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ABSTRACT

In this paper, we analyze the Apple Vision Pro hardware and the
visionOS software platform, assessing their capabilities for vol-
ume rendering of structured grids—a prevalent technique across
various applications. The Apple Vision Pro supports multiple dis-
play modes, from classical augmented reality (AR) using video see-
through technology to immersive virtual reality (VR) environments
that exclusively render virtual objects. These modes utilize differ-
ent APIs and exhibit distinct capabilities. Our focus is on direct
volume rendering, selected for its implementation challenges due
to the native graphics APIs being predominantly oriented towards
surface shading. Volume rendering is particularly vital in fields
where AR and VR visualizations offer substantial benefits, such as
in medicine and manufacturing. Despite its initial high cost, we an-
ticipate that the Vision Pro will become more accessible and afford-
able over time, following Apple’s track record of market expansion.
As these devices become more prevalent, understanding how to ef-
fectively program and utilize them becomes increasingly important,
offering significant opportunities for innovation and practical appli-
cations in various sectors.

Index Terms: Apple Vision Pro, Volume Rendering, Virtual Re-
ality, Augmented Reality.

1 INTRODUCTION AND MOTIVATION

Virtual Reality (VR) and Augmented Reality (AR) trace back to
Sutherland’s seminal work in 1968 [29]. While significant progress
was achieved in VR, it wasn’t until the 1990s that the technology
matured enough to be practical. In 1990, Caudell and Mizell [9]
introduced the term ’Augmented Reality’ to describe a heads-up
display (HUD) system blending computer-generated imagery with
reality. A significant milestone for widespread interest in immersive
technology was the release of affordable VR devices in 2013, start-
ing with the Oculus Rift [2], which sparked a surge of interest and
research in VR and AR. Similarly, AR devices like Google Glass
[1] have become more accessible to the public. While various VR
and AR platforms have been developed, recent affordable devices
predominantly employ inside-out tracking and operate on two pri-
mary principles for AR: optical see-through and video see-through,
each offering distinct advantages and limitations.

Despite the success of professional applications and casual
games like Beat Saber and Pokémon Go [7, 27], these platforms
have not yet reached the widespread adoption of standard comput-
ers or mobile devices. This may be due to lingering hardware and
software limitations that have prevented the emergence of a defini-
tive “killer app,” including challenges with display quality, track-
ing, and overall performance.
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In June 2023, Apple unveiled the Apple Vision Pro [3] system,
positioned as a ”spatial computing platform” supporting both AR
and VR, thus establishing it as a comprehensive extended reality
(XR) platform. The device became available in the US in February
2024 and is priced similarly to other professional AR devices like
the Microsoft HoloLens 2 [26], in contrast to the more economical
Meta Quest Pro [25]. What sets the Apple Vision Pro apart is not
only its unique hardware features but also the reputation and market
influence of Apple itself. Apple has a proven track record of trans-
forming niche markets into profitable platforms, as seen with prod-
ucts like smartphones and smartwatches. This means that investing
time in understanding Apple’s hardware and software platforms can
be valuable for researchers. While a doctor may not care about the
brand of the headset used in a virtual reality-aided procedure, the
longevity and widespread adoption of Apple’s platforms can make
learning to fully utilize the potential of these devices a worthwhile
investment for data and visualization scientists.

This short paper provides early insights gained from implement-
ing a testbed for VR and AR direct volume rendering on the Apple
Vision Pro spatial computing platform. We chose direct volume
rendering due to its inherent challenges on VR and AR devices,
where modern graphics APIs typically prioritize surface rendering.
From a hardware and performance perspective, the raster-bound na-
ture of direct volume rendering presents intriguing complexities,
particularly in environments with dual high-resolution screens un-
der severe power and heat dissipation constraints.

2 RELATED WORK

AR and VR are primarily utilized in gaming, collaborative envi-
ronments, and scientific visualization, with medical research and
clinical practice being the most common usage scenarios within the
visualization domain. Although volumetric effects greatly enhance
immersion in gaming and collaboration, performance constraints
often lead to their approximation using techniques like imposters.
Therefore, our review primarily focuses on medical applications.

Many areas of medicine today utilize data from imaging tech-
niques, like CT or MRI, for diagnostics and for engaging patients
in their own care processes. These volumetric data are best repre-
sented in a 3D environment, which not only conveys information
more effectively but also preserves the context of the visual data.
Additionally, 3D representation allows for intuitive interaction, un-
like traditional 2D screens.

