Hypertrix: An indicatrix for high-dimensional visualizations
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Figure 1: (A) Tissot’s indicatrix for two classic map projections, providing an intuitive view of cartographic distortion. (the images are
produced using cartopy [14] in Python) (B) The “hypertrix” is a high-dimensional extension of Tissot’s Indicatrix. At left is a standard
t-SNE projections of the MNIST digits dataset. At right is a hypertrix overlay. The hypertrix makes it clear that the cluster for the digit
1 is (non-conformally) expanded compared to other digits. There is also significant information compression at cluster boundaries.

ABSTRACT

Visualizing high dimensional data is challenging, since any dimen-
sionality reduction technique will distort distances. A classic method
in cartography-Tissot’s Indicatrix, specific to sphere-to-plane maps—
visualizes distortion using ellipses. Inspired by this idea, we describe
the hypertrix: a method for representing distortions that occur when
data is projected from arbitrarily high dimensions onto a 2D plane.
We demonstrate our technique through synthetic and real-world
datasets, and describe how this indicatrix can guide interpretations
of nonlinear dimensionality reduction.

Index Terms: Dimensionality Reduction, High-dimensional data—
Distortion—Text Visualization, Clustering—

1 INTRODUCTION

Nonlinear dimensionality reduction techniques, such as t-SNE and
UMAP, are notoriously difficult to interpret. Visualizing high di-
mensional data necessarily introduces a variety of distortions [26].
This leads to a natural question: is there a way to explicitly identify
distortions, to help viewers read and understand these visualizations?

Of course, this is not a new question, and several techniques have
been proposed by the visualization community [4,9,22] But the
question predates computer science: for centuries, cartographers
have known that map projections distort spherical distances on a
globe. In 1859, French mathematician Nicolas Tissot invented a
technique to make these distortions explicit [10]. The idea, today
known as Tissot’s indicatrix, visualizes the local distortion with
small ellipses overlaid on the map. Each ellipse represents the
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derivative of the mapping—roughly speaking, how a standard-sized
circle would be transformed by the projection at that point.

Inspired by this approach, we propose a high-dimensional analog
of the indicatrix, which we call a hypertrix. A hypertrix is a colored
ellipse that indicates distortion in projections of high-dimensional
data. The distortion is estimated from a grid of locally linear transfor-
mations of the high-dimensional data that maps to the pre-computed
low-dimensional projection. The learned transformation matrix is
used to quantify the magnitude and direction of distortions.

As in Tissot’s indicatrix, we draw ellipses that visualize the image
of small spheres under this transformation, overlaid on the projection.
This provides a view not just of the magnitude of expansion or con-
traction, but whether it is uniform in different directions. Because
this 2D glyph cannot capture the full high-dimensional transfor-
mation, we also color the ellipses to show overall distortion. The
Hypertrix plots intuitively highlight regions of high distortion, of-
fering insights into underlying data distribution and complementing
existing quantitative evaluation metrics.

We demonstrate the hypertrix technique by applying it to pro-
jections of synthetic and real-world examples. Applied to some of
the misleading examples from [26], the hypertrix makes underlying
distortions obvious. In real-world data sets, the hypertrix illuminates
some subtle and non-obvious distortions, both within and between
clusters. (See Figure 1 for one example.) Overall, the hypertrix
presents a visual depiction of distortion that complements the pre-
viously proposed metrics, such as stress and trustworthiness, in
qualitatively evaluating dimensionality reduction methods.

2 RELATED WORK

Tissot first analyzed the distortion in distances in cartographic pro-
jections [17,24] and proposed a graphical representation of a field of
ellipses on a map that describes the distortion. The idea is straightfor-
ward: visualize local distortion by showing the image of a standard-
sized circle under the map projection. In effect, this is a visualization
of the derivative of the map from sphere to plane. The power of
the indicatrix stems from the fact that it visualizes multiple types of



distortion in an intuitive fashion, clarifying directions of expansion
and contraction independently.

Nonlinear dimensional projections bring new challenges, since
they involve mappings that can be far more irregular and complicated
than those seen in world maps. Indeed, a great deal of work has gone
into measuring different types of distortion and uncertainty in these
visualizations. Several scalar metrics have been proposed to assess
the quality of visual projections [1, 12,21]. Global measures of
trustworthiness and preservation of local neighborhoods [7,25] are
informative while comparing projections computed using different
methods. Visualizing quantities like uncertainty [3] or the distri-
bution of data with plots can be informative, allowing viewers to
quickly gain qualitative insights. Studies using these metrics [13,19]
concluded that Isomap and Locally Linear Embeddings (LLE) are
better at extracting manifolds while t-SNE is better at preservation
of original neighborhoods.

