
Improving Property Graph Layouts by Leveraging Attribute
Similarity for Structurally Equivalent Nodes

Patrick Mackey, Jacob Miller, and Liz Faultersack

(a) (b)

Fig. 1: An example property graph before (a) and after (b) having its structurally-equivalent nodes re-arranged based on their attribute
similarity.

Abstract—Many real-world networks contain structurally-equivalent nodes. These are defined as vertices that share the same set
of neighboring nodes, making them interchangeable with a traditional graph layout approach. However, many real-world graphs
also have properties associated with nodes, adding additional meaning to them. We present an approach for swapping locations
of structurally-equivalent nodes in graph layout so that those with more similar properties have closer proximity to each other. This
improves the usefulness of the visualization from an attribute perspective without negatively impacting the visualization from a structural
perspective. We include an algorithm for finding these sets of nodes in linear time, as well as methodologies for ordering nodes based
on their attribute similarity, which works for scalar, ordinal, multidimensional, and categorical data.

Index Terms— graph drawing, network visualization, property graphs, attributed networks

1 INTRODUCTION

Graphs or networks are a common discrete data structure for repre-
senting relationships or interactions of real-world entities. Common
examples include social networks, critical infrastructure and cyber-
security data. By visualizing this data as a graph, analysts can gain
insights into these entities (also called nodes or vertices) and their im-
portance and placement in the larger network, as well as understanding
general characteristics of the network at large.

In many real-world graphs and networks, it is common to encounter
many structurally-equivalent nodes [15]. These are defined as nodes
that share identical sets of neighbors. In a traditional topologically
driven graph layout, these nodes can be interchanged in the visualization
without effecting the appearance of the graph. However, many real-
world networks are also property graphs (or attributed networks) [14],
meaning they have one or more attributes associated with the nodes or

• Patrick Mackey is with Pacific Northwest National Laboratory.
Email: patrick.mackey@pnnl.gov

• Jacob Miller is an intern at Pacific Northwest National Laboratory and a
PhD candidate at University of Arizona. Email: jacob.miller@pnnl.gov

• Liz Faultersack is with Pacific Northwest National Laboratory.
Email: liz.f@pnnl.gov

edges. These attributes can indicate meaningful differences in these
nodes. However, most existing graph layout algorithms ignore this
additional information. In this paper we propose a technique that
allows us to take an existing graph layout, and swap the locations of
the structurally-equivalent nodes so that the nodes that are more similar
in their properties are placed closer to each other. This technique
enables us to use any existing graph layout technique without altering
its fundamental characteristics, while leveraging the properties of the
nodes to improve the overall usefulness of the layout for analytical
purposes.

2 RELATED WORK

A large body of work exists on techniques for creating graph layouts [6].
The majority of this work focuses only on the connectivity or structure
of the graph, and not the properties or attributes on the nodes or edges.
In our approach, any of these algorithms can be used as the initial
locations for the graph layout.

There exists a smaller body of work on property or attribute-driven
graph layouts [7]. These algorithms use the similarity of the node
attributes as part of the optimization equation for placing nodes. For
example, Zhuang Xu, et al., use a structurally-based force-directed al-
gorithm to initially place nodes in a graph, and then apply an additional
force against the nodes based on their attribute similarity to further
modify the layout [17]. Alternatively, MVN-Reduce creates a layout
using a dimension-reduction approach, where both the topological dis-

Fig. 2: Examples of common structural equivalence groupings (SEGs).

tance between nodes and their attribute similarity are included in the
dimensionality reduction optimization [11]. These methods differ from
our own approach, which always retains the original structurally-based
node positions, but swaps locations of structurally-equivalent nodes.
This enables us to retain the desired qualities of a traditional graph
layout while also improving the overall interpretability from a property
perspective.

3 STRUCTURAL EQUIVALENCE

While concepts around structural equivalence originate with research
by social scientists Lorain and White [10], the definition of structural-
equivalent nodes we are using is based on the work of Lei Shi, et
al. [15], which they refer to as a structural equivalence grouping (SEG).
The authors given definitions of SEG for directed and weighted graphs
as well as simple graphs. For our purposes, only the simple graph
definition is needed, as we follow the common pattern of ignoring
weight and directionality in computing a graph layout. In the case for
simple graphs, an SEG is defined as the set of vertices that share an
identical set of neighbors. An efficient algorithm exists to find these
groups, which we describe in more detail in Section 4.

