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Figure 1: Prototype of the Frontier digital twin using Unreal Engine 5. All child components are visible: The first row, shows 12
compute racks and four cooling distribution units1. The racks show, among others: cable trays, rectifiers1, and compute nodes,
with all CPUs, GPUs1 and DIMMs visible. (1: Colored according to power consumption.) Total actors: 152,906.

ABSTRACT

Digital twins are an excellent tool to model, visualize, and simulate
complex systems, to understand and optimize their operation. In
this work, we present the technical challenges of real-time visual-
ization of a digital twin of the Frontier supercomputer.

We show the initial prototype and current state of the twin and
highlight technical design challenges of visualizing such a large
High Performance Computing (HPC) system. The goal is to un-
derstand the use of augmented reality as a primary way to extract
information and collaborate on digital twins of complex systems.
This leverages the spatio-temporal aspect of a 3D representation
of a digital twin, with the ability to view historical and real-time
telemetry, triggering simulations of a system state and viewing the
results, which can be augmented via dashboards for details. Finally,
we discuss considerations and opportunities for augmented reality
of digital twins of large-scale, parallel computers.

Index Terms: Digital Twin, Data Center, Information Representa-
tion, Massively Parallel Systems, Operational Data Analytics, Sim-
ulation, Augmented Reality

1 INTRODUCTION

A digital twin can be defined as an (1) evolving digital represen-
tation of the (2) historical, current and future behavior (3) of a
physical object or process (4) that helps to optimize its perfor-
mance [17, 11]. Simulations for digital twins in scientific domains,
from applied mathematics to the life-sciences, are often run on High
Performance Computing (HPC) systems [12] [21] [24]. Yet, using
digital twins to model HPC systems themselves is relatively new.

HPC centers have been collecting metrics of their operations
for decades, which generally served to trigger system alerts and
do post-mortem data-analysis. Digital twins promise a holistic un-
derstanding of HPC systems combining telemetry with simulation,
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enabling insights to improve overall system efficiency.
For a digital twin, its visualization is the main point for human

interaction. It ties all disaggregate information together and allows
us to correlate the temporospatial information generated.

Related works have shown the impact of the visual representa-
tion of compute clusters; however, these are limited to smaller sys-
tems [3] or only focus on one aspect of digital twins [23], or do
not incorporate telemetry of infrastructure [22] or simulation. At
the same time, to the knowledge of the authors, no other work dis-
cusses the major challenges of visualizing large-scale data centers
at high fidelity with real-time interaction, with the ability to trigger
simulations visualized in the same environment.

In this work, we present: A brief overview of Frontier, a state-of-
the-art supercomputer with more than 60 million parts, generating
one million data-points each second; the current state of the visual-
ization prototype for the exascale data center digital twin; and a dis-
cussion on encountered challenges and opportunities for the visual-
ization of digital twins of large-scale parallel compute systems. The
overarching ExaDigiT digital twin framework is presented in [4].

2 BACKGROUND

The Oak Ridge Leadership Computing Facility (OLCF) started in-
stallation of the Frontier Supercomputer by the end of 2021, and
achieved 1.1 ExaFlops of performance by the submission to the
TOP500 list of June 2022 [18]. To create a digital twin and its
visualization, a description of the system and an understanding of
the telemetry data is needed, which is shown in the following.

2.1 System Description
The Frontier HPC system consists of 9,472 AMD compute nodes,
with a total of 9,472 Central Processing Units (CPUs) plus 37,888
Graphics Processing Units (GPUs). In June 2023, 37,632 of these
GPUs were used for the second TOP500 submission, achieving
1.194 ExaFlops at 22.7 MW [19].

The system is comprised of seven rows of HPE Cray EX cabi-
nets. Three Cray EX cabinets (384 compute nodes) are supported
by one Cooling Distribution Unit (CDU) for cooling. Each com-
pute cabinet consists of eight compute chassis, plus the network-
ing switches, for the Slingshot Dragonfly network. Each chassis
itself has eight Bard Peak blades, each housing two compute nodes.