This data representation is useful not only for diagnosis but also
in medical education and the planning of surgeries and therapies.
For instance, Magdics et al. [23] developed a VR Nasal Cavity Ed-
ucation Tool using Volume Rendering to depict the human nasal
cavity within the context of the entire head, employing DVR with
spatially varying parameters to highlight the size and location of the
nasal cavity relative to the skull.

Mayer et al. [24] introduced an educational VR application for
teaching human anatomy to medical students, allowing them to vir-
tually dissect the visible human. Meanwhile, Zhang et al. [34] pre-
sented a VR application aimed at training surgeons about poten-
tial natural physical variations in patients, which could enhance the



quality of surgeries. Additionally, Cao et al. [8] used DVR to model
patient brains from MRI data for planning minimally invasive sur-
geries.

Furthermore, numerous studies, such as those by Taibo and
Iglesias-Guitian [30], have focused on improving volume rendering
for VR systems. Their work ”Immersive 3D Medical Visualization
in Virtual Reality using Stereoscopic Volumetric Path Tracing” em-
ploys aspects of a DVR-based approach (Monte Carlo volumetric
path tracing) to improve cinematic rendering processes, reducing
computational demands and enhancing effectiveness for interactive
real-time applications.

Lastly, Valls-Esteve et al. [32] conducted a comparative study
of advanced 3D imaging techniques for pediatric tumor surgeries,
emphasizing the importance of volume rendering in transforming
2D radiological images into 3D visualizations that provide surgeons
with a better understanding of complex anatomies and tumor loca-
tions.

Building on these advancements in medical VR applications, the
release of the Apple Vision Pro in Febrary 2024 has introduced
new prospects. Though initially available only in a limited release
of estimated 100,000-200,000 devices (according to various inter-
net sources) and only in the US, it has already expanded the pos-
sibilities for medical and educational VR applications. Its high-
performance features support a range of specialized apps, tailored
for professional training, surgical planning, and enhanced commu-
nication between healthcare professionals and patients [4].

Among these applications, the myMako app by Stryker [15] for
surgical planning and the Cinematic Reality app [16] both lever-
age the immersive capabilities of the Vision Pro to provide detailed
anatomical studies and interactive surgical simulations. Similarly,
the Complex HeartX app by Elsevier [11] uses the platform to edu-
cate both medical professionals and laypersons about cardiovascu-
lar health and diseases, improving patient and family understanding
of medical conditions through interactive experiences.

These applications demonstrate the potential of volume render-
ing technologies when combined with cutting-edge XR hardware
like the Apple Vision Pro.

In summary, the integration of cutting-edge XR technologies like
the Apple Vision Pro with sophisticated volume rendering applica-
tions marks a significant leap forward in the way medical profes-
sionals can plan surgeries, educate students, and communicate with
patients, ultimately enhancing the quality and efficacy of medical
care.

3 THE APPLE VISION PRO PLATFORM

In this section, we explore the key components of the Apple Vi-
sion Pro, starting with its hardware specifications and subsequently
examining the software ecosystem that supports effective program-
ming and operation of the device. This analysis emphasizes the
APIs that are crucial for direct volume rendering.

3.1 Hardware
The Apple Vision Pro’s hardware can be divided into three primary
categories: the computing platform, the displays, and the tracking
hardware. On the logic board of the Apple Vision Pro, most of the
space is dedicated to two main integrated circuits (ICs): the M2
SoC and the R1 co-processor.

The R1 co-processor is dedicated exclusively to managing the
computational demands of tracking. This arrangement ensures that
tracking operations are executed with high efficiency, akin to a stan-
dalone tracking system, while minimally impacting the main CPU’s
resources. As a result, we can assume that the bulk of the CPU and
GPU capacities remain available for other tasks, comparable to the
resource availability in a desktop workstation not engaged in track-
ing. Our profiling results underscore this assumption as we do not
see any significant time spent by the system on tracking.

The M2 SoC in the Apple Vision Pro features a configura-
tion similar to that of a lower-end MacBook Pro, with an 8-core
M2 processor—comprising four performance and four efficiency
cores—supplemented by 10 GPU cores and a 16-core neural en-
gine. It is equipped with 16 GB of unified memory and offers
up to 1 TB of SSD storage [3]. Preliminary performance compar-
isons using Geekbench 6 yield scores of 2451/8294/39763 (Single-
/Multicore/GPU), which are comparable to those of a current Mac
Mini M2, which scores 2683/10094/46522.

