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Figure 1: Example of a visual analytics system that implements coordinated multiple views with the use-coordination software 
library. a) The system supports comparison of two dimensionality reduction results using four scatterplots linked on subsets of 
properties. b) The coordination specifcation defnes which views are linked to which properties using a JSON grammar represen-
tation. Dotted lines illustrate that the frst view “UMAP (overview)” is mapped to particular coordination scopes in the coordination 
space. c) Views use their coordination scope mappings to obtain values and setter functions from the parent system that manages 
the coordination specifcation. Developers can assume that the render function for each view will re-execute upon changes to the 
values in the mapped coordination scopes. 

ABSTRACT 

Coordinated multiple views (CMV) in a visual analytics system 
can help users explore multiple data representations simultane-
ously with linked interactions. However, the implementation of 
coordinated multiple views can be challenging. Without standard 
software libraries, visualization designers need to re-implement 
CMV during the development of each system. We introduce 
use-coordination, a grammar and software library that sup-
ports the effcient implementation of CMV. The grammar defnes 
a JSON-based representation for an abstract coordination model 
from the information visualization literature. We contribute an 
optional extension to the model and grammar that allows for hi-
erarchical coordination. Through three use cases, we show that 
use-coordination enables implementation of CMV in systems 
containing not only basic statistical charts but also more complex 
visualizations such as medical imaging volumes. We describe six 
software extensions, including a graphical editor for manipulation 
of coordination, which showcase the potential to build upon our 
coordination-focused declarative approach. The software is open-
source and available at https://use-coordination.dev. 

Index Terms: Visualization toolkits, visual analytics, domain spe-
cifc languages. 
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1 INTRODUCTION 

Coordinated multiple views (CMV) is a visual analytics technique 
in which interactions in one visualization are automatically re-
fected in other linked visualizations. CMV is especially power-
ful during exploratory data analysis as it can help users to discover 
relationships, make comparisons, and simultaneously view details 
plus context. 

Research on CMV began as early as the 1970s with methods 
for linking static views [10]. This was followed by a focus on the 
development of theoretical models which would enable fexible co-
ordination implementations [10, 21, 22, 12]. Several such models 
were introduced alongside software implementations that are now 
obsolete. A survey by Roberts et al. [23] characterized data struc-
tures and underpinning technologies for CMV as an “afterthought.” 

The translation of theoretical models into shared open-source 
software implementations has remained under-studied by the vi-
sualization research community. As a consequence, visualization 
tool developers must devise custom implementations each time they 
want to integrate a technique such as CMV. This places a burden on 
not only developers, but also on users who may encounter a wide 
range of ad hoc implementations of techniques. 

To address this problem, we contribute the use-coordination 
grammar and software library (Fig. 1). Our approach implements 
the Abstract Model for coordination proposed by Boukhelifa et al. 
[12]. Additionally, we formalize an extension of the model that en-
ables the specifcation of a hierarchy of coordination. We defne the 
grammar in the form of a JSON-based domain-specifc language 
(DSL) that is declarative and programming language-agnostic. The 
use-coordination library is implemented in JavaScript and can 
be integrated into React-based web applications, and we provide 
an alternative implementation for Python. The JavaScript library 
is accompanied by modules for visualization and editing of co-
ordination specifcations using their graph-based representation, 
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for integration with provenance tracking approaches [16], and for 
construction of specifcations imperatively via an object-oriented 
API. We anticipate use-coordination being useful to researchers 
aiming to support CMV in visual analytics systems by leverag-
ing a common implementation that is grounded in a theoretical 
model from the information visualization literature. The software 
is open-source and available with accompanying documentation at 
https://github.com/keller-mark/use-coordination. We 
demonstrate the utility of the library through use cases with statis-
tical plots and medical imaging visualizations. 