The nodes themselves consist of one AMD EPYC™7A53 “Trento”
CPU with four AMD Instinct™ MI250X GPUs. Each individual
MI250X GPU is composed of two chiplets, called Graphics Com-
pute Dies (GCDs). Outside of the compute room, the central energy
plant is responsible for pumping coolant through the primary cool-
ing loop and distributing it to the CDUs as part of the secondary
cooling loop. The CDUs contains the heat exchangers to supply
each cabinet with cooling. Switchboards, bus-bars, rectifiers, and
Super Intermediate VOltage Converters (SIVOCs) within the com-
pute room are responsible for distributing and stepping down volt-
ages for consumption at the nodes.

This high level overview alone shows that having a good under-
standing of such complex system, and how its parts interact, is not
an easy task. Overall there are ∼ 60,000,000 individual parts in the
system that could be modeled. The question is which to include,
model, and show; Which depends on their state, data of interest,
and potential simulations to augment insights gained.

2.2 Telemetry
The Oak Ridge Leadership Facility houses two flagship HPC sys-
tems, while the installed infrastructure supports additional facili-
ties. The fact that there is not a single central system collecting
data is due to the sensible split of responsibilities according to fa-
cility, compute, scheduling, etc. A majority of data sources of rele-
vance for the digital twin are aggregated in the Integrated Telemetry
Database (ITDB), but the consolidation is an ongoing process. At
the same time, several systems of relevance, e.g., to the central en-
ergy plant, are explicitly encapsulated. The collection of telemetry
is a process not only required by a digital twin, but already under-
taken by Operational Data Analytics (ODA) [1].

In general, there are three data retention strategies for the teleme-
try generated, which influences how they can be used within a dig-
ital twin: Data is either a) at full resolution and stored long term, b)
available at full resolution but reduced in resolution for long-term
storage, or c) only available in real-time or for a short time win-
dow and over-written in a sliding window fashion. Retention and
long-term storage depend on the impact and usage of each sensor
value.

Overall Frontier alone generates one million data points each
second. This is a stark increase from the previous system, Sum-
mit, which generated ‘only’ 400,000 data points each second.

3 CONSIDERATIONS FOR THE UE5 FRONTIER DIGITAL
TWIN

The goal of the digital twin is for users and system engineers to
interact with the virtual representation of the system and to under-
stand the implications of the system setup, including telemetry re-
play and triggering simulations of its sub-components.

Initial tests using web frameworks served as an example to eval-
uate streaming of data into an Augmented Reality (AR)/Virtual Re-
ality (VR)-Scene. This was done using A-Frame.io [14, 15], which
is great for prototyping but not suitable for large scenes. To re-
solve this, the prototype was re-implemented in Unreal Engine 5
(UE5) [8] for AR, as it has been successfully adopted for other
projects in the organization [20, 9], using HoloLens2, as well as
desktop. A snapshot of the current state is shown in Fig. 1.

3.1 Current Prototype
System hierarchy: The general setup of the system is built us-

ing UE5-blueprints and follows the hierarchical setup of the system
as outlined above. The Frontier system blueprint consists of rows
of cabinets, as seen in Fig. 2. These are themselves either com-
pute racks or CDU blueprints. The compute rack blueprint contains
eight chassis, where each chassis is further subdivided into its net-
work equipment, cooling manifolds, PDUs and rectifiers. Addition-
ally, each chassis contains eight blades, each with two nodes, where

Figure 2: Desktop View: Side View and Translucent top down.

Figure 3: Left to right: Cooling manifold, two rectifiers, eight blades
(containing two nodes each), six additional rectifiers, eight blades
and the PDUs on the right. Each node consists of one CPU, four
GPUs, eight DIMMs each. Telemetry in red for rectifiers and GPUs.

nodes contain blueprints for CPU, GPUs and Dual In-line Memory
Modules (DIMMs). In case a component of the system is contained
within another, the modeled UE5 actor is attached to a parent actor
forming a hierarchy of actors. The detailed view of a single chassis,
showing rectifiers, GPUs, CPUs, and DIMMs is shown in Fig. 3.