The Vision Pro utilizes two Micro-OLED screens, each provid-
ing a resolution of approximately 3660 × 3200 pixels. Although
edge trimming slightly reduces the effective pixel count, the res-
olution remains comparable to dual 4K displays [18]. This high-
resolution setup poses a significant challenge for direct volume ren-
dering, as the rendering performance is proportional to the num-
ber of pixels covered by the volume on screen. To address this,
the Vision Pro leverages built-in eye-tracking hardware to support
foveated rendering, which dynamically adjusts the rendering res-
olution based on the viewer’s gaze location, thus optimizing pro-
cessing resources. The performance implications of using foveated
rendering are further explored in Sections 4 and 5.

3.2 Software
The Apple Vision Pro operates on visionOS, an evolution of Ap-
ple’s iOS that brings essential augmented reality (AR) capabilities,
primarily through the RealityKit and ARKit APIs. RealityKit, act-
ing as Apple’s 3D rendering engine, leverages ARKit’s tracking
data to fuse virtual and real-world elements seamlessly. Notably,
RealityKit uses the industry-standard MaterialX [28] for scene de-
scription, supporting imports from Unity [31], creations with the
Reality Composer Pr tool, or programmatic generation.

However, any version up to the current visionOS release ver-
sion 1.3 impose several limitations not present in iOS’s AR capa-
bilities. For instance, Custom Systems/Components and Textur-
eResource.DrawableQueue are currently unsupported in the Real-
ityRenderer [6]. The ramifications of these limitations on direct
volume rendering are discussed in Section 4.

3.2.1 Spaces
The Apple Vision Pro supports diverse modes for application pre-
sentation, called spaces. Applications can operate within a shared
space alongside other apps and the environment, utilizing desig-
nated areas as interactive windows similar to those on traditional
2D desktops, or as volumes within the communal space. This space
integrates computer-generated scenes with live feeds from cameras
and depth sensors, representing the AR mode of the Apple Vision
Pro. Users can dynamically reposition elements within this shared
space, enhancing interaction and engagement. Within the shared
space an application can also create a mixed immersive space which
allows the app to break out of predefined boundaries. For fully im-
mersive experiences, applications can occupy the entire visual field,
embodying a typical VR setup where the entire scene is computer-
generated with no real-world objects visible. In shared spaces,
applications must utilize the RealityKit Framework for presenta-
tion. In contrast, those in isolated environments can directly access
the graphics hardware via the Metal API, managing output to dual
framebuffers. Apple recommends starting applications in a shared
space and transitioning to a fully immersive space as needed.

3.2.2 Programming Language
The primary programming language for Apple Vision Pro’s high-
level APIs is Swift, designed to streamline the development of new
components. Apple also provides C++ wrappers to facilitate in-
tegration with existing codebases, which is particularly useful for
data preprocessing and loading tasks. While it is possible to main-
tain significant portions of legacy C++ code, converting rendering



routines to Swift is recommended. This conversion simplifies code
management by avoiding the complexities introduced by wrapper
functions, which impose Swift-like paradigms on C++ code, par-
ticularly in memory management. Ultimately, the decision whether
to convert rendering code to Swift largely depends on the personal
preference of the programmers and managers. However, after im-
plementing a version of the renderer using the C++ wrappers and
native Swift code, we would recommend the latter. The aforemen-
tioned Swift/Objective-C paradigms in the wrapper classes cause
the C++ code to resemble Swift code to a significant extent.

4 VOLUME RENDERING

Volume rendering techniques are broadly classified into two cat-
egories: indirect volume rendering and direct volume rendering
(DVR) [19]. Indirect volume rendering involves computing a
polygonal surface representation of the volume, such as an iso-
surface, which is then rendered as a triangulated mesh. With
the Apple Vision Pro’s native support for triangle mesh render-
ing through rasterization and raytracing, handling iso-surfaces be-
comes straightforward. If the iso-surface is static and can be pre-
computed, no additional coding is needed; the mesh can be gen-
erated by an external tool, such as a marching cubes algorithm
[22], and directly imported into the RealityComposer Pro soft-
ware using various industry-standard mesh formats. These formats
may include detailed attributes such as surface properties, textures,
and animation parameters, which simplify the rendering of iso-
surfaces and other visualizations based on simple geometric primi-
tives. Moreover, the RealityKit framework automatically calculates
light interactions with the real-world environment, including shad-
ows, thereby enhancing spatial understanding. While indirect vol-
ume rendering is straightforward and efficient, it may not be suit-
able for all applications because it reduces the volume to a single
surface, limiting the ability to inspect the data comprehensively.
Consequently, our discussion primarily focuses on direct volume
rendering techniques.

