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ABSTRACT

Integral curves have been widely used to represent and analyze
various vector fields. In this paper, we propose a Curve Segment
Neighborhood Graph (CSNG) to capture the relationships between
neighboring curve segments. This graph representation enables us
to adapt the fast community detection algorithm, i.e., the Louvain
algorithm, to identify individual graph communities from CSNG.
Our results show that these communities often correspond to the
features of the flow. To achieve a multi-level interactive exploration
of the detected communities, we adapt a force-directed layout that
allows users to refine and re-group communities based on their
domain knowledge. We incorporate the proposed techniques into an
interactive system to enable effective analysis and interpretation of
complex patterns in large-scale integral curve datasets.
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1 INTRODUCTION

Integral curves are often applied to visualize and interpret vector
field data. Depending on the seeding and placement strategy adopted
and the complexity of the original data, integral curves may occlude
each other and have varying densities in different regions. The large
number of curves and segments further complicate their analysis.
Usually, to highlight meaningful features from sets of integral curves
to aid their analysis, clustering-based techniques [20,21,23,37] or the
pattern search approaches [15,27,32] can be applied. However, most
curve-based clustering methods classify the entire curve, while at
the same time, not all parts of a curve belong to a feature. Clustering-
based methods also require specifying proper similarity metrics to
produce meaningful results [23]. In the meantime, pattern search
methods require the user to specify a reference pattern (or template)
along with a similarity threshold for searching, which is highly
dependent on the user’s knowledge and the input data. Also, other
interesting patterns than the reference pattern may not be highlighted.
More importantly, pattern search need not support a level-of-detailed
exploration of the patterns in the input integral curves.
Our contribution. To address the above challenges, we propose
to represent the neighboring relations among segments of the input
integral curves as a graph, called the Curve Segment Neighborhood
Graph or (CSNG). The graph nodes correspond to the individual
segments decomposed from the input curves, while the graph edges
indicate the corresponding segments are neighboring to each other.
With CSNG, we can adapt the community detection algorithms from
graph analysis to group similar segments to form clusters for the
first time. Our results show that the communities found in CSNG
often correspond to meaningful patterns and features in the data.
In addition, by taking advantage of the fast computation of the
Louvain community detection algorithm [2, 10], we achieve real-
time community detection, setting the foundation for the subsequent
level-of-detail exploration of the integral curves.

To support an interactive exploration of the integral curves, we
adapt the force-directed layout to visualize the detected commu-
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nities from CSNG. Our force-directed layout allows the user to
refine each community and re-group certain sub-community with
another community or sub-community to form a new community.
This addresses the need to interactively edit and correct the mis-
classification of segments. In addition, we develop a web-based
interactive CSNG-centric exploration system for curve-based data.
It incorporates the interactive, multi-layered force-directed graph
enabled by graph community detection to provide a powerful tool
for curve data analysis.

We have applied the proposed methods and the developed in-
teractive visualization system to several streamline data sets. Our
experiments show that our method and system allow the user to
effectively explore complex 3D patterns. The users can also in-
corporate their domain knowledge to refine and modify the results
interactively to achieve a detailed analysis of those patterns.

2 RELATED WORK

Integral curve seeding, placement, and visualization. Depending
on different goals, the seeding and placement strategy can lead to
evenly-spaced streamlines in either the physical (object) space [4, 9,
14, 18] or the image space [12, 24, 29], feature enhanced streamlines
[3, 30, 34], and streamlines that best depict the flow based on the
information theory [35]. A recent survey paper [22] provides a
detailed review of the existing integral curve seeding and placement
strategies. Various visualization [7,28], view-point selection [11,25],
and novel data structure representation [16] for integral curves have
been proposed to support the exploration and interpretation of flow
behaviors.
Integral curve clustering. Clustering techniques [23] are often
applied to group similar integral curves based on certain similarity
criteria to highlight meaningful patterns to aid their interpretation.
Various methods have been introduced, including hierarchical bun-
dles of streamlines [37], pathline clustering [20], machine learning
based clustering [8]. Clustering method has also been used to aid
the analysis of blood flow [21], identify hairpin vortices [38], and
fiber tracks in diffusion tensor imaging [6, 19].
Pattern search in integral curves. Different from clustering tech-
niques, pattern search aims to identify curves or segments that pos-
sess similar characteristics to a user-specified reference. Wang et
al. [31–33] developed methodologies to identify patterns within vec-
tor field data. Lu et al. [15] introduced a distribution based approach
to characterize the streamline characteristics to facilitate their search
and analysis. Tao et al. [26, 27] proposed to encode the streamline
characteristics into character strings to facilitate pattern search.

