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ABSTRACT

The sine illusion is an underestimation of the difference between
two lines when both lines have increasing slopes. We evaluate
three visual manipulations on mitigating sine illusions: dotted lines,
aligned gridlines, and offset gridlines via a user study. We asked
participants to compare the deltas between two lines at two time
points and found aligned gridlines to be the most effective in miti-
gating sine illusions. Using data from the user study, we produced
a model that predicts the impact of the sine illusion in line charts
by accounting for the ratio of the vertical distance between the two
points of comparison. When the ratio is less than 50%, partici-
pants begin to be influenced by the sine illusion. This effect can
be significantly exacerbated when the difference between the two
deltas falls under 30%. We compared two explanations for the sine
illusion based on our data: either participants were mistakenly us-
ing the perpendicular distance between the two lines to make their
comparison (the perpendicular explanation), or they incorrectly re-
lied on the length of the line segment perpendicular to the angle bi-
sector of the bottom and top lines (the equal triangle explanation).
We found the equal triangle explanation to be the more predictive
model explaining participant behaviors.

Index Terms: sine illusion, gridlines, perception, bias, thresholds

1 INTRODUCTION

First formally introduced by Cleveland and McGill in 1984 [7],
the sine illusion describes a perceptual error where more quickly
changing pairs of lines can lead to bigger underestimates of the
delta between them. This illusion is common in the real world.
Multi-line line charts, stream graphs, and area charts all harbor op-
portunities for this bias, whenever viewers compare vertical dis-
tances between lines [28].

When comparing the deltas, the sine illusion happens as viewers
rely on one of many potentially irrelevant visual cues as proxies for
the actual distance between two lines For example, viewers might
compare the areas of the regions near the two points of comparisons
between the two lines rather than just the vertical distances, similar
to the Müller-Lyer line illusion [9, 15], where viewers include the
arrow tips in the length comparison to overestimate the line length,
and the ‘hull area’ proxy presented by Jardine et al. [16], where
the viewer perceives an implied hull bounded by the bars when
comparing the means of bar sets. Others suggest that, instead of
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relying on the vertical distance between two points with a com-
mon X-axis value, viewers might rely on the orthogonal distance
(or the minimal distance) which leads to non-vertical comparisons
between points on the two lines that do not share a common x-axis
value [28, 4], similar to doing a Deming regression [23]. We con-
trast these two explanations by pitting two models in competition
to best model the sine illusion. We refer to the two models as the
‘perpendicular model’ and the ‘equal triangle’ model, which we de-
scribe more closely in Section 3.5.

Existing work has investigated visualization solutions to miti-
gate sine illusions. For example, Bu et al. developed Sinestream
to reduce the effect of sine illusions in stream graphs [4]. It ma-
nipulates the geometry of a stream graph by the bottom-most curve
such that the orthogonal and vertical orientations of the lines align.
In this paper, we test two more alternative designs to mitigate sine
illusion: dotted lines and gridlines. In the dotted lines design, we
break the area surrounding the points of comparison by separating
the lines into spaced dots. This increases the perceptual difficulty
of viewers relying on overall dimensions (i.e., the ‘hull area’ proxy)
and areas to make their judgment. In the gridlines design, we add
gridlines to the line chart such that the vertical lines can anchor and
nudge viewers to compare the vertical distance rather than orthogo-
nal distances between the two lines. We also manipulate the ratio of
vertical distance between the two lines at the two points of compar-
ison. This allows us to identify the threshold for when sine illusion
begins to significantly interfere with a viewer’s ability to correctly
compare the deltas between two lines.
Contribution: We contribute an experiment demonstrating the sine
illusion in line charts and model the severity of the illusion as a
function of the ratio of the vertical distance between the two points
of comparison. We provide a perceptual foundation to inform vi-
sualization design that mitigates sine illusions, and a quantitative
model describing the influence of sine illusions as a function of the
deltas between the two lines at the points of comparison.

2 BACKGROUND AND RELATED WORK

People can be cognitively and perceptually biased when interpret-
ing data visualizations [27, 29, 10, 31, 11, 22]. For example, visu-
alization readers can overly focus on salient features when making
sense of data [11]. They can gravitate toward specific trends [3],
colors and highlights [1], larger font sizes [13], and specific anno-
tations [26] that are aligned with their beliefs and agendas [33, 32].