4.1 Direct Volume Rendering
Over the last few decades, several DVR techniques have been de-
veloped. Among these, ray-casting stands out as the most conceptu-
ally straightforward implementation of the volume rendering equa-
tion [20]. Ray-casting has been implemented on both CPUs [33]
and GPUs [21], with most recent scalable implementations based
on the ray-guided rendering algorithm [17, 10, 12, 14]. Before the
widespread adoption of ray-casting for DVR, slice-based volume
rendering was the dominant method. In this approach, the volume
is sliced along major axes or perpendicular to the viewing direction,
and these planar slices are composited in a back-to-front or front-
to-back order. The advantage of slice-based rendering is that it can
directly map the volume rendering process to the rendering of tex-
tured translucent triangles without the need for sophisticated shader
execution. In cases of axis-aligned slicing, not even 3D textures are
required. However, the image quality of slice-based rendering is
generally inferior to that of ray-casting, and it lacks the capability
to incorporate sophisticated acceleration techniques. For more de-
tails and a thorough discussion of the advantages and disadvantages
of these approaches, we refer the readers to the introductory book
Real-Time Volume Graphics [13].

4.2 Fully Immersive Space DVR
In most scenarios, direct volume rendering on recent graphics hard-
ware typically employs a GPU-based ray-casting approach. Known
for its straightforward implementation, this method consistently
yields high-quality results and becomes highly efficient when aug-
mented with acceleration techniques. The GPU in the M2 Chip,
which features 1280 ALUs and a maximum FP32 performance of
3.6 TFLOPs, supports such advanced capabilities. These features

are accessible through Metal API Version 3, which aligns well with
standards like DirectX 12 and Vulkan 1.3, thus facilitating the tran-
sition of ray-casting implementations from desktop systems to the
Apple Vision Pro.

In our testbed, we developed a basic ray-caster that supports
key functionalities essential for most applications, including vol-
ume transformations, a 1D smoothstep transfer function, real-time
gradient computation for lighting effects, and axis-aligned clipping
planes. Figure 1 displays the fragment shader code for the ray-
caster, written in Metal Shading Language. Notably, the parame-
ter amplification id indicates whether parameters are sourced
from the buffer for the left or the right eye, marking the primary
adaptation from a standard desktop GPU ray-casting implementa-
tion. We deploy this implementation in the fully immersive space
of the Apple Vision Pro’s VR mode, where we have complete and
unrestricted access to the GPU. Similar strategies are adopted in ex-
isting commercial applications such as Siemens’ Cinematic Reality
[16].

Figure 1: The core fragment shader of our testbed GPU-based ray-
caster.

4.3 Shared Space DVR

In the shared space, corresponding to the AR mode of the Apple
Vision Pro, unique challenges arise. The RealityKit API, the only
available API in this mode, permits access to programmable shaders
solely through the CustomMaterial-node. However, this node is not
yet available on the Apple Vision Pro, which restricts the use of
programmable shaders and 3D textures. Consequently, developers
must consider alternative rendering strategies for implementing vol-
ume rendering in an AR setting. The options include: (1) omitting
this mode for volume rendering, (2) utilizing CPU-based volume
rendering, (3) employing indirect volume rendering, or (4) revert-
ing to slice-based rendering. Omitting this mode is often not feasi-
ble, and CPU-based rendering may be too slow, given the device’s
four efficiency cores and dual 4K resolution. Therefore, the remain-
ing practical alternatives are indirect volume rendering, which, al-
though straightforward, is limited to rendering a small number of
isosurfaces and requires time-consuming depth sorting for trans-
parent isosurfaces, or slice-based rendering. Given the lack of 3D
texture support, developers might resort to texture atlases or im-
plement axis-aligned slice-based rendering, which are significant
restrictions of the current visionOS version and a critical takeaway.



Table 1: Performance of Different Volume Rendering Techniques Across Various Datasets. All values are the average milliseconds for end-to-end
frame rendering time. For the Fully immersive ray-caster we show the effects of early ray termination (ERT), illumination and foveation.

Ray-Caster
Foveation Enabled Foveation Disabled

Dataset
Name Size Slice

based ERT On ERT On
Illumination ERT Off ERT Off

Illumination ERT On ERT On,
Illumination ERT Off ERT Off

Illumination
C60 643 16.6 11.7 12.8 12.4 12.4 11.5 11.1 11.8 13.4

Bonsai 1283 22.1 14.2 12.3 14.3 13.3 11.4 11.9 11.6 12.8
Foot 2563 47.9 13.2 12.9 13.4 15.9 13.2 13.5 13.5 13.6

Visible Human Head 5123 90.5 15.5 16.1 17.7 36.3 14.5 16.1 17.9 43.5

4.3.1 Shader Graph Limitations and Workarounds
The absence of programmable shaders, or more specifically the
CustomMaterial node, on the Apple Vision Pro confines users to
using Shader Graphs. However, this limitation does not entirely
eliminate functionality. We successfully implemented several com-
monly used volume rendering features in Shader Graph notation,
such as smoothstep transfer functions, clipping volumes, and opac-
ity correction. Figure 2 bottom illustrates the Shader Graph version
of the smoothstep transfer function, which is similar to the imple-
mentation used in the Metal Shader Language, as shown in Fig-
ure 2 top.