While clustering and pattern search methods help analyze curve-
based data, they either do not scale well to large-scale data or rely
on specified references for analysis.
Graph-based flow visualization and exploration.

Xu et al. introduced Flow Web [36], a graph-based user inter-
face where nodes represent regions in the field and links connect
regions with particle travel between them. This approach allows
for systematic exploration of 3D flow data by minimizing occlusion
and facilitating queries on flow properties. Xu and Shen proposed
FlowGraph [17], a compound hierarchical graph representation that
organizes streamline clusters and spatial regions hierarchically.



Figure 1: Illustration of our framework. 1) Load the streamline
dataset. 2) Perform curve decomposition, then CSNG construction
with either KNN or RBN. 3) Perform community detection on the
CSNG to categorize each curve segment into community clusters. 4)
Manually adjust the community results such as merging and splitting
communities to fix misclassification.

3 OUR METHOD

Our method consists of a few important steps as illustrated in Fig-
ure 1. First, it represents the input curves and their relations by a di-
rected graph. Second, it performs community detection on the graph
to identify individual segment clusters. Third, the user explores and
interprets patterns in the curve data in a multi-level fashion through
a force-directed layout representation of the obtained communities.
In the following sections, we provide a detailed description of how
these steps are achieved.

3.1 Curve-centered Neighbor Search

Our goal is to find the neighboring curve segments of a specific seg-
ment. We refer to this process as the curve-centered neighbor search.
To achieve that, we first partition each 3D (integral) curve into a set
of curve segments. There are different strategies to decompose a 3D
curve into smaller segments. Most of these strategies [16,23] rely on
curvature information to determine cut points. Since most integral
curve data sets we experiment with were generated using constant
integration step sizes, we opt for a simple strategy to achieve a multi-
resolution neighbor search. Intuitively, we consider every L integral
line segment along a 3D curve to form a curve segment. L is there-
fore the adjustable resolution of our neighbor search framework. The
highest resolution is L = 1 where each streamline segment is con-
sidered a curve segment for the neighbor search. Lower resolution
(i.e., with a larger L value) will speed up the neighborhood finding
process but may significantly decrease the information density of the
resulting set of neighbors, resulting in errors in the neighbor search.
Distance metrics. Consider a query segment C and a candidate
segment li. To determine their neighboring relation, their distance,
d(Li,C), needs to be computed. Three distance metrics can be
considered, i.e., the shortest, the longest, and the average distance.
In this work, we select the longest distance. This is because our
simple decomposition leads to straight-line segments, the longest
distance between them is equivalent to their Hausdorff distance.
Also, the shortest distance may select segments li that only have one
endpoint close to C while the rest is pointing away from C. In this
case, most parts of the selected segments are not close to C. The
average distance partially addresses the limitation of the shortest
distance, but it is more expensive to compute.
Neighbor search strategies. We consider two neighbor search
strategies, i.e., K-nearest neighbor search and radius-based neighbor
search. Based on a selected distance metric d(Li,C), the K-nearest
neighbor search (KNN) ranks the segments in ascending order based
on their distance to C and selects the top K segments as the neighbors.
Similarly, the radius-based neighbor search (RBN) identified all
segments whose distances to C are smaller than a threshold R as the
neighbors of C. In our implementation, we use a standard segment-
based KD-tree [1] to organize the individual segments to efficiently
identify candidate segments for our neighbor search.
Construct CSNG. To represent the neighboring relations among
segments, we construct the Curve Segment Neighborhood Graph

(CSNG). A CSNG is a directed graph GCS = (VCS,ECS), which
comprises graph nodes VCS representing individual curve segments,
and directed edges ECS indicating neighbor relationships. Properties
of the segments (e.g., curvature, length, and velocity magnitude)
and the difference of these properties between neighboring segments
can be stored on the nodes and edges of CSNG as weights. These
attributes inform the strength and similarity of connections. Note
that a CSNG constructed based on KNN is a directed graph, while it
can be an undirected graph with RBN.

