
GhostUMAP: Measuring Pointwise Instability in Dimensionality Reduction
Myeongwon Jung*

Sungkyunkwan University
Takanori Fujiwara†

Linköping University
Jaemin Jo‡

Sungkyunkwan University

Figure 1: Each projection is part of a GhostUMAP projection generated for the CIFAR-10 dataset. Case (A) depicts the trajectories
of a stable point where the original projection () and its ghosts () are projected to a consistent location. In contrast, Case (B)
shows the trajectories of an unstable point. The trajectories diverge, implying instability in the final projection of the point ().

ABSTRACT

Although many dimensionality reduction (DR) techniques employ
stochastic methods for computational efficiency, such as negative
sampling or stochastic gradient descent, their impact on the pro-
jection has been underexplored. In this work, we investigate how
such stochasticity affects the stability of projections and present a
novel DR technique, GhostUMAP, to measure the pointwise insta-
bility of projections. Our idea is to introduce clones of data points,
“ghosts”, into UMAP’s layout optimization process. Ghosts are de-
signed to be completely passive: they do not affect any others but
are influenced by attractive and repulsive forces from the original
data points. After a single optimization run, GhostUMAP can cap-
ture the projection instability of data points by measuring the vari-
ance with the projected positions of their ghosts. We also present a
successive halving technique to reduce the computation of Ghost-
UMAP. Our results suggest that GhostUMAP can reveal unstable
data points with a reasonable computational overhead.

Index Terms: Dimensionality Reduction

1 INTRODUCTION

Many dimensionality reduction (DR) techniques incorporate
stochastic components, such as negative sampling [15], by design to
enhance computational efficiency [22]. However, these stochastic
components can lead to varying results each time DR is executed,
casting questions on its stability. This work aims to explore two key
research questions: 1) How significantly do these stochastic com-
ponents affect projection stability? 2) How can we identify data
points whose projections are unstable?

We focus on a widely-used DR technique, Uniform Manifold
Approximation and Projection (UMAP) [14]. From a high-level
point of view, UMAP introduces stochastic components for two
reasons: 1) to generate an initial projection with Spectral Embed-
ding [1] and small random positional perturbation; 2) to simulate

*e-mail: mw.jung@skku.edu
†e-mail: takanori.fujiwara@liu.se
‡e-mail: jmjo@skku.edu. Jaemin Jo is the corresponding author.

the repulsive forces between points during optimization, i.e., nega-
tive sampling [22, 23]. While the former could be controlled rela-
tively easily by using a deterministic DR technique, such as Prin-
cipal Component Analysis (PCA) [5], or by reducing the amount
of noise, the latter can significantly affect the final projection of a
point depending on which points are chosen as random samples.

As a motivating example, we plot the trajectory of two points
during GhostUMAP optimization in Fig. 1. Stars and crosses rep-
resent the initial positions of the points and their final projections,
respectively. Triangles indicate alternative projections of the points
that can be obtained by choosing different sets of negative samples.
In Fig. 1A, regardless of the choice of negative samples, the target
point (blue cross) and its ghosts (blue triangles) are projected to a
consistent location, implying high positional stability. However, in
Fig. 1B, the projections of the target point (orange cross) and its
ghosts (orange triangles) diverge, implying that the projections are
less stable and sensitive to the selection of negative samples.

We introduce GhostUMAP, a novel technique for measuring the
pointwise positional instability that results from negative sampling
in UMAP. By positional instability, we mean the variance of pro-
jections that can be led by selecting different negative samples. Our
core idea is to add clones of data points, i.e., ghosts, to the optimiza-
tion process. We optimize the layout for the original data points
and ghosts jointly, where the ghosts are affected by the projections
of the original points but do not affect others. Fig. 1 is generated by
GhostUMAP, where the triangles correspond to ghosts. After the
optimization process, the variance between the original projection
of a point and its ghosts is used as an instability measure. To reduce
the overhead resulting from ghosts, we also present a successive
halving technique that prunes the data points identified as stable in
the middle of optimization. Our results suggest the effectiveness
of GhostUMAP in identifying unstable points due to stochasticity
and show that the successive halving technique offers a compelling
trade-off between accuracy and computational efficiency.