2 DESIGN GOALS 

We had several design goals based on our experiences implement-
ing CMV in visual analytics tools for biomedical data [19, 15]: 

DG1. Declarative grammar representation. Declarative 
representations of state enable serialization for use cases such as 
database storage, programming language portability, reproducibil-
ity, provenance tracking, and multiplayer interactions. We aim for a 
coordination model that has a declarative representation which can 
be serialized to a JSON-based DSL format. 

DG2. Reactive updates. Today’s most popular user inter-
face development frameworks are designed for reactive component-
based architectures. In these architectures, a tree of view compo-
nents re-render reactively, in response to changes in state values. 
The reactive paradigm simplifes the mental model for developers 
who do not need to worry about component state becoming stale 
thanks to effcient component tree diffng algorithms that are ab-
stracted by the framework. In JavaScript, this class of frameworks 
includes React [2], Vue [8], Svelte [6], and Solid [5]. The reactive 
architecture contrasts with earlier publish-subscribe architectures 
that rely on explicit event subscriptions. Integrating event-based 
state management approaches into reactive frameworks can be un-
natural, forcing the developer to revert to a more complicated men-
tal model in which there is a risk of component state becoming stale 
(e.g., due to accidental lack of publication or subscription). We aim 
for a coordination model and library that are designed for reactive 
component rendering architectures. As a corollary, view implemen-
tations should remain independent of one another such that views 
do not need to communicate directly to achieve coordination. 

DG3. Decoupled from data representation and view lay-
out. For maximum fexibility, coordination should be decoupled 
from the processes of data representation (and by extension, load-
ing and transformation) and view layout. Not only does this allow 
developers to use methods of their choice (i.e., view layout via CSS 
or a specialized JavaScript library) and visualize diverse data types 
(e.g., tables, images, trees, graphs), it also follows the Unix philos-
ophy of modular software tools that have a singular focus. 

DG4. Arbitrary coordination types. Coordination should not 
be limited to a predefned set of properties. Developers should be 
able to coordinate any part of the state of an application for maxi-
mum fexibility. 

3 RELATED WORK 

CMV techniques have been studied by many visualization re-
searchers over the years. We refer to Roberts [23] and Scherr [25] 
for two early surveys. 

3.1 Coordination Models 

Roberts [23] describes multiple model architectures for coordina-
tion, including data-centric and model-view-controller (MVC) ar-
chitectures. Data-centric approaches are powerful but to our knowl-
edge all existing approaches in this category are limited to tabular 
data representations. In contrast, Boukhelifa et al. [12] contribute 
the Abstract Model for coordination which is not data-centric and 

therefore more general than prior approaches. Multiple visualiza-
tion systems, including CViews [13] and ManiVault [28], imple-
ment this model, but there is not a standalone implementation nor 
a standard declarative representation for the model state. Further, 
existing implementations of CMV use event-based approaches for 
information propagation, which are unnatural to use with reactive 
user interface frameworks such as React. 

3.2 Grammars for Coordination 

Harth et al. [18] and Chen et al. [14] both describe the goal of 
enabling CMV across views implemented using different plotting 
libraries using JSON- and natural language- based grammars, re-
spectively. Both approaches are event-based with predefned sets 
of supported actions and both make assumptions about tabular data 
types. Neither encodes key rudiments of the Abstract Model [12] 
such as coordination types and coordination scopes. Though both 
are open-source, neither is available as a documented reusable soft-
ware library through a package repository such as NPM. 

3.3 Interaction Orchestration 

Interaction orchestration can be considered as a special case of 
CMV in which all coordination types represent interactions such 
as selections and brushing. The Vega-Lite Grammar of Interac-
tion [24] supports declarative specifcation of coordinated selec-
tions comprising points and intervals. The Grammar of Interaction 
is powerful but remains limited to the scope of a Vega-Lite speci-
fcation (i.e., unable to orchestrate across multiple specifcations or 
outside Vega-Lite), does not support arbitrary value schema, and 
supports only single- or all-view coordination. The Dynamically 
Interactive Visualization (DIVI) [26] approach infers confgurations 
for coordinated interactions from views defned as SVGs. The us-
age of SVG enables implementation of CMV with minimal devel-
oper overhead, but comes with scalability limitations and precludes 
coordination of non-SVG views such as tables or input elements. 
Both the Vega-Lite and DIVI approaches are implemented using 
event-based models. 