Component Representation: Even with the more advanced
engine, the number of individual components is very large. With
the current state of the implementation, the fully populated scene
has over 150,000 UE5 actors. (The setup follows the blueprint hi-
erarchy as described above, plus a few additional parts such as rec-
tifiers, etc.) The actors can be spawned on demand, either in the
editor or while running the scene, to only show the subsystems of
interest. Since each component can show different information and
can be spawned on demand, for visual clarity, typical techniques
such as merging of meshes or instanced components are not feasi-
ble. This would prohibit AR interaction and disallow streaming of
data to only subsets of a system and the change of the system in a
non-static way. This is a double-edged sword: the resulting large
actor counts are not good for performance, but allow to reduce vi-
sual clutter and interactive focus on areas of interest. In the default
level, the user only sees the 104 cabinets (of which 74 are com-
pute cabinets of frontier) and can interact and show internals and
additional detail on demand, alleviating the large actor count.

Fig. 1 and Fig. 2 show all components spawned in different
views. Displaying all components with all details and dynamic
telemetry is not feasible, due to performance limitations. In an in-
teractive view only the subsystems of interest are spawned, as seen
in Fig. 4, showing the system projected onto a meeting table, or in
Fig. 5, where the two twins are shown in place.

Data Representation: Each component has a blueprint with
a material and variables for the metrics of interest. The metrics
are used to programmatically change the material color based on
the requested metric (from low to high, teal to red). Additionally,



Figure 4: AR Table-top: First (right) and third (left) person view.

Figure 5: Digital and physical twin in-place: First (left) and third (right)
person view. The user is displaying telemetry and about to trigger the
simulation in AR. The QR-Code serves as spatial anchor.

the system is programmed in a way where the Frontier system has
a representation of the hierarchical data and each spawned child-
actor has functionality to distribute and display its data as a color
via the material of the actor. The telemetry data is either stored lo-
cally or can be requested from the telemetry service which is then
distributed to the correct location. This can be used to continuously
stream data or project a recorded dataset into the scene. For this,
we use our telemetry service and can request data of interest. In the
case shown in the figures, we query power for the CDUs, the recti-
fiers, and the GPUs. Data structures, data ingestion and distribution
is implemented in parts in blueprints but mostly C++.

3.2 Data Ingestion and Visualization

Fig. 6 shows the data flow from source to visualization. Af-
ter querying, selecting, and preprocessing, the remote data is for-
warded to the local workstation. This allows to query data from the
beginning of data collection within under five seconds via REST-
API of the telemetry service. ‘Live’ data via the telemetry service
is available within two minutes [1] of collection. The final pre-
processing step is performed locally such that the visualization can
be displayed in the 3D-Scene.

Figure 6: Data Flow from source to visualization.

Figure 7: Future Work: Dragonfly Network, with inter-group (left) and
intra-group (middle) network. And central energy plant (right)

Depending on the current actor hierarchy in the scene, the
telemetry is used to populate a hierarchical shadow structure, which
is then used to distribute the data to the respective actor. This is
achieved by the implementation of a scatter or broadcast mecha-
nism available to each blueprint, by dynamically distributing and
routing of the information in at most n logn steps. This allows us
to handle missing data, while only requiring distribution to compo-
nents present in the current scene. The design allows us to incre-
mentally add subsystems based on the state and focus of the scene.
Additionally, this enables us to easily port the design to other HPC
twins. A static distribution using offsets in a data table has been
avoided due to reduced flexibility and portability reasons.

The data-set used in the figures of this work is the power data
recorded for the TOP500 submission of June 2023 [19, 2]. In gen-
eral, the data can be queried on demand by the client.

3.3 Integration of simulation for what-if scenarios
As mentioned in the introduction, “[a digital twin is a digital] rep-
resentation of the (2) historical, current and future behavior [...]”
of a system [17]. Therefore, not only is the display of telemetry
data of interest, but also the ability to simulate subsystems behav-
ior based on a system state. The level of fidelity (both spatially and
temporally) for each of such interdependent simulation tools largely
depend on how they are coupled with each other. Depending on the
the simulation, this can be run in in-situ, alongside the digital twin,
or be fed into the 3D-scene after the simulation completion. This
depends largely on the model complexity, real-time capability and
how the individual simulations are coupled.

