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Figure 1: Feature Clock uses a high- and low-dimensional data, X and Y. b We define the feature contribution as a coefficient of the linear
regression (LR) between X and yθ (Y projected at angle θ ). The optimization goal is to find the angle θ j at which the coefficient β

j
θ j of feature

j is maximized. c The solution is derived from LR coefficients of θ = 0◦ and θ = 90◦. d We filter the insignificant LR coefficients based on
p-values. Features with insignificant p-values are not visualized. e The largest coefficient of each feature is visualized in the Feature Clock.

ABSTRACT

Humans struggle to perceive and interpret high-dimensional data.
Therefore, high-dimensional data are often projected into two di-
mensions for visualization. Many applications benefit from complex
nonlinear dimensionality reduction techniques, but the effects of
individual high-dimensional features are hard to explain in the two-
dimensional space. Most visualization solutions use multiple two-
dimensional plots, each showing the effect of one high-dimensional
feature in two dimensions; this approach creates a need for a visual
inspection of k plots for a k-dimensional input space. Our solution,
Feature Clock, provides a novel approach that reduces the need to
inspect these k plots to grasp the influence of original features on the
data structure depicted in two dimensions. Feature Clock enhances
the explainability and compactness of visualizations of embedded
data and is available in an open-source Python library1.

Index Terms: High-dimensional data, nonlinear dimensionality
reduction, feature importance, visualization.

1 INTRODUCTION

Dimensionality reduction methods transform high-dimensional data
into lower-dimensional space. These methods aim to preserve vari-
ous properties of the original data in lower dimensions (e.g., variance,
pair-wise distances or similarities, or grouping structure). Use cases
include numerous applications: feature selection [17, 34], visualiza-
tion [16, 32, 24], compression [33, 13], and approximate techniques
to avoid the curse of dimensionality [12, 1]. There are two main
types of dimensionality reduction: linear and nonlinear.

Linear dimensionality reduction (LDR) techniques linearly
project higher dimensional data into a lower dimensional space. All
LDR methods can be seen as a single matrix multiplication, accord-
ing to Y = XW where X is the original data with samples as rows
and features as columns, Y is the low-dimensional representation,
and W is the transformation matrix. One of the most common visu-
alization techniques to show the effect of high-dimensional features
in LDR space is a biplot [10], which depicts the rows of W.

Nonlinear dimensionality reduction (NLDR), also called manifold
learning, is a set of techniques that aim to project high-dimensional
data onto lower-dimensional manifolds [30, 22, 23]. NLDR algo-
rithms are usually better at preserving data grouping structure in
two dimensions than LDR; this is a desirable behavior found in the
outputs of many NLDR methods [30, 31, 22, 25, 23]. A classical
example of NLDR is t-distributed stochastic neighbor embedding
(t-SNE) [30, 31], which constructs two probability distributions over
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high- and low-dimensional data and minimizes the Kullback–Leibler
divergence (KLD) [15] between the two distributions. A disadvan-
tage of NLDR is that the distances in the low-dimensional space
may not reflect the distances in the original space [18]. Constructing
biplots for NLDR is impossible because no linear W exists to explain
the effect of features. Currently, one can visualize the effect of each
feature of interest in a separate plot [32, 16, 20]. These numerous
plots are one of the best methods to understand the original feature’s
effects in low-dimensional spaces, but this solution is not scalable.

This paper introduces three types of static visualizations, high-
lighting the contributions of the high-dimensional features to linear
directions of the two-dimensional (2D) spaces produced by NLDR.
The three techniques are a Global Feature Clock indicating the di-
rection of features’ contributions in low-dimensional space for the
whole dataset, a Local Clock explaining features’ impact within
selected points, and an Inter-group Clock visualizing contributions
between groups of points. The implementation is an open-source
Python package. Our technical contributions include: (1) Feature
Clock, a novel technique for plotting feature contributions using
linear regression in Sec. 3, (2) a formal proof that ensures a correct
behavior of Feature Clock in Sec. 3 and Suppl. Materials, and (3) an
experimental evaluation of the proposed visualization technique in
several application cases in Sec. 4.

2 BACKGROUND AND RELATED WORK

This section summarizes common approaches to visualize the results
of LDR and NLDR methods and highlights their limitations.