2 RELATED WORK

2.1 Distortion and Instability of DR
To our knowledge, the problem of measuring pointwise instability
due to the stochasticity of DR techniques has not been explored
before. However, one relevant research topic is to measure and
understand the distortion between the high-dimensional to low-

dimensional spaces that DR techniques introduce. Various mea-
sures have been proposed to measure distortion at different levels:
local [12, 25], cluster level [7, 18, 20], and global levels [4, 10].
These measures are also employed to assess and compare the qual-
ity of DR [2, 6, 16]. Researchers further attempted to visually an-
alyze the distortion [13, 21]. In general, these distortion measures
are applied to a fixed projection and they do not consider influences
of arbitrary changes caused by the stochasticity of DR optimiza-
tion. Jung et al.’s work [8] is the most closely related to our work,
where they compared multiple t-SNE projections and extracted sta-
ble clusters among the projections. In contrast, we introduce Ghost-
UMAP, which can capture unstable data points (i.e., local level) in
regards to the stochasticity of UMAP.

2.2 Uniform Manifold Approximation and Projection
UMAP [14] can be delineated into two computation phases: 1)
graph construction and 2) layout optimization. In the graph con-
struction phase, UMAP generates a topological representation of
the high-dimensional data by connecting local fuzzy simplicial sets,
which can be represented as a weighted k-nearest neighbor graph.
In the layout optimization phase, UMAP employs a force-directed
graph layout algorithm [3] to embed the topological representation
into a low-dimensional space by simulating the attractive and repul-
sive forces between points. GhostUMAP does not add any changes
in the projection of the original points but applies the forces to
ghosts to generate variations of projections.

The attractive forces of UMAP are exerted between vertices (cor-
responding to data points) linked by an edge in the k-nearest neigh-
bor graph. The attractive force between vertices i and j, positioned
at low-dimensional coordinates oi and o j, is defined by:

Fatt(oi,o j,wi j) =
−2ab∥oi−o j∥

2(b−1)
2

1+∥oi−o j∥2
2

wi j(oi−o j) (1)

where a and b are user-specified positive constants and wi j is the
weight of the edge, i.e., the similarity between vertices i and j in
the high-dimensional space.

The repulsive force between vertices i and j is given by:

Frep(oi,o j,wi j)

=
2b

(ε +∥oi−o j∥2
2)(1+a∥oi−o j∥2b

2)
(1−wi j)(oi−o j) (2)

where ε is a small constant to avoid division by zero. Theoretically,
the repulsive force should be simulated for each pair of vertices,
which is inefficient. Therefore, UMAP employs negative sampling
where n neg points (n neg= 5 by default) are randomly sampled for
each vertex i to only apply the repulsive forces between i and the
sampled points. This negative sampling is the root cause of making
the layout optimization phase stochastic.

3 GHOSTUMAP: UMAP WITH GHOSTS

We present GhostUMAP, a novel DR technique for measuring the
pointwise instability of UMAP. We aim to introduce clones of the
original data points, i.e., ghosts, to the optimization phase and
jointly optimize the original projections and ghosts while ensuring
the ghosts do not affect the original projections, which are detailed
in the following sections.

3.1 Layout Optimization with Ghosts
Let xi and oi (i ∈ [1, ...,N]) be the i-th data point in the high-
dimensional space and lower-dimensional projection space where
N is the number of data points. In GhostUMAP, each data point xi
has n ghosts ghosts in the projection space gik (k∈ [1, ...,n ghosts]),

Algorithm 1 GhostUMAP Layout Optimization
Input: weighted kNN graph G, halving schedule s, Y =
{Y1, . . . ,YN}

Output: Y
1: α ← 1.0
2: for e← 1, . . . ,n epochs do
3: if e ∈ s then
4: Discard 50% of gi with the lowest instability INS(xi)
5: end if
6: ORIGINALLAYOUTOPTIMIZATION(G, Y,α)
7: GHOSTLAYOUTOPTIMIZATION(G, Y,α)
8: α ← 1.0− e/n epochs
9: end for

Algorithm 2 Layout Optimization for Original Projections
1: function ORIGINALLAYOUTOPTIMIZATION(G, Y, α)
2: for all ([i, j],wi j) ∈ G do
3: fatt ← Fatt(oi,o j,wi j)
4: (oi,o j)← (oi +α · fatt ,o j−α · fatt)
5: for n← 1, . . . ,n neg do
6: l← random sample from {1, . . . ,N}\{i}
7: oi← oi +α ·Frep(oi,ol ,wil)
8: end for
9: end for

10: end function

Algorithm 3 Layout Optimization for Ghost Projections
1: function GHOSTLAYOUTOPTIMIZATION(G, Y, α)
2: for all ([i, j],wi j) ∈ G do
3: for all k← 1, . . . , n ghosts do
4: gik ← gik +α ·Fatt(gik ,o j,wi j)
5: for n← 1, . . . ,n neg do
6: l← random sample from {1, . . . ,N}\{i}
7: gik ← gik +α ·Frep(gik ,ol ,wil)
8: end for
9: end for

10: end for
11: end function

in addition to its original projection oi. We denote the set of the pro-
jections of point i, including the original projection and ghosts, as
Yi = {oi}∪{gik | k ∈ [1, ...,n ghosts]}.