Our current model is able to run a thermo-fluidic model to simu-
late the cooling system, triggered via a hand menu. This is achieved
using the Functional Mock-up Interface (FMI) standard interface
used to integrate packaged ODE-based system models (Functional
Mock-up Units (FMUs)). The FMU model accepts real-time in-
puts and generates outputs which are key to coupling to other mod-
els within the digital twin modeling framework. The system-level
model offers a good balance between advanced predictive capabil-
ity and simulation time in comparison to Computational Fluid Dy-
namics (CFD) models which offer greater spatial and temporal res-
olution but are currently not suitable for real-time dynamic simula-
tions. In the work presented, a Modelica [5] model was developed
and the simulation of the liquid cooling loop from cooling tower
to CDU is integrated and can be triggered and results visualized via
FMU plugin [10], developed for the TRANSFORM library [9]. The
results of the simulation are displayed in the mocked internals of the
CDUs (see Fig. 5, left). The thermo-fluid simulation includes the
cooling loop from cooling tower to CDU [4] and is in the process
of being fully integrated with the visualization. Currently, we map
simulated flow rates, pressures and temperatures to the CDUs when
triggering the simulation from telemetry within the visualization.

3.4 Next steps: Addition of the network and integration
of central energy plant

HPC systems rely on fast interconnects to achieve high performance
at system scale, therefore, modeling and understanding the net-



work is essential. We have started prototyping the network and can
show a full Dragonfly topology, with 74 ∗ 73/2 Inter-Group plus
74 ∗ (64 ∗ 63)/2 Intra-Group links, resulting in a total of 151,885
links. This large amount of links is implemented via the Niagara
particle system in UE5 [7]. (Note: The real system has fewer links,
as only 32 switches per rack are installed, where 64 is the racks
maximum.) The next step is to replay and display telemetry for each
link. Fig. 7 shows that all static links can be displayed, and even be
streamed to the HoloLens2 without performance issues. Selectively
displaying based on link-level telemetry is work in progress.

Additionally, we have added the CAD models for the central en-
ergy plant in the visualization, where integration of simulation and
telemetry are ongoing work (see Fig. 7 right).

4 CHALLENGES

In the following, we discuss the major challenges encountered:

Large Scale Systems: The system discussed is at extreme
scale. This goes both for individual components, but is true for
each: compute, infrastructure, and data. At the same time, the inter-
play of the different systems spans multiple domains (computation,
electric, cooling). Most of the compute systems can be grouped
hierarchically, such as the layout described in the setup above. Ev-
erything else has a complex interaction with the compute system
and forms an overlay structure: the networking of the system; the
electrical system; the cooling system. Mapping active workloads
and jobs to the compute system and understanding its impact on the
aforementioned subsystems poses a significant challenge, where a
visual system can help understand theses interactions.

Big Data: As seen in the telemetry section, there are several
teams required to maintain and operate the telemetry services to
use the data coming from the system, in which ODA [16] is of
principal importance. This is truly big data, as becomes clear by
putting information of our telemetry system to the four Vs associ-
ated with big data [1]: Volume (expected 20PB); Velocity (currently
300 MB/s of telemetry in transit); Variety (Types of sensors, data-
types, sampling frequency retention strategy etc.); Veracity (miss-
ing data and faulty sensors). By projecting the collected data onto
a digital twin, a better understanding of the system is formed. Yet,
the real value-add is achieved by using this data to run simulations
and gain additional insights, by doing what-if analysis.

Visualization: The current visualization only captures a part of
the system. However, the total number of actors with only this num-
ber of components present in the system is over 150,000 already.
Since we use simple cuboids the rendering and updating of data
in the scene is still feasible and performance on a modern desktop
system is acceptable. When streaming the scene to a HoloLens 2
device from the same desktop, not all actors can be displayed, expe-
riencing limitations at ∼ 100,000 actors. Even if we could stream
all this data, there is more data of interest, thus we always have
to make trade-offs and select areas of interest and usability, while
providing overview and detail.