Biplot for LDR: Biplot [10] is a visualization technique that can
be applied to all LDR techniques. It involves creating a scatter plot
that represents the low-dimensional data points, called a score plot.
Vectors are depicted to show the strength of each feature influence
(rows of W), which are referred to as a loading plot. By interpreting
a biplot, a user extracts information about the direction and strength
of the association between original and low-dimensional space fea-
tures. The effect of W is uniform across the low-dimensional space,
making biplot an effective tool. Fig. 2a shows a PCA biplot for
the Iris flower dataset [8] where the respective x- and y-axis are
the two principal components. The points are 2D embeddings of
the four-dimensional data points representing realizations of the iris
plants. The arrows point toward change for a given feature. For
instance, sepal width points at ∼100◦, meaning that increasing sepal
width translates to moving points up at the same angle. A change
in petal length and width affects embedded coordinates in the same
direction. The magnitude of an arrow indicates how significant a
change of the original feature affects shifts in coordinates.

Visualizations of feature effects for NLDR: While NLDR is
popular for data visualization, interpreting the global and local struc-
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Figure 2: (a) PCA biplot with feature loadings, (b) t-SNE scat-
ter plots for each high-dimensional feature (perplexity=17). (c) A
Feature Clock showing the feature contributions for the Iris dataset.

tures of NLDR outputs can be challenging. A common method to
assess the retained information in the low-dimensional represen-
tation involves assigning color codes to each projected data point
based on a feature from the input data [19], which often results in vi-
sual clutter. Thus, field-based techniques can be used to reconstruct a
2D scalar function for a feature of interest used for spatial color cod-
ing [27]. Other approaches illustrate regions of maximum attribute
values. For example, DataContextMap [4] enhances the projection
by adding extra data points representing high feature values and dis-
playing contours to depict feature distribution. DimReader [7] uses
perturbations, measures their effect on the projection’s outcome, and
visualizes the resulting changes as grid lines. t-viSNE [2] supports
exploring t-SNE projections, employing visualizations to analyze
correlations between dimensions and visual patterns.

Many methods aim to identify clusters in the 2D space and ex-
plore their properties in the high-dimensional data. For instance,
Joia et al. [14] propose a visualization that utilizes matrix decom-
position to define clusters in the visual space. Turkay et al. [29]
associate representative factors with groups of dimensions for itera-
tive analysis of the projected data, presenting techniques to compare
and evaluate these factors. Several approaches focus on compar-
ing the properties of different groups found in the 2D space. For
example, Probing Projections [28] enable to examine projections
based on approximation errors and the influence of data dimensions
on the projection space, and supports the comparison of different
clusters in the 2D space. Eckelt et al. [6] introduce new designs for
visual summaries of common properties of such clusters and propose
novel group comparison visualizations. Marcilio-Jr and Eler [21]
employ cluster-oriented analysis to explain dimensionality reduction
techniques with the so-called ClusterShapley method. Fujiwara et
al. [9] present a visual analytics method that explains features’ con-
tributions to the projected data by calculating each feature’s relative
contribution to the contrast between one cluster and other clusters.

Despite the work on how to visualize NLDR embeddings, there
is no biplot alternative for NLDR. A common solution is to show
a plot per feature to analyze high-dimensional values in the low-
dimensional space, see Fig. 2b. Multiple scatter plots are a space-
consuming and not scalable solution. We suggest an alternative to
the biplot: Feature Clock shown in Fig. 2c and described in Sec. 3.

3 METHODOLOGY

This section outlines the internals of the Feature Clock, see Fig. 1.
The Feature Clock helps explore feature contributions of data points
projected in two dimensions. A user can be interested in how high-
dimensional features contribute to the positions of low-dimensional
data points globally or locally, or which features discriminate user-
defined classes or clusters. To address the former, we provide the
Global and Local Clocks where the arrows correspond to the largest
coefficients of linear regression, predicting coordinates of data points
projected on a line passing through the center(s) of mass. For the
latter, we offer the Inter-group Clock, where arrows correspond to the
feature contributions in the classification task (logistic regression).