People are biased by their mental prototypes when making sense
of data. For example, when participants are estimating the height of
bars, they underestimate bars that are taller than they are wide and
overestimate bars that are wider than they are tall, which suggests
that they see a bar mark more as a prototypical square [5]. This
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Figure 2: Left: Key explaining the line aspects we manipulated in this paper. Middle: Two examples showing conditions where the delta at Time
1 and Time 2 is greater respectively. Right: The mirrored condition of the Time 1 ¿ Time 2 example.

effect generalizes to stacked bars and dot plots. When participants
were asked to visually redraw the y-position of stacked bars and
dot plots, smaller values were overestimated and larger values were
underestimated, with an average error of approximately 10% [17].
When they were asked to reproduce the values verbally instead of
visually, participants can be anchored by round numbers such as
five’s and ten’s [24]. When reading line charts or regressions, peo-
ple also tend to see the lines as closer to 45 degrees (often referred
to as ‘bank to 45 degrees’ [6]), as they see the lines as closer to a
prototypical angle bisector [12]. These works on human perception
of visualizations uncover the biasing effects of cognitive prototypes
and provide insights for crafting more effective visualizations that
mitigate biases. For example, Heer et al. [12] developed optimiza-
tion techniques to reduce the banking to 45-degree bias by auto-
matically identifying trends in data and generating a tailored chart
scale. They migrated such a bias by aligning what people intuitively
see in data with the objectively correct interpretation.

We take a similar approach to studying sine illusions. The sine
illusion is a perceptual distortion when viewers misjudge the align-
ment and spacing between a pair of data values, both of which fol-
low a sine-wave pattern [28]. This illusion could appear in non-
sinusoidal curves as well, making it more omnipresent [14, 8, 25].
As shown in Figure 2, when comparing the distance at Time 1 (d1)
and Time 2 (d2), the sine illusion can happen when the slopes of
the lines increase over time. This increasing slope distorts the per-
ceived distance between the two lines (commonly referred to as the
‘delta’). The delta at an earlier point is perceived to be larger than
the delta at a later point, despite the reverse being true. There has
been some research aimed at mitigating its distortive effects. For
example, Reimann et al. demonstrated that visual aids like ”lol-
lipops” in scatterplots could align visual and statistical fit estimates,
potentially reducing the impact of the sine illusion. [23] We join
existing efforts to study the sine illusion, offering concrete guide-
lines to inform visualization design to mitigate this bias.

3 EXPERIMENT

We compare three visualization designs in mitigating the sine illu-
sion in line charts with two lines. We manipulated the ratio of the
deltas between the lines at two points to obtain a threshold above
which the sine illusion begins to significantly bias viewer percep-
tion. We further model and compare two potential explanations of
participants’ behavior.

We recruited 62 participants, with an average age of 20.65 (SD
= 4.98), for this study, using the online crowdsourcing platform
Amazon’s Mechanical Turk [19]. Participants were compensated at
a rate of 12 USD per hour. Thirty-one participants completed the
study and contributed 50,777 trials of valid responses.

3.1 Experimental Design and Procedure
We generated charts depicting two increasing lines (blue and red).
To establish the illusion task, we identified two time points on the
chart (Time 1 and Time 2), and manipulated the vertical distance

between the blue and the red line at these two points, as shown
in Figure 2. Participants were tasked with comparing the distance
between the red and blue lines at both time points to determine
whether the differences between them were larger at Time 1 or Time
2. We refer to the distance between the two lines at Time 1 to be
d1, and the distance between the two lines at Time 2 to be d2.

To determine a threshold past which sine illusion begins to have
a strong effect based on the ratio of d1 and d2, we manipulate their
ratio between 0.5 to 1.0, based on pilot studies that suggest that a
ratio below 0.5 between d1 and d2 leads to generally highly accu-
rate performance. To avoid a combinational explosion of values to
display for d1 and d2, we fixed the value of d1 to be 0.1 while vary-
ing the value of d2 at 0.025 increments, ranging from 0.075 to 0.2.
This manipulation required us to change the slope of the second and
third segments of the blue line, which we refer to as sb1 and sb2,
as well as the first and second segments of the red line, which we
refer to as st1 and st2, as shown in Figure 2. To account for the po-
tential effects of the slopes on participants’ ability to compare the
distances at Time 1 and Time 2 without the loss of generalizability,
we randomly generated values of sb1 and sb2 to satisfy the follow-
ing constraints: (1) the red line always remains above the blue line
during Time 1 and Time 2, and (2) for each combination of sb1,
sb2, st1, st2, three values remained constant while the fourth value
is varied to allow us to control the specific effect of the varied com-
ponent. We created a charting space of 1.75 (x) by 2.25 (y) with
0.25 intervals. These two constraints produced 1638 charts.