5 OPPORTUNITIES

The combination of telemetry and simulation displayed in the same
3D scene allows for unique capabilities for better understanding
complex system behavior.

Spatial and Temporal Correlation of Information: Each
component within the system has a physical location. Data visu-
alization of telemetry usually does not present the data according
to its location. Digital twins present a unique opportunity to bring
telemetry and sensors into a spatial context and help to understand
the impact on connected systems. After the spatial correlation, the
temporal correlation of the data is the next step. The distribution
of telemetry observed in different subsystems can be replayed in a
synchronized fashion. Depending on the fidelity of the simulations,

initial conditions can be chosen based on the telemetry of the com-
plementary subsystems and replayed based on the temporal context.

Adaptive Layout of Information: Lessons learned from infor-
mation visualization should be vigorously applied to avoid informa-
tion overload and visual clutter. This can be especially detrimental
in AR and VR environments. At the same time, by operating inside
of a game engine, the layout is not tied to the physical layout of
the system. In Computer Aided Design (CAD) the exploded view
of a part is an example for this. For an HPC digital twin, present-
ing the information in a planar view as seen in a dashboard and
then transforming the individual components back to their physical
layout can allow bridging the chasm between data and information
visualization and 3D visualization of physical systems [13, 6].

Understanding Complex System Interaction: Within the
digital twin modeling framework, one of the keys to understanding
complex system interaction is to ensure that each of the constituent
models can exchange dynamic data and generate system simulation
which is useful to the end-user or customer. The flavor of the digital
twin depends on the end-user – for planning and the design phase,
for operations, or after decommissioning for retrospective use. Our
use-cases are: In the facility design/planning phase, optimization of
the cooling system can be used to drive the datacenter Power Usage
Effectiveness (PUE) closer to 1.0. For facility operations, which is
the typical use-case for a digital twin, the digital twin is useful for
the facility operator to visualize the performance of the digital twin
alongside the real system, allowing to localize potential deviation.
The digital twin can also include reliability models informing the
operator of potential component failures, such as mechanical com-
ponents (cooling system), electrical components (power supply),
and GPUs/CPUs. The what-if-scenario use case relies heavily on
the simulation aspect of the digital twin and is descibed in [4].

Interactive Level of Detail (LoD): We identified interaction
as an LoD mechanism to be an excellent way of coping with lim-
ited performance and at the same time visual clutter. Fully utilizing
interactive LoD is an opportunity, yet to find good ways of gen-
eral interaction is not always trivial in complex systems. The value
of the digital twins is also of collaborative nature, therefore under-
standing how interactive LoD can be done with network replication
in mind is a large opportunity that we want to leverage.

Combining AR with web-based Dashboards: Data analysis
in three dimensions is not trivial, where two dimensions can have
significant advantages when comparing individual data points, and
timelines. As we operate in an AR environment we can bring web-
based dashboards already developed for ODA into the scene, and
supplement the digital twin with simulation-specific dashboards.
This also improves the value of the dashboards, as it is generally
not trivial to correlate their information to the spatial domain. This
bridges a huge gap that only digital twins with real-time analysis
capability can achieve.

6 CONCLUSION & FUTURE WORK

We presented the current state of the visualization for the Frontier
digital twin. We showed the hierarchically spawn-able structure of
our twin and the capability to replay data from the ODA teleme-
try servers and to trigger thermo-fluid simulations, displaying its
results in the live AR environment. With the focus on interactive
AR systems, resource limitations for representing such a large-scale
system had to be carefully considered, resulting in a solution with
scalability and interactive LoD in mind. We are in the process of
capturing additional use-cases and are working with the community
to make it modular and relevant for other compute systems.

The visualization of a digital twin greatly augments the under-
standing of a complex system, such as the Frontier supercomputer,
and allows us to interact with them for greater understanding.
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