 

• Device Independence 



4.1 Order 

The order design rule states that colors in a quantitative color map 
should imply an ordering. Thus, it should be possible for view-
ers to sort a sample of colors based on their perceived order. For 
categorical color maps, the best practice states to avoid implying 
an order [9]. Thus, to achieve the best color map in terms of or-
der, we need intuitively orderable colors along the vertical dimen-
sion, while avoiding such colors along the horizontal dimension. 
Research shows that a sampling of hues is diffcult to put into an 
order [3], while chroma and luminance can achieve more intuitive 
orderings. For this reason, the approach of utilizing hue for the hori-
zontal dimension and luminance and chroma for the vertical dimen-
sion can achieve good characteristics in terms of order. Linearly in-
terpolating luminance and chroma along the depth also makes sure 
that the color order remains consistent. Tree Colors further avoids 
a horizontal order by permuting the colors among siblings, thereby 
making the perception of order between them more diffcult. 

4.2 Discriminative Power 

The discriminative power design rule for quantitative color maps 
states that the perceptual distance between the colors of the color 
map should be as large as possible. The best possible discrimina-
tive power would be achieved by a color map that samples the en-
tire color space with an equidistant grid. But this color map would 
achieve very poor quality in terms of the other design rules. Hence, 
the discriminative power always has to be balanced with the other 
rules to fnd the best trade-off. For the vertical dimension, achiev-
ing a good discriminative power seems straightforward. Because 
we linearly assign chroma and luminance to the vertical dimension, 
the discriminative power is only affected by the range of admissi-
ble values. However, these intervals must be adjusted with care, 
because they also infuence other criteria. 

Because the sample points along the horizontal dimension lie on 
a circle in the color space, we improve the discriminative power 
by increasing the radius of that circle. This radius is the chroma 
value. But the maximum possible chroma differs between lumi-
nance values, because of the irregular shape of the gamut in HCL. 
Thus, our maximum horizontal discriminative power again depends 
on the value range of chroma and luminance. Recent approaches in 
categorical color map generation improve the discriminative power 
further by making sure that the sampled hues correspond to differ-
ent color names and by allowing variations along the other color 
attributes [13]. However, in the hierarchical context, the latter con-
ficts with the rows and columns principle and, thus, needs to em-
ployed with care. Another factor to consider is the sampling direc-
tion of chroma and luminance. Because higher values of chroma 
result in a higher discriminative power, and deeper hierarchy levels 
usually contain more nodes than those levels closer to the root, it 
makes intuitive sense to increase the chroma with the depth. This 
is especially important when designing for bottom-up analysis, be-
cause we need to achieve maximum discriminative power among 
the hierarchy leaves in this case. For top-down analysis, the inverse 
direction may provide better results, because it improves discrimi-
native power among the upper levels of the hierarchy. 

We also need to consider whether our design requires maximum 
discriminative power between groups of siblings or within groups 
of siblings. The Tree Colors method, for example, leaves gaps in 
the assigned hue ranges to improve discriminative power among 
separate sub-trees. But large gaps reduce the fraction of hue that is 
available to discriminate between the colors within each sub-tree. 
Thus, designers must tune this hue fraction to an appropriate trade-
off. The algorithm also splits the available hue evenly between all 
siblings, irrespective of their sub-trees’ sizes. This improves the 
discriminative power among the siblings’ sub-trees, but reduces the 
discriminative power within the larger sub-trees. For this reason, 
alternative approaches split the hue range proportionally to the sub-
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Figure 2: Comparison of even (a) and proportional (b) hue split 
variants in imbalanced hierarchies. Sizes of arc segments indicate 
the range of hues assigned to each node. 

tree size [7, 11, 20, 22]. Figure 2 shows a comparison of the two hue 
split variants. Notice how in the even case, a sub-tree with a sin-
gle leaf is assigned the same amount of hue as the larger sub-tree 
with three leaves. For visualizations supporting bottom-up analysis, 
the proportional split is generally preferable, because the identifca-
tion of individual elements is most important, while the hierarchical 
structure of the data set serves merely as context information. The 
opposite is true for top-down analysis scenarios. 