In GhostUMAP, we alternately optimize the layout of the origi-
nal projections and ghosts, as outlined in Alg. 1. The optimization
process consists of two phases: the original layout phase and the
ghost layout phase. In the original layout phase, we update the lay-
out of the original projections by simulating the forces given by
Eq. 1 and 2 (Alg. 2), which is exactly the same as UMAP. In the
ghost layout phase, we simulate the force on a ghost gik , assum-
ing it was the original projection of the i-th data point. This means
that we simulate the attractive force between gik and xi’s neighbors
on the k-nearest neighbor graph and the repulsive force between
gik and randomly selected points, as shown in Alg. 3. Note that
the force exerted on the ghost is not the same as the force on the
original point. The force on the ghost is recalculated based on its
position rather than the position of its original point.

As contrasted by Line 4 in Alg. 2 and Line 4 in Alg. 3, the ghost
layout phase applies the attractive force between gik and o j asym-
metrically; the ghost is pulled towards the neighboring original pro-
jections but not vice versa. This means that the original projections
are unaware of ghosts, while the ghosts can be pushed or pulled by
the original projections but not by each other.

The positions of the ghosts of a certain point xi can be seen as

Table 1: Benchmark results comparing execution times and F1-scores for UMAP, GhostUMAP with SH, and GhostUMAP without SH across
various datasets. The time required for the weighted kNN graph construction is consistent across all conditions, whereas the time specified under
each condition corresponds to the layout optimization. All time measurements are expressed in seconds. F1-scores evaluate the consistency
between GhostUMAP with SH and without SH. Each measurement represents means with standard deviations (±).

Time (n neighbors = 15 and n ghosts = 8)

Dataset Size (N×dims) weighted kNN UMAP GhostUMAP with SH GhostUMAP without SH F1-score

C. elegans [17] 6,188×50 7.42 (±0.17) 3.19 (±0.11) 10.73 (±0.21) 16.10 (±0.55) 0.99 (±0.03)
AG News [26] 7,600×1,024 7.98 (±0.18) 3.54 (±0.08) 12.69 (±0.54) 18.40 (±0.68) 0.88 (±0.03)
20NG [19] 18,846×1,024 8.43 (±0.20) 4.20 (±0.24) 11.36 (±0.71) 19.54 (±1.37) 0.97 (±0.04)
CIFAR-10 [9] 50,000×768 9.94 (±0.22) 7.31 (±0.18) 25.76 (±0.34) 43.02 (±0.49) 0.91 (±0.01)
MNIST [11] 70,000×784 11.19 (±0.56) 8.60 (±0.18) 30.29 (±0.65) 55.23 (±1.83) 0.96 (±0.01)

alternative projection results when different points are sampled by
negative sampling. If there is no stochasticity at all, the ghosts gik
would be projected to the same location as the original projection
oi. However, due to the stochasticity, they become misaligned as
the optimization proceeds, eventually arriving at different locations.
As a measure to detect unstable points, we define the instability of
a data point xi, INS(xi), as the variance of Yi, i.e., oi and gik :

µi =
1

n ghosts+1 ∑
p∈Yi

p (3)

INS(xi) =
1

n ghosts+1 ∑
p∈Yi

||p−µi||22 (4)

3.2 Successive Halving on Ghosts
Ghosts slow down the optimization phase (n ghosts+ 1) times as
it is equivalent to optimizing N · (n ghosts+1) data points instead
of N. To reduce such an overhead, we introduce a successive halv-
ing (SH) technique. All data points start with n ghosts ghosts per
each, but after a certain number of epochs, we measure the insta-
bility of the points and discard the ghosts of half of the points with
the lowest instability, which are not of interest. For example, sup-
pose a scenario with N = 1,000 data points, n ghosts = 7 ghosts
per each, and a SH schedule s = [50,100,150]. Initially, 8,000
data points are subject to optimization (1,000 original points and
7,000 ghosts). At the 50th iteration, we drop the ghosts of the 500
most stable points, resulting in 1,000 original points (original points
are always kept) and 3,500 ghosts, summing up to 4,500 points in
total. We repeat the halving operation at iterations 100 and 150,
which reduces the number of data points to 2,750 and 1,875, re-
spectively. In the following section, we show that this halving oper-
ation significantly reduces the running time while keeping the most
unstable points. The source code of GhostUMAP is available at
https://github.com/jjmmwon/ghostumap.