Feature Clock Overview: The method addresses a linear re-
gression problem with the high-dimensional data as the predictor
variable, X ∈Rn×d , and the low-dimensional data, Y ∈Rn×2, pro-
jected on a line at angle θ as the target variable, yθ ∈Rn (Fig. 3).
We solve the optimization problem θ j = argmaxθ |β j| for each fea-
ture j, by finding the angle θ j , at which the absolute value of linear
regression coefficient β

j
θ

is maximized. For each feature j, a closed-
form solution allows to find the largest coefficient using coefficients
β

j
0◦ , β

j
90◦ , and Pythagoras theorem (Fig. 1c). First, the high- and

low-dimensional data are optionally normalized (default: standardiz-
ing high-dimensional input, centering low-dimensional coordinates).
Second, the angle and magnitude of the strongest contribution are
derived from the linear regression coefficients β0◦ and β90◦ (a formal
proof in Sec. A.1 of Suppl. Materials). We fit two multivariate
linear regression models to find the contribution of high-dimensional
features X to the low-dimensional projections on the x (y0◦ ) and y
(y90◦ ) axes in the 2D space. To compute β0◦ and β90◦ , one model is
fitted between X and y0◦ , another between X and y90◦ . We advise
the user to standardize X to make coefficients β j comparable across
features; alternatively, we offer an option to standardize β j , as post-
processing. For each feature j, we define the biggest contribution as
(β

j
θ j )

2 = (β
j

0◦)
2 +(β

j
90◦)

2 at angle θ j = arctan(β j
90◦/β

j
0◦). Finally,

we use t-test p-values to filter out statistically non-significant coef-
ficients and visualize only significant contributions. The p-value
of a linear regression model checks if there is a significant linear
relationship between each feature of X and yθ . If the p-value is low,
the relationship is significant (default: p-value < 0.05).

θ

Figure 3: Projection of 2D
points on a line at angle θ .

An alternative to visualizing one
coefficient per variable is to project
low-dimensional data on the radius
of the semicircle at different angles,
see Fig. 3, and visualize all coeffi-
cients for all features per projection,
see Sec. A.2 of Suppl. Materials. This
results in perfect circles that appear be-
cause of projection and rotation. Pro-
jection angles are defined by incre-

ments from 0◦ to 180◦ by a user-defined θ = 180◦
m with m projection

lines, where θ = 5◦ is the default value. We default to plot the largest
coefficient for each high-dimensional feature since it is a cleaner
visualization that maintains maximum information, but the user can
opt for the “circles” visualization. If a dataset has many features, a
user can visualize only top-k features sorted by impact.

Clock annotations show the coefficient βθ size and are intended
for an easier comparison within and between clocks. Comparison is
possible because all coefficients are normalized. We place the clock
in the center of the low-dimensional points, but the user can change
the location. The clock location does not influence the computation
of the contributions. The size of the clock is defined by the distance
between min and max points, but the user can scale the clock.

Global Feature Clock: We construct a clock using all data points
to visualize the impact of the high-dimensional features in the two-
dimensional space. The disadvantage of the Global Clock is that it
does not capture finer changes of gradients across the whole data,
but rather a trend. Since we approximate the path on a manifold
with a line, this clock can miss some information.

Local Feature Clock: We use a Local Clock technique to explore
data at a finer granularity within a group. The Local Clocks enable
an easier analysis of a selection of neighboring points. Class labels
or unsupervised clustering of high-dimensional data determine the
points used for a single clock. Analyzing original labels gives a
perspective on what drives low-dimensional data point coordinates
within a particular class or cluster. We default clustering to HDB-
SCAN with user-chosen parameters that also identifies outliers not
assigned to any cluster. Users are responsible for the meaningful
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Figure 4: (a) Global Feature Clock shows the general trend for top-4 significant features for hospital survival. (b) Local Clocks help to inspect
the data within original labels (patient survived/died in hospital) while (c) Inter-group Clock shows how features change between two classes.
(d) t-SNE (perplexity=50) scatter plots support three clocks and show the value range of high-dimensional features for survival in hospital.

clusters and can define their own clusters. For each cluster or class,
we apply the same method as in Fig. 1 and create a single clock
signifying changes within selected points.

Inter-group Feature Clock: The third visualization option helps
inspect how variables change between groups, either clusters or
user-defined classes. We fit a binary logistic regression with high-
dimensional observations as predictor variables and visualize sta-
tistically significant coefficients on a single line that connects the
group centers. The arrow lengths correspond to the absolute values
of the model coefficients. The clock is placed in the center of the
line that connects the groups’ centers. In a multi-group setting, there
is a space limitation for plotting all pairs of groups and their clocks.
Therefore, we build a minimum spanning tree (MST) between group
centers in low-dimensional space and plot the inter-group clocks
only for a trajectory on the MST.