Next, we extract meaningful patterns and features from the input
3D (integral) curves with the aid of CSNG. Traditional clustering
and segmentation techniques, such as DBSCAN, K-Means, and ag-
glomerative hierarchical clustering (AHC), often rely on pairwise
distance calculations between segments, which can be computa-
tionally expensive for large datasets. Moreover, they struggle to
incorporate the relational information between segments, which
can be useful for understanding the underlying dynamics of the
vector field. To address this, we borrow the community detection
techniques to analyze CSNGs.

3.2 Community Detection on CSNGs
Community detection aims to identify groups of nodes in a graph
that are more densely connected internally than with the rest of the
network. For CSNG, we define a community as a group of segments
forming a cohesive cluster, representing features of the curve dataset

We employ the Louvain algorithm [2, 10] for community detec-
tion due to its efficiency and ability to uncover hierarchical commu-
nity structures. The algorithm’s resolution parameter controls the
granularity of detected communities. A smaller resolution leads to
coarser partitioning, while a larger value results in finer communities.
However, the same resolution value may yield different numbers of
communities across datasets due to variations in graph connectivity.
To leverage the Louvain algorithm effectively, we encode relevant
properties into CSNG edge weights, such as the distance between
line segments and their orientation difference.

3.3 Visualize and Interact with CSNG Communities
We use a multi-layered force-directed graph to visualize CSNG and
its communities in a hierarchical fashion. Our force-directed graph
is formulated as a compound graph G f = (V f ,E f ), where V f repre-
sents the set of nodes, each corresponding to a distinct community
(or cluster) of curve segments obtained from community detection
algorithms. The set E f consists of edges connecting these nodes,
with each edge (vi,v j) ∈ E f indicating a neighborhood relationship
between segments in clusters vi and v j. To encode the hierarchical
information, each node may contain a set of sub-nodes correspond-
ing to the sub-communities, and each edge could be a collection
of edges connecting the corresponding sub-communities. Our edge
spring force in the multi-layered graphs is inspired by Lu et al.’s
work [13] and our node spring force in the clustered graphs adapts
the work by Eades et al. [5]. A detailed algorithm is provided in the
supplemental document. We visualize a node with a sphere whose
size is determined by the number of segments within the correspond-
ing community. It receives a distinct color based on its community
ID. We use arcs to depict the edges.
Split or merge nodes in hierarchical communities. Nodes of
our graph can be dynamically merged based on user interaction or
predefined criteria, with the stipulation that for nodes from different
groups to be merged, they must belong to the same hierarchical
branch. This merging criterion is vital for preserving the inherent
hierarchical structure of the graph. When it comes to maintaining
hierarchical integrity, if the selected nodes V f are from different
groups, a merge is only allowed if these groups are on a common
hierarchical path, ensuring the logical consistency of group relation-
ships and the overall integrity of the graph’s hierarchy. Furthermore,
in terms of resulting group membership, the newly formed node post-
merger inherits its group membership from the most encompassing
group among the original vertices. Consequently, if a node from



Figure 2: a) The multi-layered force-directed graph layout, generated
by applying the Louvain community detection algorithm (with a
resolution of 1) to the Cylinder dataset. The group of nodes enclosed
by a dashed outline highlights a split operation performed on a node
using the Louvain method at a finer resolution of 0.3. b) Displays
the same nodes represented as segment clusters in a 3D view. c)
merging a sub-group with a parent group (yellow) results in the
sub-groups being part of the parent group (green). (d) merging two
sub-groups from two branches results in a new parent group.

a subgroup is merged with a node from its parent group, the new
node will belong to the parent group (Figure 2(c)). In another case,
if a node from a subgroup is merged with a node from a different
subgroup, the new node will form a new node in the parent’s group
(Figure 2(d)). A detailed algorithm of how this is achieved can be
found in the supplemental document.