Dynamic approaches, such as Cuttlefsh [20], also improve the 
discriminative power of the visible elements by re-assigning colors 
upon view changes. However, this reduces the discriminative power 
between the currently visible elements and those that were visible in 
the previous view, leading in the extreme case to different elements 
with exactly matching colors over separate views. 

4.3 Uniformity 

The uniformity design rule states that perceptual color distances 
should represent the distances between data values. For quantitative 
color maps, the distance between two colors should ideally be pro-
portional to the distance between the values they represent. For the 
vertical dimension in a hierarchical color map, this implies that the 
discrete depth values should be represented by equidistant colors, 
which we achieve by interpolating linearly. For qualitative color 
maps, the chosen colors should ideally be equidistant. However, 
this conficts with the approach of assigning hues of different color 
names to maximize discriminative power. Furthermore, we need to 
consider the color distance within groups of siblings and across sep-
arate sub-trees. Within groups of siblings we can apply equidistant 
colors. The introduction of a gap in hue between neighboring sub-
trees achieves a larger distance between non-sibling nodes than be-
tween siblings. This improves uniformity, because these nodes are 
conceptually further apart. But this conceptual distance is diffcult 
to quantify. For this reason it is also diffcult to defne uniformity 
across separate sub-trees. Tree Colors resembles a concept similar 
to that of a general tree distance, in which the distance between two 
nodes is given by the depth from their closest common ancestor. 

4.4 Equal Visual Importance 

Bernard et al. [1] defne equal visual importance as “the require-
ment that all colors are equally salient”. Different color tempera-
tures, hues, chroma and luminance values may draw the attention of 
viewers to certain elements of the visualization more than to others. 
When all elements of the visualization are of equal importance to 
the analysis, they should also be represented by colors with an equal 
capability to draw the viewer’s attention. Along the vertical dimen-
sion, we need to consider the impact of chroma and luminance vari-
ations. Generally, brighter and more saturated colors draw more at-
tention than darker, muted colors. Tree Colors assigns chroma and 
luminance in an inverse relationship with the depth of the hierarchy. 
One is always increased while the other is decreased. Intuitively, 
this can improve the criterion of equal visual importance, because 
an increase in one of the two color attributes can be compensated by 
a decrease in the other. Although we are not aware of any empirical 
research that confrms this intuition. But this approach may confict 
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Figure 3: Comparison of global (a) and local (b) interpolation vari-
ants for chroma and luminance in imbalanced hierarchies. Interpo-
lation factors of individual nodes are written inside the nodes and 
encoded by their vertical position. 

with the discriminative power and background sensitivity criteria in 
certain analysis scenarios. We may also need to consider the anal-
ysis focus. Tree Colors computes chroma and luminance linearly 
with the depth in the hierarchy. If the hierarchy contains leaves 
at different depths, these leaves are assigned different chroma and 
luminance values. This can cause a different perception of impor-
tance across the leaves, which is problematic in bottom-up analysis 
scenarios. Here, it may be advantageous to assign a fxed value for 
chroma and luminance to all leaves. However, because the differ-
ent branches of the hierarchy are of different lengths, we need to 
interpolate the chroma and luminance values for each branch lo-
cally. Figure 3 illustrates the difference between local and global 
interpolation for imbalanced hierarchies. With local interpolation, 
the vertical dimension of the color map is only uniform within an 
individual branch. Across separate branches, the design rule of uni-
formity is violated and the color map no longer satisfes equal visual 
importance across a single inner hierarchy level. 

Along the horizontal dimension, chroma and luminance are kept 
constant, but certain hues may appear more prominent than others. 
To draw viewers’ attention, important information is often commu-
nicated via signal colors, such as red to imply danger. The straight-
forward approach to prevent the representation of data by signal 
colors is to exclude these colors from the range of admissible hues. 
But introducing gaps in the hue range reduces the discriminative 
power of the remaining color space and conficts with uniformity. 