Limitations: We explain high-dimensional contributions with
linear directions. If data is dense, we can approximate the movement
of the gradients on the manifold in the original high-dimensional
space with the shortest distance on average in low-dimensional
space [3]. We assume that the shortest path is a line. The NLDR
maps tend to plot points sparsely located away from cluster centers
relatively close to those centers due to the sigmoid shape of the joint
probability functions and the form of the objective function (KLD
or cross-entropy) [30, 22]. As a result, these points have a minimal
impact on the values of the regression coefficients β j. The Feature
Clock technique, especially the Global Clock, can miss information
and not always follow the actual manifold and a nonlinear path on it.

Example: Fig. 2 shows a PCA biplot with feature loadings, t-
SNE scatter plots for each variable, and Feature Clock for the Iris
dataset [8]. A biplot (Fig. 2a) shows how features influence low-
dimensional representation. We can see that petal width and length
are the driving factors for the versicolor and verginica classes. The
scatter plots, in Fig. 2b, display how high-dimensional values of each
feature are distributed in the 2D t-SNE space. All features except
sepal width increase the most with increasing x and y values. From
a Feature Clock in Fig. 2c, we observe how each variable impacts
t-SNE embedding. In the Feature Clock, the sepal length, petal width
and length are driving factors for versicolor and virginica classes.
Sepal width increases in the direction of the setosa class, similar to
the PCA. For PCA, the Feature Clock produces the same arrows as
the biplot (figures not shown).

4 USE CASES

In this section, we describe several applications of Feature Clocks
and how they improve explainability for each task.

4.1 Analysis of Low-dimensional Data
Support2 [5] is a dataset that comprises information on critically ill
patients across US medical centers. Each patient is assigned one
of nine diseases: acute respiratory failure, liver disease, colon/lung
cancer, etc. The dataset is often used to train supervised machine
learning models to determine whether patients would die in the hos-
pital based on physiological, demographic, and disease information.

There are 46 features describing each patient. It is infeasible to
visualize the effects of all features by plotting 46 scatter plots, one for
each variable. Therefore, the high-dimensional feature’s impact can
be visualized by Feature Clocks with the top-k significant features.
Fig. 4 shows three clocks and scatter plots supporting clocks for
the Support2 data. For all three clocks, we have set k = 4 (top-4
features). We use the hospital death status of the patient as a label for
the Local and Inter-group Clocks. We observe that t-SNE captures
the difference between patients who die or survive in the hospital.

The Global Clock (Fig. 4a) shows that disease class, cost/charges
ratio, average Therapeutic Intervention Scoring System (TISS), and
APACHE3 scores differentiate the outcome of critically ill patients.
To support the Global Clock, we show scatter plots in Fig. 4d. We
see that patients with a less severe disease class survive more often,
and medical centers charge these patients less. The average TISS
score allows a quantitative comparison of patient care, research
experiences of different intensive care units (ICU), and an estimate of
the severity of the disease. Most of the deceased patients had a high
TISS score. APACHE3 scoring serves as an early warning indication
of death and prompts clinicians to upgrade the treatment protocol,
making it a useful tool for the clinical prediction of ICU mortality.
The people with a negative outcome have a higher APACHE3 score.

The Local Clocks in Fig. 4b represent points that belong to either
the survival or death class. We see two clocks; both are driven by the
disease class and the presence of dementia. The 2D space of living
patients is influenced by variables such as diabetes and the Activities
of Daily Living (ADL) score estimated by the family of a sick person.
The ADL score evaluates a patient’s ability to accomplish their daily
activities. The patient’s ADL and bilirubin levels are significant
contributors to the 2D representation of the patients who die.

In Fig. 4c, the Inter-group Clock shows features that differ be-
tween deceased and living patients. As shown by the Inter-group
Clock, mortality increases with higher values of the average TISS,
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Figure 5: (a) Local Clocks explore the NLDR space by inspecting
HDBSCAN clusters. (b) Inter-group Clock shows how features
change between clusters. (c) For the verification, we show a t-SNE
scatter plot for each feature in the clocks (perplexity=50).

Do Not Resuscitate (DNR) order day, and if resuscitation was given.
Survival decreases with days spent in the study.