Closest to our work here are techniques that display these metrics
by overlaying distortion data on a visualization. For example [2] pro-
poses overlaying the projections with colored Voronoi cells that en-
code the degree of local stretching and compression, or [20], which
visualizes precision measures directly on the visualizations them-
selves. ProxiViz and CheckViz [8, 11] integrate distortion metrics
into interactive projections to make viewers aware of such artifacts
while analyzing data. However, these visuals do not simultaneously
show both the direction and magnitude of distortions, data that is
important to understand the relative sizes of the clusters and visual
artifacts in the projections. DynamicViz [23] proposes dynamic
visualizations that give a sense of projection stability; however, it
requires multiple embeddings.

3 HYPERTRIX FORMULATION
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Figure 2: The Hypertrix reflects the local distortion due to scaling,
rotation, and loss of information about distances, visualized as a visual
glyph of an ellipse. (A) The color encodes the distortion in distances
and (B) the shape encodes the stretching or compression and rotation
relative to the original data.

Existing methods for showing high-dimensional distortions are
confined to displaying just one distortion metric at a time, and pro-
vide no indication of systematic directionality related to compression
or expansion. We would like to fill this gap, but there are obstacles
to generalizing Tissot’s Indicatrix to higher dimensions.

To begin with, cartographic map projections are typically differ-
entiable almost everywhere, so taking derivatives provides a natural
way to define local distortion. By contrast, projection methods such
as t-SNE or UMAP do not specify a mapping on the entire space—so
taking derivatives is not an option. As a result, we need to use an
approximation method, defining a local linear projection based on a
sample of points in an appropriate neighborhood.

Using this local linear approximation, we can draw an elliptical
glyph that represents the image of a small, standard-sized sphere.
However, unlike the case of Tissot’s Indicatrix, this ellipse does not

capture all the information a reader might want. In particular, be-
cause this is a mapping from high-dimensional space, many different
linear mappings might give rise to the same ellipse. Some of these
may involve more distortion than others. To address this ambiguity,
we encode a scalar metric of the overall distortion using color. This
is similar to the technique used in quantifying distortion in carto-
graphic distances [15] and is qualitatively similar to the projection.
precision score proposed by [20]. Figure 2 is a visual view of these
ideas.

3.1 General method

@ R
A/ng - Transformation > avg )
S o< |Grid Center:(x,y)

-
ad

L

e

%

Original data Visual Projection
® Cov = ATA
i i 0
qu EIgenvalueS )\1' )\2 and /x Semi-major axis: a:l/\/}u
eigenvectors u, and u, /\/\ I Semi-minor axis: b=1//A;
6 ‘\ a \ [ Angle: = arctan(u:/u)
:Davg / davg \ || Color: §=Dus/dus

Find distortion in -, Location: (x,y)
distance & [

(@ Compute hypertrix

Figure 3: An illustration of the Hypertrix computation process. (A)
We select a neighborhood of data points around a grid center in
the projection space and a local linear transformation A. (B) The
covariance of the transformation matrix A is a measure of distortions
such as local scaling and rotation due to projection. We compute
its eigenvalues, eigenvectors, and the distortion measure é and (C)
encode them visually as the indicatrix.

To define our method precisely, we first set up some nota-
tion. Consider a data set of points X = {x|,xp,...x,} € RD,
where D > 2, along with a set of corresponding projected points,
Y = {y1,y2,...ya}, where y; € R%. Estimating a single global trans-
formation between them can be challenging since the transformation
that results in the projected points might be highly complex and
non-linear. Instead, we opt for computing a local linear mapping
A that adequately captures the transformation within small local-
ized regions. The covariance matrix Cov = ATA of A encodes the
directional variations and local scaling due to the transformation,
providing us with a quantifiable measure of distortion. In particular,
from the singular value decomposition of A it follows that the image
of a unit sphere under A is the same as the image of a unit disk under

VATA.

Using this information about the distortion, we compute the pa-
rameters for the Indicatrix &. This process is repeated uniformly
across the entire projection space, allowing us to compare distortions
in different regions. Figure 3 and Algorithm 1 outline our approach.
‘We now describe the specifics of hypertrix algorithm.

3.2 Step-by-step algorithm

1. Sampling points from a neighborhood: We partition the pro-
jection space Y into a uniform grid of M x M cells. The grid size M
determines the granularity of the hypertrix glyphs: we will display
one ellipse for each cell that contains a data point, while skipping
empty cells. For a grid cell containing data points, we sample from
a local neighborhood around the grid center (g*,g”) to learn the
linear mapping. The number of neighbors N defines the size of this
neighborhood and the data points used to approximate the linear



transformation. If a cell has fewer points than N, we select the
N closest points to the grid’s center, resulting in a local sample
of projections ¥ corresponding to data points X. Note that in this
case we end up sampling beyond the cell boundary—in early tests,
we learned this was essential for a good linear approximation and
avoiding overfitting.