4.5 Background Sensitivity 

Background sensitivity is described by the contrast between colored 
elements of the visualization and the background. There is also 
the corresponding design rule of foreground sensitivity, which con-
siders the contrast between the visualization colors and foreground 
elements such as axes or text labels. Because background and fore-
ground elements are usually drawn with colors close to white or 
black, the contrast to these elements is mainly determined by the 
luminance. If no foreground elements exist, we can use a darker 
portion of the luminance range in light application themes and a 
brighter portion in dark application themes. If the visualization con-
tains foreground elements that overlap with the hierarchy’s colors, 
we need to use a narrower portion from the center of the luminance 
axis to achieve good contrast to both ends of the scale. In this case, 
it can also help to increase the minimum chroma to improve the 
contrast. If foreground elements are drawn exclusively on the col-
ored elements, we can also chose to draw foreground elements in 
the same color as the background to increase our available range of 
luminance. Because the background sensitivity design rule restricts 
our luminance range, it can confict with the discriminative power 
along both dimensions. For top-down analysis, we need to guar-
antee a good background sensitivity for the upper hierarchy levels, 
while we need to guarantee the same for the leaves in bottom-up 
analysis scenarios. Thus, the direction of the luminance interpola-
tion should be adapted to the more likely scenario. 

Hierarchy Size Small Larger 
Hue Fraction 0.75 0.9 

Application 
Theme 

Lum. Chroma Lum. Chroma 
Light Additive Color 

Subtractive Color 
[95,57] 
[26,76] 

[10,45] 
[20,59]Dark 

Analysis 
Focus 

Interp. Hue Split Interp. Hue Split 
Top-Down 

any 
global 
local 

even 
prop.Bottom-Up 

Table 1: Good confgurations of Tree Colors. Application theme 
and analysis focus can be independently combined to yield eight 
different confgurations. Luminance and chroma are given as inter-
vals starting at the top of the hierarchy. 

4.6 Device Independence 

Colors sampled outside of a device’s gamut are clipped to the 
gamut’s boundary [14]. This can result in different representations 
of the same specifed HCL color on devices with different gamuts, 
which can deteriorate the color map’s quality in terms of equal vi-
sual importance, uniformity and discriminative power. Thus, the 
device independence design rule states that colors should always 
be sampled from within a standardized cross-device gamut such as 
sRGB. This limits the space of available colors and may negatively 
impact the discriminative power of the resulting color map, but it 
guarantees consistent color representation across different devices. 

5 OBSERVATIONS 

During our investigation of the design rules, we discovered confg-
urations of Tree Colors that provide good results. As starting point 
for designers, we provide these parameters in Table 1 as well as a 
summary of our fndings as design cheat sheet in the supplementary 
material. For small hierarchies, such as the examples considered 
by Tennekes and de Jonge, the difference in requirements regarding 
the analysis focus is negligible. Under those circumstances, the rec-
ommended parameters of the original Tree Colors method produce 
satisfactory results [17, 18]. But designers should keep in mind that 
this confguration leaves the sRGB gamut and, therefore, achieves 
poor device independence and equal visual importance. For larger 
hierarchies, note that the maximum chroma is larger for the dark 
theme than the light theme, which causes the dark theme to achieve 
better discriminative power. The exclusion of hues should be used 
sparingly both in the number of excluded hues and the angle of 
each excluded hue-slice. If certain hues must be excluded, we rec-
ommend to exclude slices of about 12◦ . For very large hierarchies, 
with hundreds of nodes, dynamic approaches are necessary. 

6 CONCLUSION 

Within this paper, we have translated the most prevalent design 
rules from the color map literature into the context of hierarchical 
color maps. We have further investigated the impact of application 
theme and analysis focus on the color map quality in regard to the 
individual design rules and have provided recommendations for the 
adaptation of Tree Colors to improve the quality in different sce-
narios. We thus lay the foundation for an objective discussion of 
hierarchical color map quality. As next step, we must determine 
how to quantitatively measure the quality according to these design 
rules and design appropriate benchmark data sets to evaluate color 
map generation algorithms. As an extension to this work, there are 
also many design rules in the literature that we have yet to translate. 
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