With this current design, because both lines are positively
slanted, their slopes at Time 1 are always smaller than their slopes
at Time 2. To account for potential left-right position-driven bias in
participant response, we mirrored all of our charts so that both lines
are negatively slanted in the mirrored conditions, as shown in Fig-
ure 2. This creates 1638 ∗ 2 = 3276 charts. This counterbalancing
also accounts for potential response biases to prevent participants
from achieving a higher accuracy rate by only selecting Time 1.

For each chart, we varied the design of the lines to be either
default or dotted, or we added gridlines to the default version of the
chart, as shown in Figure 2, creating 3276 ∗ 3 = 9828 charts. For
the 3276 gridline charts, we recognize that whether the gridlines
aligned with the marker at Time 1 and Time 2 also might affect
comparison accuracy. Therefore, as a counterbalancing, for half of
the gridline charts (randomly selected from the stimuli pool), we
aligned the vertical gridlines with Time 1 and Time 2, and for the
other half, we offset them, as shown in Figure 1.
Procedure: Participants were instructed to set their browser win-
dow to 100% before the study. We asked them to compare the rev-
enue of two companies: A and B, over two time intervals, Time 1
and 2. They selected the time at which the difference in revenue be-
tween A and B appeared bigger. Figure 2 shows a condition where
the difference at Time 1 is bigger and a condition where the differ-
ence at Time 2 is bigger. All participants went through a practice
trial with feedback. We instructed participants to respond as accu-
rately and fast as they could. They could also take a break at any



time from the experiment. In total, everyone saw all 1638 charts,
and the experiment took approximately one hour. After the exper-
iment, they were given an MTruk completion code and were redi-
rected to a Qualtrics survey to enter their demographic information.
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Figure 3: Overall accuracy for the three conditions and gridlines two
counterbalancing conditions (aligned and offset).

3.2 Results: Overall
In analyzing our results, we filtered for trials that were completed
in under 21791 milliseconds and more than 200 milliseconds as
a quality control. We picked the lower bound because this task
of comparing Time 1 and Time 2 requires an eye movement, and
existing work in human perception suggests that it takes about 200
milliseconds for eye movement to begin [21]. We picked the upper
bound based on one standard deviation above the mean response
time. After filtering, we obtained 50,777 trials of valid responses,
with an average response time of 2062.39 milliseconds.

In our following analysis, we also filtered out the trials where the
difference between the two lines at Time 1 equals that at Time 2.
These equality trials were added to prevent participants from con-
sistently selecting one time over the other. Since there are no valid
correct answers in these equality trials, we excluded them from our
analysis. In general, for these 7457 equality trials (14.7% of the
total trials), participants were 46.6% likely to choose Time 1. As
shown in the top section of Figure 3, participants performed this
task above chance (50%) across all conditions. In 66.5% of the
trials, participants drew correct conclusions from the normal con-
dition, 61.2% from the dotted lines condition, and 72.1% from the
gridlines condition. A logistic linear regression predicting accuracy
with condition shows that, compared to the normal condition, par-
ticipants are about 1.30 times more likely to obtain the correct an-
swer with the gridlines condition (p < 0.001). For the dotted lines
condition, they were only 0.79 times as likely to obtain the correct
answer (p < 0.001).
Takeaway: Making lines dotted does not mitigate the sin illusion
bias, but adding gridlines can help.

3.3 Mirroring
We also mirrored all our displays to counterbalance our experiment
accounting for the effect of the x-axis order (relative horizontal po-
sition of the sine illusion bias) for Time 1 and Time 2, as shown
in Figure 2. On average, in 68.8% of the trials, participants ob-
tained the correct answer from the default normal condition, and in
63.9% of the trials, participants obtained the correct answer from
the mirrored condition. A logistic regression revealed that partici-
pants were only 0.78 times as likely to get the answer correct when
the figure is mirrored, compared to the default (Est = −0.244, SE =
0.022, p ¡ 0.001). This suggests that the x-axis ordering and relative
line positions may have a biasing effect to exaggerate sine illusions.

