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Figure 1: Precipitation change (%) in 2080-2099 relative to 1986-2005 based on 100 simulation runs of the RCP8.5 scenario
within MPI-GE. The top left panel shows a volume rendering of the cumulative height field using a 2D transfer function, mapping
cumulative probabilities to opacity and precipitation change to color (blue: increase, red: decrease), and an isosurface of the
median. The bottom right panel shows an orthographic view of the same scene. The black lines indicate the locations of the
cumulative function graphs at 0° and 170°W, which are shown in the top right and bottom left panels, respectively. The purple
lines depict zero percent difference. The intersection of the black lines mark the chosen point of interest (0°, 170°W), where the
distribution is skewed: while most ensemble members show a small to moderate decrease in precipitation, a few outliers show a
large increase, which means that the arithmetic mean at this point would indicate an - though unlikely - increase in precipitation.

ABSTRACT

Analyzing uncertainty in spatial data is a vital task in many do-
mains, as for example with climate and weather simulation ensem-
bles. Although many methods support the analysis of uncertain 2D
data, such as uncertain isocontours or overlaying of statistical in-
formation on plots of the actual data, it is still a challenge to get a
more detailed overview of 2D data together with its statistical prop-
erties. We present cumulative height fields, a visualization method
for 2D scalar field ensembles using the marginal empirical distribu-
tion function and show preliminary results using volume rendering
and slicing for the Max Planck Institute Grand Ensemble.
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1 INTRODUCTION

In the natural sciences, uncertainty is generally an essential compo-
nent in observed or simulated data. Analyzing data together with
their respective uncertainties is needed to estimate the robustness
of results and to make statements about the probabilities of certain
events. A typical question in climate research, for example, is how
likely it is that flooding caused by heavy rainfall will occur more
frequently in a particular region in the future.

There are many methods to investigate and visualize uncertainty
in data. For 2D scalar fields, these include spaghetti plots, con-
tour boxplots [32], estimating distributions parameters, e.g. mean
and standard deviation, or calculating summary statistics, e.g. me-
dian and percentiles. But not all distributions are simple enough to
be summarized by a single measure, e.g. highly skewed or multi-
modal distributions. Such features in the distribution can affect the
interpretation by domain experts, but might be missed when using
summary statistics or assuming an underlying distribution a priori.
A direct visual analysis of the distribution, which is often unknown
and must first be estimated, is not necessarily straightforward. Al-
though a distribution can be easily visualized for the 1D case, it
is rather difficult to visualize in the case of (higher dimensional)
scalar fields. In this paper, we propose the combination of empir-



ical distribution functions with volume visualization to study the
distribution of 2D scalar field ensembles.

Our main contributions are: (1) A visualization of the marginal
empirical distribution functions, the cumulative height fields, for 2D
scalar field ensembles, combining direct volume rendering, which
gives an overview of the data and its variability, with volume slicing
for details, and (2) Preliminary results of applying the technique to
study changes in precipitation in simulations of climate change.

2 RELATED WORK

A state-of-the-art in visualizing uncertain scalar fields and a survey
of visualization in meteorology were presented by Wang et al. [30]
and Rautenhaus et al. [25], respectively. A typical approach often
used in the domain sciences is to visualize the mean of some un-
certain quantity and to calculate and display its standard deviation
as an overlay, as done by Potter et al. [20], where mean and stan-
dard deviation were used to draw isolines and colormap the domain.
Sanyal et al. [27] used various uncertainty glyphs and ribbons based
on different uncertainty metrics.

A fundamental technique for isocontours of uncertain data are
the level crossing probabilities (LCP), introduced by Pöthkow and
Hege [21], where the probability of isocontours for a given isovalue
to cross a cell is calculated for all cells in the domain. The LCPs can
then be visualized by colormapping for the 2D or volume render-
ing for the 3D case. There have been several extensions to the LCPs
[22, 24, 23, 12]. Allendes Osorio and Brodlie [3] presented a defini-
tion of isocontour bands of points with a higher probability of hav-
ing an isocontour and Pfaffelmoser et al. [18] use a ray-casting tech-
nique to calculate uncertain isosurfaces considering correlations.
Athawale and Entezari [4] introduced the closed-form expression
for the expected crossing of isocontours with the assumption of an
underlying uniform distribution. Athawale et al. [5] expanded this
to allow for nonparametric distributions using kernel density esti-
mates. The expected crossings can then be colored using the calcu-
lated variance. A drawback is that here the distribution in the data
is again reduced to an expected value and a variance.