3.4 Data Flow Models 

A number of data fow approaches for coordinated visualization 
have been proposed, including VisFlow [29] and sMolBoxes [27]. 
Data fow systems visually encode operations on data, helping users 
to understand which views are linked on which data elements and 
rendering properties. In contrast, more general visual analytics sys-
tems, even those which implement CMV, do not typically include 
such a visual encoding. Similar to data-centric coordination mod-
els, data fow models make assumptions about data representations 
(e.g., that data is tabular). To our knowledge, there are not standard 
declarative representations for data fow models. We note that re-
search on visualization for data fow models is complementary to 
research on coordination and may inform how coordination model 
state is communicated to users. 

4 THE USE-COORDINATION MODEL AND GRAMMAR 

The use-coordination model can be seen as an extension of 
the Abstract Model contributed by Boukhelifa et al. [12, 13]. The 
model has also been informed by our earlier usage of the Abstract 
Model to implement CMV in the Vitessce visual analytics frame-
work [19]. We formalize the model as a JSON-based grammar in 
terms of each rudiment of coordination: 

Coordination Type. A coordination type is a name for a prop-
erty being coordinated (e.g., zoom or colormap). 

Coordination Scope. A coordination scope is a named in-
stance of a coordination type. For example, a visual analytics sys-
tem with two different scatterplots displaying different projection 
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results may have two coordination scopes for the zoom coordina-
tion type, zoom.UMAP and zoom.TSNE, enabling the user to zoom 
in these plots independently. We do not associate any semantics 
with coordination scope names, although particular visual analytics 
systems or view implementations may. 

Coordination Value. Each coordination scope is mapped to a 
value, for example zoom.UMAP: 10. 

Coordination Object. A coordination object encapsulates the 
coordination scopes and values for a given coordination type. A 
coordination object may contain zero or more coordination scopes. 
Coordination scope names must be unique within a coordination 
object but may be reused across coordination objects. 

Coordination Space. The coordination space contains the co-
ordination objects for all coordination types in the system (Fig. 1b). 

View Coordination. Views typically correspond to plots or 
other standalone widgets in a visual analytics system. Each view 
may have a mapping from coordination types to coordination 
scopes (Fig. 1). Depending on their implementation, views may 
support a subset of the coordination types that are present in the co-
ordination space. During rendering, each view performs a lookup 
(in the coordination space) for the coordination values that corre-
spond to its current coordination scope mappings. 

Hierarchy of Coordination. Prior work has discussed the need 
for hierarchical coordination, though did not formalize a multi-level 
model. Boukhelifa and Rodgers note, “...theoretically, any pro-
cess could be coordinated with anything,” [13] and McDonald et 
al. state, “The hierarchical or graph structure of the Scene will of-
ten refect a similar hierarchy in the Subjects,” [21]. Our grammar 
extends the Abstract Model [12] to support a hierarchy of coordi-
nation. First, we allow each view to be associated with more than 
one scope per coordination type (i.e., an array of scopes). Next, a 
coordinationScopesBy property can be specifed for each view, 
which defnes scope → scope mappings, including between scopes 
within different coordination objects. For example, scopes repre-
senting bars selected in a bar plot can be mapped to scopes rep-
resenting colors, enabling users to defne color encodings per se-
lected bar. To our knowledge, such an extension of the Abstract 
Model [12, 13] has not previously been formalized. Further details 
about the JSON representation for hierarchies of coordination are 
available in Section 2 of our Supplemental Materials. 

In accordance with our design goals, intentionally absent from 
the grammar are events (DG2), layout- and data- related properties 
(DG3), and view-view mappings (DG5). 