4 EVALUATION

In this section, we validate our technique by conducting a perfor-
mance benchmark and presenting its use case in data analysis.

4.1 Performance Benchmark
The goals of the performance benchmark were to understand 1) the
overhead that ghost computation exhibits and 2) the effectiveness
of the SH technique. To this end, we compared three conditions:
1) UMAP, 2) GhostUMAP with SH, and 3) GhostUMAP without
SH. For the first goal, we compared the execution time of the three
conditions. For the second goal, we investigated to what extent our
SH technique can maintain the most unstable points by checking
the consistency between the results with SH and without SH.

To check the effectiveness of SH, we computed the instability of
each point using GhostUMAP without SH, i.e., INS(xi). We then
defined that a point is unstable if its instability exceeds mean+2.5σ

where mean = ∑ INS(xi)/N and σ = (∑(INS(xi)−mean)2/N)1/2.

Figure 2: The trade-off between execution times and F1-scores de-
pending on the epoch at which halving is performed. The text label
placed next to each dot indicates the halving-performed epoch.

This criterion identified about 0.5% data points of each dataset as
unstable. We used these selected unstable points as the ground-
truth set. We ran GhostUMAP with SH on the same dataset and
chose the same number of points as the ground-truth set with the
highest instability, which we defined as the answer set. Finally, we
computed the F1-score between the ground-truth and answer sets.
As two sets have the same number of points, the precision and recall
are equivalent to the F1-score.

Dataset and Setting. We used five datasets that were employed
to evaluate DR techniques in previous work [17, 22, 24], encom-
passing different sizes and data types, such as tables, text, and
images (Table 1). The UMAP hyperparameters for all conditions
were the same as the default specified in the official UMAP docu-
mentation: n neighbors = 15 and min dist = 0.1. The number of
epochs, n epochs, is determined by the dataset size: 500 epochs
up to 10,000 rows and 200 epochs for larger datasets. For Ghos-
tUMAP, n ghosts was set to 8. We performed the halving opera-
tions at the 50th, 100th, and 150th epochs when n epochs = 200
and at the 200th, 300th, and 400th epochs when n epochs = 500.
We repeated 10 trials for each condition to compute the mean and
standard deviation of each measure. We used Apple MacBook M1
Pro 14-inch 2021 for the benchmark.

Result and Discussion. In Table 1, we separately report the
time spent for the weighted kNN graph construction and layout op-
timization to enable a precise comparison of the layout optimization
phase. Unlike the layout optimization phase, the graph construc-
tion phase is the same across UMAP, GhostUMAP with SH, and
GhostUMAP without SH. The total running time of each technique
can be computed by summing the times spent on these two phases.
For example, for the C. elegans dataset in Table 1, UMAP, Ghost-
UMAP with SH, and GhostUMAP without SH took averages of
10.61, 18.15, and 23.52 seconds, respectively.

We could observe that GhostUMAP exhibited a longer execu-
tion time than UMAP, but the difference was smaller than we ex-
pected. For example, GhostUMAP without SH took about five
times longer (16.10 seconds) than UMAP (3.19 seconds) for the C.
elegans dataset, respectively, while theoretically, GhostUMAP opti-

https://github.com/jjmmwon/ghostumap

Figure 3: GhostUMAP highlights two unstable cases (A) and (B) in the MNIST dataset. Note that these two cases are representative examples
and more unstable points were identified by GhostUMAP. Crosses represent the original projections of points, while triangles indicate the
projections of their ghosts. In both cases, one can observe the spatial discrepancy between the original projections and ghosts, which implies
positional instability. The right panel displays the images corresponding to the original points and their neighbors, providing visual context to the
detected instability.

mizes nine times more (n ghosts+1) data points. This may be due
to the parallelization implemented by the Python numba package,
where ghost computations could be efficiently parallelized since
they are independent of each other.