2. Computing the hypertrix parameters: Using the sampled
data, we solve the linear equation X - A =Y. The number of points
influences the utility of the approximation A. If fewer points than the
dimensionality of the data are used, the equation becomes underpa-
rameterized, with the resulting collinearity leading to an ill-defined
learned transformation. Thus we must use samples with more points
than the data dimensionality. In cases of very high dimensionality,
we reduce dimensions to 50 using PCA to maintain most of the data
variance. (Note that for methods like t-SNE this is the first step
of the computation as the data is initialized using the first 50 PCA
dimensions before computing the projections, so no information
is lost.) To quantify distortion, we need to know how the projec-
tion process rotated or scaled the high-dimensional relationships
between data points. The covariance matrix of the linear transfor-
mation: Cov = AT A provides a measure of this. Its eigenvalues
A1, 2, and eigenvectors uj,u; encode the magnitudes of the direc-
tion of the most change due to transformation. We use them to
obtain the parameters of the hypertrix ellipse a and b, as shown
in Figure 3C. To quantify the distortion in distances, we calculate
0 = Dyvg/davg, the ratio between average distances in projected dyy,g
and high-dimensional spaces Dgyg.

This process is repeated for all grid cells that contain data to
obtain a set of Indicatrix parameters.

3. Hypertrix visualization: We render ellipses with the parame-
ters derived above onto the projection space. Each ellipse is centered
at the grid cell’s midpoint (g%, g”), with lengths of the semi-major
and semi-minor axis corresponding to a and b respectively, and ro-
tated by angle 6. The color intensity of each ellipse, representing &,
indicates the level of distance distortion, with deeper colors denoting
higher distortions.

4 RESULTS

We illustrate the hypertrix as applied to a series of synthetic and
real-world datasets and projections, each designed to probe different
aspects of distortion inherent to dimensionality reduction.

4.1 Synthetic Datasets

1.Two Gaussian clusters in 100D: This synthetic dataset consists
of 1,000 points sampled from two Gaussian distributions in 100-
dimensional space, with one distribution having a higher variance
than the other ( Figure 4A ). This scenario tests the methods’ ability
to reflect differences in cluster density and scale. The projections
by t-SNE and UMAP depict these clusters—inaccurately—as nearly
identical in size. The Indicatrix provides a clear visualization of this
discrepancy. This example showcases how the Indicatrix captures
the true density and scale of clusters in data, a common occurrence
in large-scale datasets.

2. Linked circles in 3D: This dataset consists of 1,000 points
distributed along two circles of different radii in 3D space, linked
and at an angle to each other ( Figure 4B ). Both t-SNE and UMAP
projections show these circles as disjointed and similar in size, which
misrepresents their original relationship and scale. The hypertrix
in these cases displays inhomogeneously stretched ellipses for each
circle. Particularly in the UMAP projection, the variation in ellipses’
shape and orientation in different sections of the circles indicate
that there is non-uniform distortion in the projections. Overall, the
distortion indicates a significant difference in circle sizes in the
original data which is less apparent in the projections.

3. A square grid with a hole in 2D: We generate points (x,y) on a
uniform 2D grid within the range [0, 1), except for a square-shaped

Algorithm 1: Hypertrix computation algorithm

Data: dataset X = {x1,xp,...x, }, projections
Y ={y1,y2,...yn}, number of nearest neighbors N,
grid size M

Result: Distortion ellipse parameters &

begin

if (dimensionality of X > 50) then

| X < PCA(n_components = 50)(X);
end
g’ g ,grid_spacing < GenerateUniformGrid(Y,M);

nn < InitializeNearestNeighbors(Y, R = grid_spacing,
n=N)
for i=0 to MxM do
idx + FindNeighbors([g*, g’], nn, N);
if idx is not empty then
X + Xidx];
Y « Ylidx];
ComputeEllipse(X, ¥, g%, g);
end
end
end
Function ComputeEllipse(X, ¥, g% g"):
Solve: X@A =7;
Cov + AT @A;
A < eigenvalue(Cov);
ii < eigenvector(Cov);
0 <« arctan(iy /iy);
0«
AvgNeighborDistance(X ) /AvgNeighborDistance(Y);
width, height < 1/~/20,1/\/A1;
Add (g%, g”,width, height,0,6) to &
return &

hole offset from the center ( Figure 4B ). This example shows the
value of elliptical glyphs. Even if the viewer does not know what
the original data looks like, the ellipses clearly show that the UMAP
projection has stronger stretching in one direction than another over-
all. Similar local non-conformal distortion is evident in the t-SNE
view. In addition, in both the t-SNE and UMAP projections, the
hole appears disproportionately enlarged. The hypertrix reveals this
through ellipses that are elongated around both the perimeter of the
hole and the edges of the grid.