5 SOFTWARE IMPLEMENTATION 

We contribute an open-source software library called 
use-coordination, which implements the model and grammar 
defned in Section 4. The library follows the React “hooks” 
paradigm in which composable functions abstract away complex 
state management features. Developers of visual analytics systems 
can use the library by defning a coordination specifcation (i.e., 
an instance of the grammar) and defning each view as a React 
component instance that is associated with a unique identifer. 
Within each view, developers can use the provided hook functions 
to perform lookups of coordination values from the coordination 
space and to obtain “setter” functions that enable updating the 
values in the mapped coordination scopes. 

Software Extensions 

The portability and declarative nature of the use-coordination 
grammar have proven to be powerful in enabling the straightfor-
ward development of additional software modules (Fig. 2). 
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Figure 2: Extensions of use-coordination. a) Our visual editor en-
ables users to modify the coordination specifcation without knowl-
edge of JSON. b) The coordination specifcation can be rendered to 
the GraphViz DOT format for static visualization. c) User interactions 
in a visual analytic system can be tracked through optional integra-
tion with Trrack [16]. 

Python and non-React implementations. Our approach and 
JSON representation generalize beyond React and JavaScript. First, 
we demonstrate an implementation of the useCoordination hook 
function for Solid [5] using its signals pattern for reactivity1. Sec-
ond, we provide with-coordination, a Python implementation 
that coordinates Jupyter widget views2 . Importantly, the software 
modules that follow in this section are designed around the shared 
JSON grammar, such that each module is compatible with all im-
plementations. 

Programmatic specifcation. On top of the declarative JSON 
representation, we have developed an object-oriented API for in-
cremental construction and manipulation of coordination specifca-
tions. This API enables users to defne objects corresponding to 
views and coordination scopes. Subsequently, users can pass these 
objects to functions such as linkViews, avoiding errors associated 
with direct JSON manipulation. At any point, users can convert 
their specifcation object to JSON. 

Node-link diagrams. The use-coordination model takes 
the form of a graph data structure, which can be visualized as a 
node-link diagram. We provide a function to convert coordination 
specifcations from JSON to GraphViz [17] DOT format for visual-
ization (Fig. 2b). 

Visual editor. We provide a visual fow-based editor based on 
the graph structure of the model. This editor is implemented as a 
React component using the ReactFlow [4] library, enabling it to be 
embedded into visual analytics applications so that end-users can 
modify the coordination specifcation in situ (Fig. 2a). 

Provenance tracking. The serializable nature of the JSON-
based coordination specifcation lends itself to integration with 

1https://github.com/keller-mark/use-coordination-solid 
2https://github.com/manzt/with-coordination 
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Figure 3: Use cases. a) Coordinated selections across Vega-Lite, 
D3, Visx, and Plotly bar plot implementations. b) Seattle weather 
example in which brushing interactions in one plot (the middle scat-
terplot) are coordinated with the other two plots. c) Coordination of 
2D (crosshair position) and 3D (azimuth) parameters of a medical 
imaging volume. 

provenance tracking and action recovery approaches. We pro-
vide a utility function to help integrate use-coordination with 
Trrack [16] (Fig. 2c). 

Schema validation. Coordination types can optionally be as-
sociated with schema to which their values must conform. We im-
plement a React provider component which supports validation via 
Zod [9] schema. Schema validation errors can be caught and han-
dled by the parent application to display friendly error messages 
and prevent invalid data from propagating to views. 

6 USE CASES 

We demonstrate use-coordination through three use cases. 
Based on our experiences using the library, we also provide detailed 
usage guidance in Section 3 of our Supplemental Materials. 

6.1 Use Case 1: Multiple Plotting Libraries 

Visual analytics systems may integrate multiple plotting libraries. 
There is often a need to link elements across plots regardless of 
how they are implemented, a use case which use-coordination 
supports. We implement a bar plot using four different plotting 
libraries: Vega-Lite [24], D3 [11], Visx [7], and Plotly [3] (Fig. 3a). 
With use-coordination, we coordinate bar selections across all 
four plots. The user can dynamically modify which subsets of plots 
are coordinated together via our visual editor extension (Fig. 2). 