We further discuss potential research avenues to better understand
such bias in Section 5.

3.4 Effect of Gridlines On/Offset
We took a closer look at the gridline condition to understand how it
might have helped increase accuracy. As shown in Figure 1, we ma-
nipulated the gridlines to either align the gridlines with Time 1 and
Time 2 or offset them such that no vertical line goes through Time 1
or Time 2. We constructed a logistic regression predicting accuracy
with whether the gridlines were offset or aligned. We found that
aligning the gridlines increased accuracy to be 1.14 times that of
the offset condition (p = 0.00122). Overall, as shown in the bottom
section of Figure 3, participants performed with 73.53% accuracy
when the gridlines are aligned and with 70.86% accuracy when the
gridlines are offset.

3.5 Relationship between Times 1 and 2 on Accuracy
We further investigate the driving factor behind the varying accu-
racy levels for the comparison task between Time 1 and Time 2.
Specifically, we examine how accuracy changes depending on the
difference between the deltas at Time 1 and Time 2. We created the
stimuli by varying the ratio between the Time 1 delta and Time 2
delta to range from 0.5 to 0.8. For example, when the ratio between
Time 1 delta and Time 2 delta is 0.5, it means the difference be-
tween the red line and the blue line at Time 1 is half that at Time 2.
The closer this ratio is to 1, the more difficult this comparison task
is.

As shown in the left-most panel in Figure 4, as the ratio between
Time 1 and Time 2 increases, the overall accuracy decreases for all
three conditions. However, the decrease is less steep for the grid-
lines condition compared to the normal and dotted conditions. One
unit increase in the ratio between Time 1 delta and Time 2 (delta
i.e., the difference between Time 1 and Time 2 becomes smaller)
leads to the accuracy in task performance to be 3.37% as accurate
as the previous tier. For the dotted condition, task performance de-
creases to be only 1.40% as accurate. For the normal condition,
task performance decreases to be 0.99% as accurate.

We computed participants’ task accuracy based on whether the
delta is bigger in Time 1 or Time 2. However, because we observed
a low accuracy, we suspect that participants were not making their
decision by comparing the vertical distances. We propose two al-
ternative heuristics participants relied on when responding to the
comparison task via two models:
(1) Perpendicular: this heuristic is about taking the perpendicu-
lar distance between the two lines, anchored on the bottom line at
Time 1 and at Time 2, as shown in the middle panel in Figure 4.
This idea is inspired by existing work that suggests that sine illu-
sion happens because people rely on the orthogonal instead of the
vertical distance between the two lines [4].
(2) Equal Triangle: this heuristic takes the length of the line seg-
ment perpendicular to the angle bisector of the bottom and top lines,
see the right panel in Figure 4. This is inspired by the ‘hull area’
proxy from Jardine et al. [16] and the theory proposed by Day et
al. [9] which suggest that participants could have considered the
overall dimensional area (i.e., similar to drawing a circle with radius
equal to the delta between the two lines at the point of comparison)
surrounding the points of comparison when making the decision.

We re-compute the task accuracy by assuming that participants
were relying on these two heuristics when comparing Time 1 and
Time 2. For example, for the perpendicular heuristic, we compute
the perpendicular distance at Time 1 and Time 2. If the perpen-
dicular distance at Time 1 is greater than Time 2, and participants
selected Time 1 to be greater, even if the vertical distance at Time
1 is smaller, we would consider their response correct. Under this
setup, if the task accuracy increases, then we can infer that partici-
pants were more likely to rely on the perpendicular heuristic when
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Figure 4: Accuracy by the ratio of deltas at Time 1 and Time 2, for the original data, in comparison to the two models: perpendicular and equal
triangle. The higher accuracy under both models suggests that participants relied on the orthogonal distance to make their comparisons.

completing the task rather than the vertical distance. Comparing
the three line charts in Figure 4, we see that participants’ task accu-
racy increases under the assumptions of the perpendicular and equal
triangle models. We conducted a t-test comparing the overall accu-
racy between these two models and found the equal triangle model
to have higher accuracy (t = 2.75, p = 0.0060).
Takeaway: When participants compare the deltas between two
lines, they are less likely to rely on the vertical distance between
the lines. Rather, they compute the orthogonal distance, best mod-
eled by looking at the length of the line segment perpendicular to
the angle bisector of the bottom and top lines.