Figure 2 demonstrates some examples of structurally equivalent
groupings. A common structurally equivalent pattern are “fans”, where
a single vertex connects to a large number of vertices with no other
edges [1]. Another common pattern are “connectors”, which is a set
vertices that connect a pair of vertices together, without any edges to
other vertices [1]. Any vertices without edges would also be structurally
equivalent. Either side of a complete bipartite graph would also be
structurally equivalent. As Shi, et al., point out, in many real-world
networks these various structurally-equivalent nodes can represent the
majority of vertices in a graph, particularly in cyber-security data [15],
which is the primary use case motivating our research as well.

It is a well-known phenomenon that people equate proximate entities
as being more similar than those more distant (the Gestalt law of
proximity) [8]. This can potentially cause a user to assume some
structurally identical nodes are more similar to each other than other
structurally equivalent nodes depending on their proximity to each
other in the visualization. An example can be seen in Figure 3(a),
where nodes in one portion of the fan-out may appear more related
than those on the opposite side, despite the fact that all nodes (except
the high-degree center node) are structurally equivalent. The layout in
Figure 3(b) shows the same graph after applying our node-swapping
technique, enabling nearby nodes to be similar in their properties as
well as structure. This approach also enables us to use any existing
graph layout algorithm we choose, which can help avoid many of the
well known issues in graph visualization (e.g., edge crossings, angular
resolution, edge-length deviation, aspect ratio, etc. [12]).

4 METHODOLOGY

Any existing graph layout technique can be used for the initial node
placement. In most of our examples we will be demonstrating our tech-
nique using force-directed based layouts (specifically, the Fruchterman-

Reingold) [4], but other layout algorithms such as spectral methods [9],
orthogonal layouts [2] and circular layouts [5] may also be used, among
others.

(a) (b)

Fig. 3: Star subgraph often found in real-world data such as cyber-
security data [15], nodes are colored according to a scalar property
value. Without taking properties into account, a layout might look like (a),
but our algorithm will modify the existing layout to (b).

4.1 Finding Structurally Equivalent Vertices
To determine which nodes are structurally equivalent, we have imple-
mented a simple algorithm that works in linear time with regards to
edges (see Algorithm 1). Structurally-equivalent groups are identi-
fied using hashcodes, which are generated by performing a bitwise
exclusive-or operation on all neighboring nodes’ hashcodes (which
individually are defined by any given hashing scheme). This gives a
unique hashcode for the given set of nodes which will be identical for
all structurally-equivalent nodes.

There is a very small possibility that non-equivalent nodes could
hash to the same hashcode, but this is extraordinarily unlikely given
the typical size of hashes (264−2256) and the typical number of nodes
in a graph visualization (< 10,000). For a 64-bit hash and a 10,000
node graph, the odds of a hash collision are roughly 2.7e−12. If such
situations are of concern, the validity of the SEG hash can be confirmed
by comparing the contents of each neighborhood for each matching
vertex.

Algorithm 1 Find all simple structurally-equivalent groups (SEG) of
vertices. Time complexity: O(|E|)

function FINDALLSEG(V,E) . Where V =vertices, E=edges
Let S be a hashtable of integers to sets of vertices
for u ∈V do

h = 0 . For creating SEG hashcode
for v ∈ nbrs(u) do . Create hash from neighbors

h = h bitwise-XOR hash(v)
end for
S[h] = S[h]∪{u} . Add u to the SEG for this hash

end for
return S

4.2 Ordering Vertices by Attribute Similarity
To select the new positions of nodes based on their properties, many
different techniques could be applied. We assign a linear relationship
between all structurally equivalent vertices based on their associated
attributes. While more sophisticated approaches could be applied, for
our initial work, we are using a simple Principle Component Analysis
(PCA) approach for ordering nodes based on their similarity [16].
Using PCA, we find a line through the point set which captures the
largest amount of variance. All points are projected onto this line and
ordered accordingly to p1, p2, . . . pn. Then, we want to label each node
as v1,v2, . . . ,vn so that the position of vi is pi. Our method of doing so
is dependent on the type of data present.

Fig. 4: An example of our property graph layout applied to a graph with
categorical data.

Scalar and ordinal data In the simplest case, the properties
of interest are simple real-valued scalars or other data with natural
ordering. We can sort the values and label the vertices such that
v1 ≤ v2 ≤ . . .≤ vn.

Multidimensional data It may be that there is a vector of real-
values associated with each node in the graph, which is desired to be
captured by the layout. We must find an ordering of these vectors that
captures their similarity. Much like we did with the point set, we use
PCA to project these vectors onto a line so that the variance between
them is maximized. Given this one dimensional line, we can order the
vertices along it.

Categorical data When there is categorical data associated with
the vertices of a graph, and each vertex belongs to one and only one
category, we arbitrarily order the categories to convert to ordinal data.