Many methods show the information in a boxplot style, i.e. a
representation of median, mean, some confidence regions and out-
liers, which have been adopted for different data: 1D [29] and 2D
[11] scalar field ensembles, ensembles of parametrized curves [17]
and the contour boxplots for isoline ensembles [32], each method
based on some extension of the concept of band depth. More re-
cently, Chaves-de-Plaza et al. [8] presented another depth concept
to use for contour boxplots, and further expanded it to support mul-
timodal isocontour ensembles [7]. Other summarization methods
have been presented as well [10, 15, 33]. All these approaches re-
quire the domain expert to provide an isovalue, but do not provide
means to indicate which isovalues might be interesting.

There has been work on using direct volume rendering (DVR) to
include the uncertainty information, such as the one by Djurcilov et
al. [9], who present 2D transfer functions that use scalar values and
uncertainties to map optical properties. Sakhaee and Entezari [26]
developed a histogram-based volume rendering approach that uses
transfer functions for the deterministic case, and Athawale et al. [6]
also present a nonparametric approach based on quantile interpola-
tion and provide the quartile view, which shows three different plots
for the bottom 25%, the middle 50% and the top 25% of the data,
similar to the information in a boxplot. But as these works are vol-
ume rendering methods of uncertain 3D scalar fields, they are not
directly applicable to the visualization of uncertain 2D scalar fields
or the visualization of the marginal distributions.

Most related to our work for the visualization of uncertain 2D
scalar fields is the visualization presented by Pfaffelmoser and
Westermann [19], who visualize the mean field as a height field with
inserted glyphs, depicting information of points clustered by corre-
lation and the variance of the marginal distributions. Further, Kao

et al. [14] present various visualizations for 2D scalar field ensem-
bles based on statistical moments, but also extend the 2D domain to
3D and fill the volume with the values of the marginal probability
density function (PDF) of each point. Different visualizations were
presented using this volume, like cutting planes, and although DVR
was briefly described, it was not used. Höllt et al. [13] presented
within their framework a visualization of the volume of marginal
PDF values as a colormapped volume for a given region of interest.

3 BACKGROUND

Our method makes use of standard concepts in probability the-
ory [31]. Let (Ω,F ,P) be a probability space, where Ω is the sam-
ple space, F a σ -algebra over Ω and P the probability measure. A
random variable Y is a mapping Y : Ω→R, and the cumulative dis-
tribution function (CDF) is the function FY :R→ [0,1] defined by
FY (y) = P(Y ≤ y). We write Y ∼ FY and assume all random vari-
ables to be continuous. Under this condition, the probability density
function (PDF) can be defined as fY (y) = dFY

dy (y). A random vec-
tor Y : Ω →Rn,Y = (Y1, . . . ,Yn) is a set of random variables, with
associated joint CDF FY (y1, . . . ,yn) =P(Y1 ≤ y1, . . . ,Yn ≤ yn) and
joint PDF fY (y1, . . . ,yn). Marginalizing a random variable from a
set of random variables means to determine its distribution from
the joint distribution over the random variables, e.g. marginaliz-
ing for Y1 is fY1(y) =

∫
∞

−∞
· · ·

∫
∞

−∞
fY (y,y2, . . . ,yn)dy2 · · ·dyn. A set

of random variables are independent, if their joint PDF equals the
product of their marginal PDFs everywhere, i.e. if fY (y1, . . . ,yn) =
∏

n
i=1 fYi(yi) holds.
Often the distribution of a random variable is not known, but

can be approximated. Let Y1, . . . ,Yk be independent random vari-
ables with the same distribution Yi ∼ F , then the empirical distribu-
tion function (EDF) is defined as F̂(θ) = 1

k ∑
k
i=11(−∞,θ ](Yi), where

1(−∞,θ ](y) = 1 if y ≤ θ and 0 otherwise. The EDF forms a staircase
function, taking value 0 and 1 for all the points below the sample
minimum and above the sample maximum, respectively. As k → ∞

the EDF converges on the CDF F .
A deterministic scalar field is a function f : D → R. In prac-

tice, the data describing the scalar field are given as a set of values
(y1, . . . ,yn) at grid points G = {x1, ...,xn} ⊆ D and use interpola-
tion between grid points. Although an uncertain scalar field can be
modeled as a random field [1], the typical model used are random
vectors, where each sample point xi ∈G, i ∈ {1, ...,n} gets assigned
to a random variable Yi, forming the random vector Y = (Y1, ...,Yn).
To simplify the notation throughout this paper, xi will always refer
to some arbitrary point in G, while Yi refers to the respective ran-
dom variable of xi. In practice, instead of a distribution, only sam-
ples from the uncertain scalar field f1, ..., fk are available, where
each fi is itself a scalar field with function values only defined on
G.