4.2 Handwritten digits

The MNIST dataset [5], consisting of 60,000 images of handwritten
digits, is a classic benchmark. The hypertrix for t-SNE projections
of the data (Figure 1B) yields several qualitative insights:

1. The projections inhomogeneously distort the data. Notably,
the cluster for the digit 1’ is disproportionately expanded compared
to those for other digits. Indeed, after examining the pairwise intra-
cluster distances for all digits, we find that distances within the ’1°
cluster were consistently about half the magnitude of those in other
clusters. This suggests that the cluster is tighter than the others, and
should appear smaller in visual representation. This observation
intuitively makes sense, since there is less variation in the ways
people write the digit 1, as compared to other digits.

2. The projection shows pronounced distortions in the region
between clusters of the digits ’0’, ’5’, and °6’ The hypertrix for this
region shows compressed, elongated ellipses with a darker color,
indicating a high degree of distortion between these clusters. This
distortion could suggest a greater separation in the original dataset
than is represented in the scatterplot visualization. Comparing the
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Figure 4: Hypertrix visuals overlaid over the t-SNE and UMAP pro-
jections of various synthetically generated datasets. The t-SNE and
UMAP projections do not maintain certain crucial aspects of the data.
In (A) and (B) the relative sizes of structures are distorted. In (C) the
overall aspect ratio of the grid and shape of the “hole” are distorted.
The hypertrix overlay aids in identifying these inaccuracies.

distance between the centroids of these clusters confirms our quali-
tative observation.

4.3 Embeddings of New York Times text

Transforming text into high-dimensional embeddings is a standard
practice in natural language processing. Dimensionality reduction
on these text embeddings generates spatial maps of text data useful
for exploration and discovery. We use OpenAl’s text embedding
API [16] to generate embeddings for a collection of metadata for
5,000 news articles [6]. Each data point consists of text with an
article headline and keywords related to the article. The articles have
been broadly classified into 8 main categories such as Sports, Crime,
Politics, etc., but each category may contain several subtopics. Each
embedding has 1,536 dimensions. The t-SNE projection of these
embeddings along with annotated cluster labels generated using
GPT4 API [18] are shown in Figure SA.

1. In the “Wedding announcements” cluster, the hypertrix ellipses
indicate that this cluster is relatively enlarged, however with low
distortion in distances. We investigate this anomalous behavior by
looking at some of the individual texts from the cluster and notice
that they all contain the keywords “Weddings and Engagements”
along with the title. Indeed, the embeddings in this cluster belong
to a relatively small region in high-dimensional embedding space
(Figure 5B, right). The hypertrix glyphs can alert a viewer that this
cluster may be less diverse than others. The glyphs show other,
more subtle effects as well. As with the MNIST projections, the
color and size of glyphs suggest there is a higher distortion at the
boundary of high-density clustered regions that separate different
categories. Furthermore, several regions show eccentric ellipses,
indicating non-conformal distortion of the data.

5 CONCLUSIONS AND FUTURE WORK

We have introduced the hypertrix, based on Tissot’s Indicatrix,
to visualize the distortion introduced by nonlinear dimensionality-
reduction methods. The technique computes distortions using a grid
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Figure 5: We compute hypertrix for (A) t-SNE projections of embed-
dings of metadata for a collection of New York Times articles. (B) The
resulting indicatrices are overlaid on the projection plots. Notably, the
color of the hypertrix in the "Wedding announcements" cluster sug-
gests anomalous distortion; analysis of the underlying data indicates
this cluster is more compact in high dimensions than other clusters,
reflecting the limited diversity in keywords in the underlying text.

of local linear transformations that approximate the overall projec-
tion. It then represents this information as colored elliptical glyphs
overlaid on the projection. We showed how applying this idea to
both synthetic datasets and real-world examples brings insight into
the true sizes and shapes of visual clusters in the underlying data.
The hypertrix helps to visualize where these distortions occur but
also quantifies these distortions in an interpretable way. Experience
indicates that no single set of projection hyperparameters consis-
tently minimizes distortion across various datasets. We believe the
hypertrix overlays can assist users in making informed decisions
about acceptable trade-offs when choosing dimensionality reduction
methods and hyperparameters. We note that different grid sizes and
sampling approaches may impact the hypertrix visuals. T-SNE and
UMAP can produce highly nonlinear projections that may differ
significantly between regions of the visual, thus we advise selecting
as fine-grained grid size as possible without compromising on the
interpretation of the hypertrix ellipse.

Several future directions look promising. A user study could
shed light on how people read the hypertrix, and how it affects their
decisions. One could also explore how to integrate the hypertrix
with automated approaches, to create a human-in-the-loop system
for hyperparameter optimization. Finally, there is no doubt room for
visual improvements to the hypertrix glyphs, perhaps augmenting
them with addition distortion information.
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