6.2 Use Case 2: Seattle Weather 

We demonstrate that use-coordination can be used to link 
brushing interactions across plots. We reproduce Figure 1 of Snyder 
and Heer [26] in which the Seattle weather dataset is visualized us-
ing a bar plot and two scatterplots (Fig. 3b). As the user brushes (in 
the middle scatterplot view) a region containing data points corre-
sponding to low temperature and high precipitation, the data points 
are highlighted in all three plots. 

6.3 Use Case 3: Medical Imaging 

Our approach is not limited to coordination of visualizations of 
tabular data. We visualize a medical imaging volume using two 
Niivue [1] instances (Fig. 3c). We link one of three 2D parame-
ters (X-axis crosshair) and one of two 3D parameters (azimuth) via 
use-coordination. This coordination enables the user to simul-
taneously visualize six 2D slices (two of which are identical) and 
view the volume from two different angles. 

7 DISCUSSION 

With use-coordination, we contribute the concept of a declar-
ative coordination specifcation that is decoupled from both data 
representation and view layout. We provide a software ecosystem 
around such specifcations oriented towards visual analytics system 
developers. The coordination specifcation is grounded in an estab-
lished coordination model [12] whose infuence on prior works in 
the visualization feld demonstrates wide applicability. 

The most closely related works are from Harth et al. [18] and 
Chen et al. [14], yet both differ from use-coordination in terms 
of design goals and conceptual models. These works are based on 
event- or action-based models which stand in contrast to the declar-
ative and reactive approach that we adopt (DG1, DG2). In compari-
son to Harth et al., our work also differs in that it is decoupled from 
data representation and view layout (DG3). Compared to the natu-
ral language-based grammar of Chen et al., we developed a declar-
ative JSON-based DSL (DG1). This declarative approach makes it 
easy to implement multiple systems around the DSL. For instance, 
our grammar has the potential to serve as a compilation target for 
natural language-based approaches involving large language mod-
els. 

The simplicity of our approach comes with trade-offs. For ex-
ample, we allow for coordination types to have arbitrary names 
and value schema (DG4) and we decouple coordination from 
view layout (DG3). While this freedom enables the integration 
of use-coordination with any selection, interaction, and lay-
out approaches, it could present challenges to reuse of coordi-
nation specifcations across visualization system boundaries or to 
meta-analyses that rely on standardization of coordination type 
names with associated semantics. Despite this limitation, we 
emphasize that visualization developers could defne their own 
set of standard coordination types with domain-specifc semantics 
(e.g., biomarker-selection for biological data visualization). 
Our grammar does not explicitly include aspects such as transi-
tions/easing or composite brushing [20], which would be up to 
the developer to implement (coordinated or otherwise). We note 
that developers may defne more fully-featured libraries on top of 
use-coordination that are coupled to particular view layout ap-
proaches or coordination type semantics. 

8 CONCLUSION 

In this work, we present the use-coordination model, grammar, 
and software library. We demonstrate that standardizing the repre-
sentation of coordination through a declarative JSON-based gram-
mar enables the development of software extensions that simplify 
the implementation and reasoning about CMV. Our use of reactive 
software paradigms and initial extensions (Sec. 5) reduce redun-
dant work and lower barriers to entry across multiple platforms and 
languages. An important question for future work is how to effec-
tively communicate coordination to end-users. We anticipate our 
work serving as a tool to address this and other human-centered 
questions. 
Use-coordination is open-source and our software packages 

are available through the NPM and PyPI package repositories. The 
software is accompanied by tests, documentation, and examples. 



SUPPLEMENTAL MATERIALS 

All supplemental materials are available on OSF at 
https://doi.org/10.17605/OSF.IO/SEJN5, released un-
der a CC BY 4.0 license. Our supplemental materials include 
further details about the JSON grammar and the model that we 
have developed to represent hierarchies of coordination. 
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