Implementing a full ray-caster, however, appears unfeasible due
to the absence of 3D textures and the fact that Shader Graphs do not
support loops, which are essential for a ray-caster. Consequently,
we opted to implement direct volume rendering (DVR) using axis-
aligned slicing.

Figure 2: The smoothstep transfer function. The top image displays
the implementation in Metal Shading Language as used by the ray-
caster, while the bottom graph demonstrates the same functionality
in Reality Composer Pro for the slice-based renderer.

5 RESULTS

Outlined in Section 4, our application supports two distinct code
paths tailored to specific operational contexts—either in a shared
space or in a fully immersive environment.

In the shared space, we implemented an axis-aligned slice-based
volume renderer utilizing a simple 1D sigmoid transfer function,
commonly used in various imaging applications. In contrast, the
fully immersive space (VR) employs a Metal-based GPU ray-caster.
This ray-caster not only supports the same 1D transfer functions but
also enhances performance and visual quality through early ray ter-
mination and local Phong illumination, with normals computed on-
the-fly. Table 1 summarizes the performance metrics of our system,
with timings averaged over a period of 10 seconds. The dataset was
centrally positioned on the screen with the user’s gaze fixed at the
center of the dataset.

The table reveals that the performance of slice-based rendering
halves each time the resolution doubles in each dimension. This
is expected as performance is predominantly limited by the num-
ber of slices rendered, rather than the textures applied to each slice.
Ray-casting timings indicate that early ray termination significantly

boosts performance. Additionally, despite necessitating six addi-
tional texture fetches per sampling step, the on-the-fly computation
of gradients introduces minimal overhead, indicating highly effi-
cient GPU caching.

We evaluated our system using several well known datasets,
ranging in size from 643 to 5123. We selected a scenario from
where the volume covers approximately 20% of the screen. Tests
in the fully immersive mode were conducted with both lighting en-
abled and disabled, as well as with the automatic foveation feature
toggled on and off, to assess its impact on performance and visual
quality.

6 CONCLUSION

In this paper, we have demonstrated the Apple Vision Pro’s capa-
bility for high-performance direct volume rendering in fully im-
mersive spaces using a GPU-based ray-caster. Our results show
that the M2 GPU efficiently executes complex ray-casting shaders
and benefits significantly from acceleration methods. This capabil-
ity allows for visualizations that rival those of traditional graphics
workstations, although currently limited to fully immersive (VR)
environments. The full potential of programmable shaders remains
inaccessible in shared spaces (AR), where fallback options such as
axis-aligned slicing lead to substantial performance and flexibility
trade-offs. Given that visionOS shares the RealityKit API with iOS,
apart from the absence of the CustomMaterial-Node in the Shader-
Graph, we consider this limitation likely temporary and expect it to
be resolved in future updates.

Developers currently interested in AR applications that require
volume rendering should consider exploring indirect volume ren-
dering techniques, such as triangulated iso-surfaces, or begin their
development on iOS and transition to visionOS once support for the
CustomMaterial-Node is established. The migration path from iOS
to visionOS is straightforward, enabling a seamless transition once
updates are implemented.

An additional point of interest is the impact of foveation. In our
observations, significant performance gains were only noted when
datasets were positioned in the periphery, making this feature po-
tentially useful for applications that display multiple datasets simul-
taneously. However, for a single dataset, the volume will predom-
inantly reside within the focus region, resulting in minimal to no
performance gains.

Another promising aspect of Apple Silicon hardware is the neu-
ral engine. Although we did not explore it in detail in this short pa-
per, the neural engine has the potential to significantly enhance per-
formance in volume visualization. For instance, it could be utilized
to implement super-resolution methods, thereby achieving higher
performance and more detailed visualizations.

Moreover, it is important to note that the design of the Apple Vi-
sion Pro’s casing currently limits its utility in clinical settings, as it
cannot be disinfected [5]. This limitation is unexpected, especially
considering Apple’s marketing of the Vision Pro for medical AR
applications. Nonetheless, we, along with Apple customer support,
anticipate that third-party vendors will soon provide easily disin-
fected protective cases to address this issue.
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