Comparing GhostUMAP with and without SH, our SH tech-
nique achieved a speed-up of 38.3% on average; for example, in the
MNIST dataset, SH reduced the execution time from 55.23 seconds
to 30.29 seconds, showing a speed-up of 45.2%. The F1-scores
between the GhostUMAP results with and without SH showed re-
markable consistency in preserving unstable points, ranging from
0.88 to 0.99. This consistency suggests that our SH technique ef-
fectively accelerated the computations related to ghosts while main-
taining the most unstable points.

To better understand the trade-off between execution times and
F1-scores, we conducted an additional experiment where we halved
data points only once at different epochs. We used the MNIST
dataset and the same setting described above. The result is shown
in Fig. 2. We could observe that as we perform the first halving
earlier, the execution time decreases at the cost of the F1-score.
This is because if we halve the points at an early epoch, we can
optimize fewer points in the rest of the epochs. However, since
the instability of points is not fully simulated, an early halving can
wrongly discard the points that are actually unstable. Performing
the first halving at the 50th or 70th epochs exhibited a reasonable
trade-off for the MNIST dataset.

4.2 Use Case
We present a use case to show how GhostUMAP can find and re-
view unstable data points in a projection. Fig. 3 shows a Ghos-
tUMAP projection with n ghosts set to 16 for the MNIST dataset.
We highlighted two unstable points (A) and (B) and their ghosts in
Fig. 3. We chose these two points among the top 0.5% of the points
in terms of the instability score, INS(xi), and more examples on
different datasets can be found in the supplementary material.

In Fig. 3A, we can see that the original projection of point A be-
longed to the red cluster of digit 2 (green cross). However, among
its 16 ghosts (green triangles), only ten were projected near the orig-
inal projection, but the other six belonged to a different cluster, the
blue cluster of digit 0. To understand why this occurred, we an-
alyzed the handwritten image that the point represents (first row
of digit images in Fig. 3). The image showed that the digit 0 was
written ambiguously. Indeed, its neighbors in the high-dimensional

space consisted of classes of digits 0 and 2. These neighbors from
different classes could make attractive forces diverged and the pro-
jection more sensitive to negative samples.

For another unstable point B, its ghosts were separated into three
clusters, as annotated by the dotted red ellipse. The original projec-
tion (red cross) and five ghosts (red triangles) belonged to the green
cluster of digit 4, four were to the pink cluster of digit 7, and the
other seven were to the orange cluster of digit 1. The second row
of digit images in Fig. 3 shows the original image and its neigh-
bors. Although the original image was corresponding to digit 4, its
neighbors consisted of digits 4, 1, and 7. Note that while there was
only one neighbor of digit 7 among the 15 neighbors, four out of 16
(25%) ghosts were projected to the cluster of 7. The projection to
the cluster of digit 7 may imply a complex non-linear relationship
between the composition of neighbors and projections.

Our qualitative investigation of the GhostUMAP projection of
the MNIST dataset suggests two implications. First, one should
interpret the projection of an individual point with care, as the pro-
jection of a single point can be the result of mere chance. There-
fore, it is recommended that pointwise interpretation be validated
by checking multiple projections. Second, our investigation high-
lights the stability limitation of UMAP. The user should be warned
of such instability once detected, especially when no external infor-
mation (e.g., class labels) is available to validate the result.

In sum, the results of the performance benchmark and use case
confirm the capability of GhostUMAP to measure the pointwise
instability arising from the stochasticity of UMAP and to detect un-
stable points that should be interpreted with care. We could also
confirm that our SH technique can accelerate the instability compu-
tation while maintaining the most unstable data points.

5 CONCLUSION

We present GhostUMAP to measure the pointwise instability of
UMAP. Our evaluations show that GhostUMAP can identify un-
stable data points in projections even with the successive halving
technique designed to reduce the computational overhead. For fu-
ture work, we are interested in rigorously examining how faithful
ghosts are by replacing the original points with the ghosts and mea-
suring the projection quality, e.g., the Kullback-Leibler divergence
[4]. We also aim to explore methods to dynamically adjust the num-
ber of ghosts per instance for better efficiency.

ACKNOWLEDGMENTS

This work was partly supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2019-0-00421, AI
Graduate School Support Program (Sungkyunkwan University))
and the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2023-00221186). This
work has been supported in part by the Knut and Alice Wallenberg
Foundation through Grant KAW 2019.0024.