3.6 When Time 1 Delta is Actually Larger
When the delta at Time 1 is larger than that at Time 2, relying on the
sine illusion would help the participants. In these cases, participants
performed worst with the gridlines condition and best with the dot-
ted lines condition. When they viewed the dotted line charts, their
accuracy was 4.18 times higher than the gridline condition. When
they viewed the default normal condition, their accuracy was 2.75
times higher than the gridlines condition. However, despite this
reversal in condition effectiveness, participants overall performed
significantly better (t = 61.84, p ¡ 0.001) in the scenario where Time
1 delta is actually larger (ratio of Time 1 over Time 2 is greater 1,
Maccuracy = 0.89), compared to the scenario where Time 1 delta is
smaller (ratio of Time 1 over Time 2 is smaller than 1, Maccuracy
= 0.61). See annotation on the left-most panel in Figure 4.

While further investigation is needed to draw causal conclusions,
we suspect that the gridlines made participants double-guess their
response instead of relying on the sine illusion, which decreased
accuracy. When the gridlines are present, participants can compare
the length of the gridlines between the two lines at Time 1 and Time
2 to make their decisions. But length comparison is subjected to
perceptual bias, as length encoding is not an extremely precise en-
coding channel [18, 5, 6]. As a result, they make mistakes and per-
form with lower accuracy. However, when the gridlines are turned
off, participants tend to rely on the sine illusion and compare the
equal triangle distance for the task, which resulted in Time 1 being
perceived as larger. Thus when the Time 1 delta is actually larger,
relying on the sine illusion, rather than making a length compari-
son, results in a higher overall accuracy across all conditions, and
relatively lower accuracy for gridlines.

4 DESIGN GUIDELINES AND SUMMARY OF FINDINGS

We produced a model that predicts the likelihood and severity of
the sine illusion in line charts based on the ratio of the deltas be-
tween the two points of comparison. We found that, in general,
accuracy drops below chance when the ratio falls above 0.7 for de-

fault line charts, and below 75% when the ratio falls above 0.5.
This means that when participants are comparing the difference be-
tween two lines at two different time points, if that difference is
less than 50%, then people will struggle. And if that difference is
less than 30%, people will struggle significantly. This threshold can
be mitigated by adding gridlines, especially when the gridlines are
aligned with the points of comparison. Adding gridlines can shift
the threshold, such that people will only start to struggle when the
ratio between the two vertical distances when the difference is less
than 20%. While we have not tested to identify optimal design op-
tions for the gridlines, existing work by Bartram et al. identified
adopting an alpha value between 0.1 and 0.45 for gridlines might
be the most preferred and effective [2].

In general, people make mistakes in this task because they are
not comparing the vertical distance between the two lines. They
are comparing the length of the line segments perpendicular to the
angle bisector of the bottom and top lines, as modeled by the equal
triangle heuristics.

5 LIMITATION AND FUTURE DIRECTIONS

We modeled the effect of the ratio between the vertical distance at
the two comparison points. As shown in the left panel in Figure 2,
factors such as the line slopes at the two points of comparison, could
also influence the severity of sine illusions. A preliminary logis-
tic regression model predicting comparison accuracy with the line
slopes at the two points of comparison suggests these factors to be
significant (details can be found in the supplementary materials at
https://osf.io/kq87n/). Most notably, the slope of the top line
at Time 1 seems to have the strongest effect on comparison accuracy
(OR = 2.26, p ¡ 0.001). Future work could examine these effects to
create a predictive model that takes data values of the lines as in-
put, computes the relative slopes and deltas between two lines, and
outputs a likelihood of the viewer seeing sine illusions.

Further, we only tested one design of the line charts to avoid a
combinatorial explosion of conditions. Future work can consider
alternative colors, line thickness, and line types with different spac-
ing to validate the generalizability of our findings. Moreover, con-
sidering that the amount of data can impact perception [17, 18, 30],
future work can explore the effect of data set size on the illusion.

Finally, we only modeled two heuristics. Participants could en-
gage in other strategies when completing the task. For example,
people might perceive the pairs of lines as shapes, so that chang-
ing perspectives produced by eye movements would not distort
their percept [20]. Instead of reading the values following rules of
graphical interpretation, participants might be comparing the width
and height (major/minor axes) of that shape. Future experiments
should consider think-aloud protocols or offline studies to elicit
those strategies and make even better models of perception.

https://osf.io/kq87n/
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