4 RESULTS AND EVALUATION

We integrate the CSNG construction, community detection from
CSNG, and the interactive exploration and modification of the com-
munity detection results into a web-based system 1. Details of this
system can be found in the supplemental document. We apply our
method and the system to four streamline data sets computed from
the Bernard convection, a flow behind a square cylinder, Plume
simulation, and Crayfish simulation, respectively. We used a uni-
form seeding strategy for the Bernard convection, flow behind a
square cylinder, and Plume simulation datasets, placing seed points
in a grid-based uniform spacing across the 3D vector field. For
the Crayfish simulation dataset, which contains large regions of
low velocity, we employed random seeding to avoid over-sampling
and dense bundling of streamlines. Streamline integration was per-
formed using an RK4 integrator with a fixed step size, normalizing
each segment vector for consistent length.
Performance. Table 1 presents the execution times associated with
transforming integral curves into CSNG directed graph data across

1https://github.com/MangoLion/CSN_VIS

Figure 3: Impact of different values of the resolution parameter for
community detection. (a) the community detection result on the
cylinder data with a resolution value of 0.05 and (b) the result with
a resolution value of 0.1. A larger resolution leads to a finer result.

four distinct datasets. The current processing is carried out on a
system powered by a Ryzen 5 3600 CPU and 32GB of DDR4 2666
MHz RAM, operating under CPU-bound conditions.
Impact of the resolution parameter. The resolution parameter of
the Louvain algorithm can be used to indirectly control the granu-
larity of the detected community. In general, a small resolution will
lead to coarse community detection, and a large resolution will lead
to a fine detection result. Figure 3 demonstrates the effect of the
resolution on the community detection results. However, it is worth
noting that the same resolution value does not always lead to the
same number of detected communities for different data sets. This is
because the detected communities of a graph highly depend on the
connectivity density of the graph. A sparse graph will result in more
communities even if a small resolution value is used. Therefore, in
practice, it is up to the user to tune the resolution value to achieve
the desired granularity of the results. From our experiments, we
found that a value less than 0.5 is a good start for the testing data.
A use case. To demonstrate how to use our method to explore and
interpret curve-based data sets, we apply it to the Plume stream-
line data set (Figure 4). The solar plume simulation models the
behavior of a solar eruption, a large and bright feature extending
outward from the Sun’s surface. This data set contains 128 stream-
lines (Figure 4(a)). After decomposition with L = 2, we obtain
32191 segments. Next, we select KNN with K=60 to construct a
CSNG. We apply the Louvain algorithm with resolution value = 0.5
to detect the initial communities from the obtained CSNG, which
yields 15 communities (Figure 4(b)). We focus on communities 7
and 2, which are highlighted in both the 3D volume rendering and
the force-directed graph views (Figure 4(c) and (d)). These two
communities were specifically selected because they contain all of
the visually interesting vortex-like features that spanned a significant
portion, approximately half, of the frontal part of the plume data
set. A detailed inspection of these two communities reveals a vortex
feature that is misclassified as belonging to both groups, as indicated
in Figure 4(e). The misclassified region appears as an overlapping
region between communities 7 and 2 in the force-directed graph
view, suggesting that the vortex feature is incorrectly split between
the two communities. To resolve this misclassification, we employ
the following steps: (1) We closely inspect the misclassified area
and select all communities involved in the classification. In this
case, communities 7 and 2 are selected, as shown in Figure 4(e). (2)

Table 1: Performance of Our Framework. For CSNG construction,
the parameters are K=60 for KNN, R=10% dataset bounds diagonal
for RBN. Louvain resolution is 1. Due to size constraint the Plume
dataset’s segments were merged together by a ratio of 4:1.

Dataset # Lines # Segments CSNG Duration (s) Louvain
KNN RBN Detection(s)

Bernard 128 12146 5.32 13.46 18.53
Crayfish 216 28913 8.66 24.02 7.4
Plume* 128 16077 6.32 21.12 3.32
Cylinder 250 7559 4.56 6.32 11.13



Figure 4: A level-of-detail analysis of the Plume streamline data set.