4 CUMULATIVE FUNCTION GRAPHS (CFG) & CUMULATIVE
HEIGHT FIELDS (CHF)

4.1 Theory & Construction
Our method is motivated by the desire to look at the (estimated) dis-
tribution of members of an ensemble in order to emphasize distribu-
tion properties that might be missed in summary statistics, e.g. mul-
timodality. While univariate random variables’ distributions can be
depicted by a line graph of their CDF or PDF, visualizing the distri-
bution of multivariate random variables is more challenging, due to
the possible statistical dependency among variables. Additionally,
Silverman [28] notes that in order to estimate the distribution of a
multivariate random variable, one needs asymptotically a number
of samples exponential in the number of variables. Since we as-
sign each grid point a random variable and grids typically comprise
many grid points, estimating the full multivariate distribution is im-
practical. Instead, we estimate the marginal CDF via the EDF for



Figure 2: Illustration of cumulative function graph colormapped with
different color scales. The blue lines are the function graphs for each
of the original ensemble members. In (a), the cumulative probability
is mapped linearly to lightness. In (b), a black body radiation color
map is used. In (c), the color scale goes from white to black to white
again, emphasizing the central percentiles. In (d), a 2D color scale is
used: the function value θ is mapped to a red-white-blue color scale
and the cumulative probability is mapped to opacity, emphasizing val-
ues above and below a function value of interest.

each grid point, which is accurate but loses all information about
statistical dependencies between grid points.

As the marginal EDF is a function for each grid point, it is neces-
sary to expand the original domain with the codomain for the visu-
alization. This is rather similar to line graphs for 1D and height
fields for 2D functions, where the codomain dimension is used
to show where the function value is, allowing for an overview of
the function’s form. For uncertain scalar fields, the function value
at xi is not known, but instead we can calculate P(Yi ≤ θ) for
any θ ∈ R. Then, we can turn an uncertain d-dimensional scalar
field into a d + 1-dimensional scalar field f : D×R→ [0,1] with
f (xi,θ) = FYi(θ) = P(Yi ≤ θ), where D ⊆Rd , xi ∈ G with its re-
spective random variable Yi, θ ∈R and FYi the marginal CDF of Yi.
This construction is similar to the one by Kao et al. [14]. While they
use an estimation of the marginal PDF, we use the marginal EDF in-
stead. Due to the similarities to the function graph and height fields,
we will refer to f as cumulative function graph (CFG) for the 1D
case and cumulative height field (CHF) for 2D fields, respectively.

In practice, it is necessary to estimate the CDF and sample the
range of f for each sample point. The sampling can be done uni-
formly, taking the global minima and maxima over all ensemble
members’ values as the range, introducing a parameter for the num-
ber of samples.

4.2 Visualization

Visualizing the CFG and CHF can be done through colormapping
or DVR, respectively, or through isocontouring. An isocontour for
the isovalue p passes through the point (xi,θ) if FYi(θ) = p. For
p = 0.5, the isocontours would show the pointwise median, for p =
0.25 the first quartile, and so on. Though isolines can be adequately
shown for the CFGs, isosurfaces would suffer from occlusion in the
3D case.

An important characteristic for the CFG and CHF is that all
points below the pointwise sample minimum and above the sam-
ple maxima have a cumulative probability of 0 and 1, respectively.
All the other points’ cumulative probability values lie in the (0,1)
interval. Thus, colormapping CFG results usually in large segments
of the same color for the points with cumulative probability 0 and
1. Hence, assigning colors to the (0,1) interval is a more inter-
esting task. Fig. 2 shows different colormappings for a synthetic
1D dataset, which also shows the members as blue line graphs. The

color scales that map the estimated cumulative probability symmet-
rically to lightness or transparency ((c) and (d)) are better at convey-
ing quantiles than a simple linear mapping ((a) and (b)). While both
(c) and (d) show better the central quantiles, the 2D color scale in
(d) maps the original codomain values to color to get a better corre-
spondence between codomain values and cumulative probabilities.
Using a divergent color scale also shows if part of the distribution
are above or below some value of interest.