Mixed categorical data In some cases, there is mixed categorical
data. Vertices can belong to multiple categories, or there are weights
associated with the categories (e.g., a vertex has 2 bananas, 2 apples,
and 1 orange). We first convert these into percentages (e.g., 40%
banana, 40% apple, 20% orange) and apply an arbitrary ordering of the
categories.

Algorithm 2 Swap positions of vertices.

function POSITIONSWAP(SEG,P) . Where SEG is a structural
equivalent group, P are positions of vertices

Let L be a line of best fit through the positions
Sort P along L, label p1, . . . , pn
Sort SEG by attribute value, label v1, . . . ,vn
for vi ∈ v1, . . . ,vn do

Assign vi to position pi
end for

5 EXAMPLES

We discuss the examples that appear throughout the paper. Fig. 3 shows
a simple example of our algorithm applied to a small star property graph
with scalar values associated with the nodes. The layout algorithm in

Fig. 5: A small synthetic example of categorical ordering of a graph with
several common SEGs. On the left is a biclique, the center shows a star,
and the right a connector node pattern. Here, the patterns are drawn
via the Fructerman-Reingold algorithm, but a clearer example of their
structure is shown in Fig. 2.

Fig. 3(a) has a difficult task of finding two dimensional positions of
these nodes which are all structurally equivalent. However, we have
more information available to us via node properties. We trust that the
given layout has done as good of a job as it can in finding placements
of nodes which are structurally equivalent (in this case, all but one node
in the graph). We swap node placements so that nearby nodes in the
2D drawing space are similar in attributes. If we apply a color scheme
according to this attribute, we see there is in fact a nice gradient from
left to right across the graph.

In larger, more complex graphs there may be many nodes which are
not structurally equivalent. Still, even in real-world networks SEGs
occur frequently enough to warrant consideration. Fig. 1 shows a graph
generated to have similar properties as the Internet graph [3]. We can
visually see several fan-out, star structures in Fig. 1 (a). These can be
quickly detected programmatically using Algorithm 1, after which we
can repeatedly apply the algorithm described in Section 4.2 on these
sub-graphs. We see quite clearly that the placement of vertices with
respect to their attributes within SEGs is vastly improved, highlighted
by the zoomed box in Fig. 1 (b).

As noted in Section 4.2, our method is not limited to singular scalar
values but can be applied to ordinal and categorical attributes as well.
Fig. 5 shows such an example on a small synthetic graph with categor-
ical attributes. This graph also contains additional SEGs besides the
typical star motif: the biclique and connector nodes. In each of these
SEG motifs, nodes of the same color are grouped together.

A larger categorical example is found in Fig. 4. This graph (another
graph generated by [3]) has several high degree “hub” nodes in which
many of its neighbors have a degree of one. The ordering of these
groupings is very visually salient, from blue to orange to green as one
scans the visualization.

We extend the complexity to mixed categorical data, so that nodes
may belong to one or multiple categories. Visually represented as pie
charts on nodes, Fig. 6 (a) shows an unstructured layout of a synthetic
graph from [3]. The large star patterns in the bottom right appear
unordered and unrelated. However, our algorithm generalizes to such
mixed data as can be seen in Fig. 6 (b). In the same fan-outs there is a
smooth transition from nodes of one type to another, and nearby nodes
tend to belong to the same category even if not exactly the same set of
categories.

Finally, the node properties may contain many values representing
categories. For instance, the properties may count how many fruits
belong to a node (e.g., 3 bananas, 2 apples, 1 orange). We can still
visually represent this membership as a pie chart (for relatively small
sets of categories). Fig. 7 shows an example of a large star graph with
these attributes. While the trend is less visually salient than the scalar
or categorical data, there is still a clear trend (orange to green, to blue)
that shows nearby nodes are similar.

These examples show that our technique can be applied to a wide

(a) (b)

Fig. 6: Our method also works with mixed categorical data, represented here by pie charts as nodes. Nearby structurally equivalent nodes are
possibly unrelated in (a), but after our algorithms rearrangement, there is more structure (b)

Fig. 7: A slightly more complicated synthetic example where each node
has multiple numerical attributes associated with it. Notice how, in
general, the colors go from orange, to green, to blue from left to right.
variety of property data types with relatively little complexity; improv-
ing the graph layout for very little cost in comparison to computing the
layout in the first place.

6 CONCLUSION AND FUTURE WORK

We believe our technique provides a helpful methodology for improv-
ing the meaningfulness of graph layouts for property graphs with many
structurally equivalent nodes. We believe there are many real-world ex-
amples of these, especially including cyber-security data, for which this
effort was funded. However, there are situations where our technique

may not be well suited, such as networks where structural-equivalence
is minimal. A potential future work would be to explore a “fuzzy equiv-
alence” in such graphs, allowing us to swap locations for nodes that are
nearly equivalent. This would be particularly helpful for dense graphs,
in which vertex placement can seem somewhat arbitrary, and there
may be few nodes that are completely structurally equivalent. Existing
algorithms for fuzzy structural-equivalence grouping would be worth
exploring in our future work [13, 15].