We perform a subgroup splitting of community 7 using the Louvain
algorithm with a resolution parameter of 0.5. This step divides the
large community into 6 smaller subgroups (Figure 4(i)). (3) We
identify the subgroup that contains the misclassified vortex feature
(Figure 4(i) subgroup 13) and merge it into community 2 to create
a more coherent representation of the feature (Figure 4(h)). This
step ensures that the vortex feature is no longer split across multiple
communities. (4) Finally, we perform another split on the merged
community 2 using the Louvain algorithm with a resolution of 0.5.
This step breaks apart the merged community, revealing the vortex
feature in its entirety as its distinct subgroup (Figure 4(h) and (j)).
The force-directed graph view (Figure 4(j)) and the 3D segment view
(Figure 4(k)) showcase the final result of the community refinement
process. The vortex feature is now clearly separated from the other
subgroups within communities 7 and 2, which have been split into
a total of 13 smaller subgroups. In addition, all relevant features,
represented as four subgroups, are each highlighted on both views,
illustrating the distinct vortex features within the original commu-
nities 7 and 2. Two convex envelopes with a dashed boundary are
used in the force-directed graph view to encapsulate these subgroups,
further highlighting the refined community structure. This use case
demonstrates the effectiveness of our approach in resolving misclas-
sifications and extracting meaningful features from complex data
sets like the Plume.

Comparison with PCA k-means clustering.
We compare our method with the PCA k-means clustering, which

has been shown to perform well for integral curve clustering [23].
Figure 5 shows such a comparison on the Plume dataset. For PCA
k-means, we used 5 principal components and k=12 clusters, which
produced the best visual results after parameter tuning. For Louvain
community detection, we used a resolution of 1 and RBN with a ra-
dius of 1% of the dataset bounds. As seen in Figure 5a, PCA k-means
identifies vortex-like structures but often splits them across multiple
clusters, as evidenced by the multiple colors in the zoomed inset. In
contrast, our Louvain-based approach (Figure 5b) yields more con-
sistent community detection results, identifying coherent structures
as belonging to single communities, as shown by the more uniform
coloring in the inset. Figures 5c and 5d provide force-directed graph
layouts of the clustering results, further illustrating the differences

Figure 5: Detailed comparison of the best clustering results for the
Plume dataset using PCA K-means and Louvain algorithms. PCA K-
means parameters: dim=5, k=12; Louvain parameters: resolution=1,
RBN radius=1%. 3D rendering of PCA K-means clustering result
and community detection result are shown in (a) and (b), respectively.
(c) and (d) are force directed graphs of (a) and (b).

between the two approaches. The PCA k-means result (Figure 5c)
shows 12 distinct clusters represented by differently colored and
sized nodes. The Louvain result (Figure 5d) reveals a more com-
plex, connective community structure with nodes of various sizes
representing communities and sub-communities, and edges show-
ing relationships between them. This comparison shows that while
PCA k-means can still identify meaningful clusters, our approach
offers advantages in terms of feature coherence and the ability to
interactively refine communities hierarchically. This flexibility is
particularly valuable for exploring complex flow structures where
the optimal segmentation may not be immediately apparent. In terms
of runtime, PCA k-means (15.67s) outperformed our RBN Louvain
approach (29.12s), mainly due to the overhead of RBN neighbor
search. However, the clustering phases alone (PCA k-means vs.
Louvain) showed similar times (15.67s vs. 16.2s).

5 CONCLUSION AND FUTURE WORK

In this work, we proposed to use a direct graph, called CSNG, to
represent the neighboring relation among curve segments of the in-
put curve-based data set. This allows us to adapt the fast community
detection algorithm for analyzing CSGNs, achieving the clustering
of the segments. We also developed a multi-layered force-directed
layout technique for the detected communities to support a multi-
level exploration of the patterns in the input curves. We implemented
our method in a web-based system to support an interactive explo-
ration of various curve-based data. We have applied our method and
system to a few integral curve data to evaluate its effectiveness.

While our current implementation shows promise, we identified
limitations in scaling to very large numbers of segments due to
memory inefficiency in our web worker implementation. It also
needs to study the impact of RBN and KNN on the constructed
CSNG and the subsequent analysis, and a thorough evaluation of the
proposed method. We plan to address these in the future work.
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