Using DVR for the CHF presents the typical challenges: design
of a useful transfer function (TF), occlusion, bad depth perception
and a difficult correspondence between the volume and original do-
main points. Regarding the TF design, it is important to choose
a good opacity mapping, as the subvolumes with the cumulative
probability 0 and 1 can cause occlusion, thus it is necessary to give
either one, or both a low opacity. Fig. 3 shows different DVR of
different TFs, analogously to Fig. 2, but using our climate dataset.
In (a) and (b), the opacity decreases linearly, where for the cumu-
lative probability of 0 and 1 the opacity is maximal and minimal,
respectively. Both images show the peaks rather well, but it is diffi-
cult to see where the central quantiles are. On the other side, (c) and
(d) show a symmetric opacity mapping, with the value 0.5 having
opacity 0.75, and opacity 0 for both the cumulative probabilities of
0 and 1. The renderings using this opacity mapping form a “cloud”
around the median, thus emphasising the median and the central
quantiles. In general, it is as well possible to include shading or
other methods to improve the quality and depth perception of DVR.

To improve the correspondence between the volume and the
codomain values, the rendering in (d) uses a 2D TF, analogously
to Fig. 2 (d), and also similar to the 2D TFs of Djurcilov et al. [9].
This 2D TF maps cumulative probability to opacity and codomain
value to color. The opacity mapping is the median emphasis map-
ping from (c) and the colormapping can be done as in Fig. 2 (d),
where the neutral color (white) is mapped to a reference value and
the diverging colors are mapped to a given minimal and maximal
value. Using this 2D TF provides a quick overview of where the
central quantiles are above or below the reference function value.

One of the difficulties in 3D visualizations is occlusion. The
use of multiple (orthographic) views from different perspectives,
typically one from above and two from the sides, provides a better
overview of complex scenes without having to first interact with the
volume. The volume rendering of CHF is rather qualitative, giving
first a general overview, and possibly helpful for the exploration of
the data. A typical next step would be to deliver details for specific
points or regions of interest. This selection could be made based
on the top view of the data, as this view shows the original domain.
However, both side views are in this case probably not useful, as the
point of interest can be occluded or just cannot be clearly seen. To
better examine the point of interest, we instead use the side views
to show a cross section containing the point of interest and fade
out the rest, e.g. through using a plane to get a subset of the data,
which would actually correspond to the 1D case, the CFG. These
additional cross sections enable a quantitative joint analysis of the
EDF and corresponding codomain values. Kao et al. [14] uses as
well cross sections to show the estimated PDF values, but they show
them inside the 3D volume, while we use additional views to show
them.

5 RESULTS & DISCUSSION

To test our method, we used the Max Planck Institute Grand Ensem-
ble (MPI-GE) [16]. The MPI-GE includes ensemble simulations of
three future scenarios: RCP2.6, RCP4.5, and RCP8.5, which de-
scribe greenhouse gas emissions due to different socio-economic
developments, along with a historical simulation, a pre-industrial
control run and a 1% CO2-increase experiment. The RCP ensem-
bles consist of 100 members each, with monthly data from January
2006 to December 2099 on a geo-referenced rectilinear 2D grid.



Figure 3: Comparison of different TFs on the visual appearance of
volume rendering the CHF of the precipitation change (%) for 2080-
2099 relative to 1986-2005 for scenario RCP8.5 as simulated within
the MPI-GE ensemble: (a) the “foggy landscape”, (b) “desert land-
scape” with black body radiation, (c) symmetric median emphasis,
and (d) a 2D TF with emphasis on the median, and an isosurface of
the median.

As changes in precipitation can be critical for our living condi-
tions, we chose to focus on this variable. In particular, we looked at
the relative change of yearly precipitation over time as well as at the
different developments simulated for the different RCP scenarios.

In order to reduce the high-frequent noise caused by natural cli-
mate variability, we first calculated 20-year running means for each
ensemble member. As a baseline, we used the ensemble mean of the
20-year mean from 1986–2005 of the yearly precipitation from the
historical simulation. For each time step of each scenario, we cal-
culated the percentage change in precipitation relative to the base-
line. This ensemble of percentage change data was then used to
estimate the pointwise EDF and then compute the CHF, where 700
uniformly-spaced samples were used to sample the value range of
−100% to 600%. The sampled CHF was computed through an own
implementation.