Instead of visualizing clocks for the original target, the user can
explore low-dimensional space with clustering. In Fig. 5, the Local
and Inter-group Clocks (top-4 features) use HDBSCAN clusters of
high-dimensional data; the resulting two clusters are clearly seen
in the t-SNE embedding (blue and orange). Some points are not
assigned to any cluster by HDBSCAN (gray). The Local Clock
in Fig. 5a shows that coordinates of data points in both clusters
0 and 1 are driven by the presence of diabetes and ADL scores.
Interestingly, the ADL score estimated by the patient’s family is
high on the left in the two clusters, and contributions point in the
respective direction. The same applies to the diabetes status. A
bigger cluster 0 is also characterized by disease class while cluster 1
differs by the day of the study entrance.

The Inter-group Clock in Fig. 5b shows the feature that drives the
difference between the two clusters. In the t-SNE space, people with
dementia are clearly separated from patients without the disease,
and that is the only significant feature for the trained classifier.

Further use cases are included in the Supplemental Material.

4.2 Neural Network Interpretability
The Pima Indians Diabetes Database [26] provides data on adult
females of Pima Indian heritage. It is used to train models predicting
if a patient has diabetes based on clinical and demographic data.

The clock technique can be used to explain the hidden states
of a neural network (NN). Users can plot a Feature Clock using
either a 2D hidden state or apply NLDR to any high-dimensional
hidden layer to get a 2D representation. This visualization has the
potential to help the user better understand the factors that drive the
information extracted at each hidden layer.

In this use case, we analyze the last hidden layer (two neurons)
of a NN with two layers. Fig. 6 shows a clock and scatter plots
for the last hidden layer, using true labels in the visualization. The

a b

Figure 6: (a) We use Global Clock to describe 2D hidden state of
the NN and justify the clock with (b) a scatter plot for each feature.

representations of patients with and without diabetes are almost
linearly separable. The clock on Fig. 6 identifies increasing glucose
and body mass index (BMI) as indicating factors for diabetes. This
conclusion can be verified by scatter plots in Fig. 6, where we show
a subplot for each feature, including the target Labels. Age and
number of pregnancies also substantially contribute to the activation
values of this hidden layer. Low insulin and blood pressure lead to
no diabetes, which aligns with low values in the scatter plots.

It is worth noting that all Feature Clock versions are applicable
to any NN architecture, including autoencoders. We used the feed-
forward NN with two neurons as a simple example.

4.3 Preliminary User Feedback
We gathered feedback regarding the readability of the Feature Clock
visualization in an informal interview with two post-doctoral re-
searchers from the visual analytics research field. The researchers
agreed that the visualization is simple yet effective, easy graspable,
and intuitive. They also mentioned potential extensions in highlight-
ing the uncertainty in the feature contribution through the visual
blurring of the respective arrows as well as extending the visual
representation to those used to represent velocity [11].

5 REFLECTIONS, ISSUES AND FUTURE WORK

To summarize, we have shown a group of novel plotting techniques
called Feature Clocks. We illustrate how Feature Clocks can be used
to interpret lower-dimensional space resulting from NLDR methods
and the latent space of deep neural networks.

The implication of the suggested technique is an intuitive, com-
pact, and informative visualization that enhances explainability. It
eliminates the need for multiple scatter plots to explain the impact
of original features after a non-linear dimensionality reduction. For
a large number of variables, making scatter plots for each feature
becomes infeasible and challenging to analyze visually. The main
limitation is the linear approximation of the nonlinear path on the
manifold. This path might not exist if manifolds are disconnected.
Feature Clock advises a user about the feature changes, but some
information might be missed, especially in the Global Clock, since
we might not follow the actual manifold.

Future work may include refinement of the model for the visu-
alization. One can use non-linear regression to visualize complex
gradient changes in the feature space. The challenge lies in develop-
ing an algorithm that is computationally efficient enough to solve the
optimization problem. Another potential direction of future research
is replacing yθ with a trajectory, non-linear in 2D, better reflecting
the shortest-distance traverse of the low-dimensional manifold. Ad-
ditionally, to allow interactive selection of the points to analyze, we
could implement a lasso tool using GPU acceleration.

6 CONCLUSIONS

We introduced Feature Clock, a group of novel plotting tech-
niques for global, local, and inter-group analysis of non-linear two-
dimensional spaces. First, the Feature Clock enables compact repre-
sentations of the two-dimensional space, highlighting contributions
of high-dimensional features. Second, we found an efficient way to
identify the largest feature contribution: We mathematically proved
the validity of calculating the biggest contribution from two pro-
jections and showed that expected behavior matches the empirical
observations in the plots. Third, we have illustrated that the Fea-
ture Clock is applicable to the analysis of the classical non-linear
dimensional reduction and the neural networks’ latent space.
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