REFERENCES

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. Advances in Neural Information Pro-
cessing Systems, 14, 2001. 1

[2] M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C. Telea.
Toward a quantitative survey of dimension reduction techniques. IEEE
Transactions on Visualization and Computer Graphics, 27(3):2153–
2173, 2019. 2

[3] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21(11):1129–
1164, 1991. 2

[4] G. E. Hinton and S. Roweis. Stochastic neighbor embedding. Ad-
vances in Neural Information Processing Systems, 15, 2002. 2, 4

[5] H. Hotelling. Analysis of a complex of statistical variables into princi-
pal components. Journal of Educational Psychology, 24(6):417, 1933.
1

[6] H. Jeon, A. Cho, J. Jang, S. Lee, J. Hyun, H.-K. Ko, J. Jo, and J. Seo.
ZADU: A python library for evaluating the reliability of dimension-
ality reduction embeddings. In Proc. VIS, pp. 196–200. IEEE, 2023.
2

[7] H. Jeon, H.-K. Ko, J. Jo, Y. Kim, and J. Seo. Measuring and explain-
ing the inter-cluster reliability of multidimensional projections. IEEE
Transactions on Visualization and Computer Graphics, 28(1):551–
561, 2021. 2

[8] M. Jung, J. Choi, and J. Jo. Projection Ensemble: Visualizing the
robust structures of multidimensional projections. In Proc. VIS, pp.
46–50. IEEE, 2023. 2

[9] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. 3

[10] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964. 2

[11] Y. LeCun, C. Cortes, and C. J.C. Burges. The MNIST database
of handwritten digits. https://www.openml.org/search?type=
data&id=554, 1999. Accessed: 2024-3-26. 3

[12] J. A. Lee and M. Verleysen. Quality assessment of dimensionality
reduction: Rank-based criteria. Neurocomputing, 72(7-9):1431–1443,
2009. 2

[13] S. Lespinats and M. Aupetit. CheckViz: Sanity check and topological
clues for linear and non-linear mappings. Computer Graphics Forum,
30(1):113–125, 2011. 2

[14] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform
manifold approximation and projection for dimension reduction.
arXiv:1802.03426, 2018. 1, 2

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their composition-
ality. Advances in Neural Information Processing Systems, 26, 2013.
1

[16] L. G. Nonato and M. Aupetit. Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout en-
richment. IEEE Transactions on Visualization and Computer Graph-
ics, 25(8):2650–2673, 2018. 2

[17] J. S. Packer, Q. Zhu, C. Huynh, P. Sivaramakrishnan, E. Preston,
H. Dueck, D. Stefanik, K. Tan, C. Trapnell, J. Kim, et al. A lineage-
resolved molecular atlas of C. elegans embryogenesis at single-cell
resolution. Science, 365(6459):eaax1971, 2019. 3

[18] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping. IEEE Transac-

tions on Visualization and Computer Graphics, 14(3):564–575, 2008.
2

[19] J. Rennie. 20 Newsgroups. http://qwone.com/˜jason/

20Newsgroups/. Accessed: 2024-04-30. 3
[20] M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good

views of high-dimensional data using class consistency. Computer
Graphics Forum, 28(3):831–838, 2009. 2

[21] J. Stahnke, M. Dörk, B. Müller, and A. Thom. Probing projections:
Interaction techniques for interpreting arrangements and errors of di-
mensionality reductions. IEEE Transactions on Visualization and
Computer Graphics, 22(1):629–638, 2015. 2

[22] J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualizing large-scale and
high-dimensional data. In Proc. WWW, pp. 287–297, 2016. 1, 3

[23] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE:
Large-scale information network embedding. In Proc. WWW, pp.
1067–1077, 2015. 1

[24] L. Van der Maaten. Accelerating t-SNE using tree-based algorithms.
The Journal of Machine Learning Research, 15(1):3221–3245, 2014.
3

[25] J. Venna and S. Kaski. Local multidimensional scaling. Neural Net-
works, 19(6-7):889–899, 2006. 2

[26] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional net-
works for text classification. Advances in Neural Information Pro-
cessing Systems, 28, 2015. 3

https://www.openml.org/search?type=data&id=554
https://www.openml.org/search?type=data&id=554
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

	Introduction
	Related Work
	Distortion and Instability of DR
	Uniform Manifold Approximation and Projection

	GhostUMAP: UMAP with Ghosts
	Layout Optimization with Ghosts
	Successive Halving on Ghosts

	Evaluation
	Performance Benchmark
	Use Case

	Conclusion