The resulting CHFs were visualized using DVR in ParaView [2].
To achieve better depth perception, we intended to apply DVR us-
ing the scattering model introduced in ParaView 5.11, but while
this enhanced rendering worked well with simple transfer functions
(TFs), it was not as successful with 2D TFs. However, to never-
theless enhance the depth perception for the 2D TFs emphasizing
the median, we additionally rendered an isosurface for a cumulative
probability of 0.5 (median), which provides additional visual hints.
To provide the geographic context, continental outlines rendered as
black lines were placed in the volume in the plane for the function
value 0%. To visualize the changes over time, the volume render-
ings of all consecutive time step are shown as an animation, which
can be found in the supplemental material.

We used a 2D TF to render the results (Fig. 4 and Fig. 1 (top left
and bottom right)), which emphasizes the median as described in
Sec. 4.2 and shows what parts of the distribution are above or below
a value of reference. In this case, the value of reference is 0%, hence
showing if the precipitation change is negative (red), zero (white),
or positive (blue). The value range for the colormapping goes from
−75% to 230%, respectively.

This 2D TF allows a quick overview of positive and negative
changes without having to refer to a data axis. Blue-shaded max-
ima indicate a precipitation increase, while red-shaded depressions
show areas with reduced precipitation. Regions with a thin but
dense cloud indicate low variability, while more transparent verti-
cal structures indicate high uncertainty, such as the semi-transparent
bluish peaks in the tropics, which can be interpreted as regions with
significant precipitation increase but with a large spread within the

Figure 4: Overview of the precipitation change (%) for 2080-2099
relative to 1986–2005 for scenarios RCP2.6 (left) and RCP8.5 (right)
as simulated within the MPI-GE ensemble, shown through volume
rendering of the CHF and an isosurface of the median.

ensemble.
The side-by-side comparison of the precipitation change for

the optimistic scenario RCP2.6 (left) and the pessimistic RCP8.5
(right) in Fig. 4 shows the differently strong patterns simulated for
the end of the century: except for the blueish peaks in the tropical
Pacific, RCP2.6 is rendered as an almost flat grey surface, show-
ing that the median precipitation changes are small. The rendering
of the RCP8.5 precipitation change (right) is characterized by pro-
nounced “blue hills” and “red valleys” that resemble much stronger
changes.

In addition to the perspective view of the CHF rendering (top
left), Fig. 1 shows three further views that together enable a more
quantitative visual analysis of the uncertain precipitation changes
for RCP8.5 by the end of the century. The top view (bottom right)
shows the location and intersection of two thick black lines, i.e. the
positions of two cross sections through the CHF volume. The other
two views show the CFG for the latitudinal cross section (bottom
left) and the longitudinal one (top right).

Around the intersection of the two cross sections of Fig. 1, the
width of the graded shading reflects the extremely high variabil-
ity of the simulated precipitation changes in this area. The vari-
ous ensemble members are uncertain here; as can be seen from the
cross sections and the CFGs, both negative and positive precipita-
tion changes are simulated within the ensemble.

6 CONCLUSION & FUTURE WORK

We present a novel visualization for 2D scalar field ensembles, the
cumulative height fields (CHF), which gives the user a qualitative
overview over all the function values and its uncertainties, similar
to height fields. Due to the use of DVR, the visualization can be
tweaked with the TF to highlight specific aspects of the data uncer-
tainties, like sample minima and maxima, or the median. Some TFs
were described and utilized to test the CHF with a climate ensem-
ble, the MPI-GE. The main benefit of the visualization of the CHFs
with multiple views and interaction is that it is possible to convey
information about the field values and their cumulative probabili-
ties within the ensemble simultaneously. This can also convey a
fast insight about some features, e.g. high spread and skewness.

In the future, there are three main tasks we would like to address:
(1) Use the CHFs with other datasets to observe further benefits and
drawbacks (2) Compare the CHFs to other methods, e.g. visualiza-
tion of mean with standard deviation and (3) DVR presents some
challenges, like bad depth perception and occlusion, which we tried
to improve using classical methods, such as multiple views, inter-
action and shading. We would like to further improve the corre-
spondence between volume and original domain points, as this is
relevant for a better understanding of the data. Further, it would be
interesting to investigate the utility of the CHFs if other “probability
functions” were used, e.g. instead of the EDF/CDF the PDF [14] or
even the level crossing probabilities [21].
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[21] K. Pöthkow and H.-C. Hege. Positional uncertainty of isocontours:
Condition analysis and probabilistic measures. IEEE Transactions on
Visualization and Computer Graphics, 17(10):1393–1406, Oct. 2011.
doi: 10.1109/TVCG.2010.247 2, 4
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