Additional future work includes improving our approach for select-
ing node placement. Our technique applies a linear approach, which
is efficient in practice, but may be sub-optimal in certain cases. Addi-
tionally, our technique could benefit from additional research on how
best to combine properties from nodes (or their adjacent edges) for
determining node similarity, as many property graphs have multiple
properties per node or edge. This could likely benefit from additional
research on how users are using this information and what would be
most important for their particular use case needs.

ACKNOWLEDGMENTS

We would like to thank Claire Cassalnova, James Patterson, Victoria
Wallace and Jordan Eberst for their support of this effort as well as their
guidance on applying this research for the cyber-security response use
case.

This manuscript has been authored by Battelle Memorial Institute
under Contract No. DE-AC05-76RL01830 with the U.S. Department
of Energy on behalf of the Cybersecurity and Infrastructure Security
Agency (CISA). The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes.

REFERENCES

[1] Cody Dunne and Ben Shneiderman. Motif simplification: improving
network visualization readability with fan, connector, and clique glyphs.
In Proceedings of the SIGCHI conference on human factors in computing
systems, pages 3247–3256, 2013. 2

[2] Markus Eiglsperger, Sándor P Fekete, and Gunnar W Klau. Orthogonal
graph drawing. In Drawing Graphs: Methods and Models, pages 121–171.
Springer, 2001. 2

[3] Ahmed Elmokashfi, Amund Kvalbein, and Constantine Dovrolis. On the
scalability of bgp: The role of topology growth. IEEE Journal on Selected
Areas in Communications, 28(8):1250–1261, 2010. 3

[4] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by
force-directed placement. Software: Practice and experience, 21(11):1129–
1164, 1991. 2

[5] Emden R Gansner and Yehuda Koren. Improved circular layouts. In
International Symposium on Graph Drawing, pages 386–398. Springer,
2006. 2

[6] Helen Gibson, Joe Faith, and Paul Vickers. A survey of two-dimensional
graph layout techniques for information visualisation. Information visual-
ization, 12(3-4):324–357, 2013. 1

[7] Steffen Hadlak, Heidrun Schumann, and Hans-Jörg Schulz. A survey of
multi-faceted graph visualization. In EuroVis (STARs), pages 1–20, 2015.
1

[8] Stephen G Kobourov, Tamara Mchedlidze, and Laura Vonessen. Gestalt
principles in graph drawing. In Graph Drawing and Network Visualization:
23rd International Symposium, GD 2015, Los Angeles, CA, USA, Septem-
ber 24-26, 2015, Revised Selected Papers 23, pages 558–560. Springer,
2015. 2

[9] Yehuda Koren. On spectral graph drawing. In International Computing
and Combinatorics Conference, pages 496–508. Springer, 2003. 2

[10] François Lorrain and Harrison C. White. Structural equivalence of in-
dividuals in social networks. The Journal of Mathematical Sociology,
1(1):49–80, 1971. 2

[11] Rafael Messias Martins, Johannes F Kruiger, Rosane Minghim, Alexan-
dru C Telea, and Andreas Kerren. MVN-Reduce: Dimensionality reduc-
tion for the visual analysis of multivariate networks. In EuroVis (Short
Papers), pages 13–17, 2017. 2

[12] Gavin J Mooney, Helen C Purchase, Michael Wybrow, and Stephen G
Kobourov. The multi-dimensional landscape of graph drawing metrics. In
17th IEEE Pacific Visualization Symposium (PACIFICVIS). IEEE, 2024. 2

[13] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summa-
rization with bounded error. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 419–432, 2008. 4

[14] Marko A Rodriguez and Peter Neubauer. Constructions from dots and
lines. arXiv preprint arXiv:1006.2361, 2010. 1

[15] Lei Shi, Qi Liac, Xiaohua Sun, Yarui Chen, and Chuang Lin. Scalable
network traffic visualization using compressed graphs. In 2013 IEEE
International Conference on Big Data, pages 606–612, 2013. 1, 2, 4

[16] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component
analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37–52,
1987. 2

[17] Zhuang Xu, Tingyun Mao, Guangluan Xu, Yang Wang, and Daoyu Lin.
Multivariate network layout using force-directed method with attribute
constraints. Applied Sciences, 12(9):4561, 2022. 1

	Introduction
	Related Work
	Structural Equivalence
	Methodology
	Finding Structurally Equivalent Vertices
	Ordering Vertices by Attribute Similarity

	Examples
	Conclusion and Future Work

