
A Literature-based Visualization Task Taxonomy for Gantt Charts 

Sayef Azad Sakin* Katherine E. Isaacs† 

SCI Institute and Kahlert School of Computing, The University of Utah 

ABSTRACT 

Gantt charts are a widely-used idiom for visualizing temporal dis-
crete event sequence data where dependencies exist between events. 
They are popular in domains such as manufacturing and comput-
ing for their intuitive layout of such data. However, these domains 
frequently generate data at scales which tax both the visual repre-
sentation and the ability to render it at interactive speeds. To aid 
visualization developers who use Gantt charts in these situations, we 
develop a task taxonomy of low level visualization tasks supported 
by Gantt charts and connect them to the data queries needed to sup-
port them. Our taxonomy is derived through a literature survey of 
visualizations using Gantt charts over the past 30 years. 

Index Terms: Gantt chart—Visualization—Task taxonomy. 

1 INTRODUCTION 

Gantt charts are a visual idiom for displaying multiple event se-
quences with dependencies between events in different sequences. 
Data is organized on two axes, one representing a notion of time or 
order and the other partitioning the events by some factor relating 
them, such as different people, roles, or resources assigned to them. 

Gantt charts are widely used in project planning, process schedul-
ing, and progress tracking [40]. Project managers use Gantt charts 
for planning employee work assignments and estimating project 
completion time [39]. Gantt charts are similarly used in manufactur-
ing for scheduling multi-stage pipelines [21]. 

Medical practitioners have used Gantt charts to understand treat-
ment responses across individuals [4]. In parallel computing, Gantt 
charts are used to examine inter-resource dependencies and complex 
program behavior [20]. 

However, many of these applications, especially those coming 
from automated processes such as manufacturing and computing, 
can generate data with billions of events across tens of thousands 
of independent sequences—a scale beyond most Gantt chart imple-
mentations. A variety of designs have been proposed for when the 
data can no longer be resolved in a single image. Often the strategy 
involves aggregating or eliding data and implementing interactions 
such as zooming, panning, and fltering to present (a subset of) the 
data in the intuitive Gantt chart form. However, poor support for 
scale continues to be a signifcant barrier [7, 20] and querying these 
large-scale datasets to implement the existing techniques can lead to 
large latencies, further hampering exploratory analysis [24]. 

To better understand strategies and barriers to using Gantt charts 
with large numbers of events or sequences, we develop a literature-
based task taxonomy, focusing on low-level visualization tasks that 
Gantt-focused systems use to support scale. Our taxonomy includes 
not only the Gantt-based tasks, but also those of highly coupled 
auxiliary views supporting the analysis of Gantt data. This taxonomy 
can be matched with user tasks when designing with Gantt charts in 
single or multi-view systems. We also match these tasks with data 

*email: sayefsakin@sci.utah.edu 
†e-mail: kisaacs@sci.utah.edu 

queries supporting them, enabling the analysis of data management 
techniques for supporting interactions as the datasets scale up. We 
expect visualization creators to use this taxonomy when considering 
options for representing large scale Gantt data and when considering 
implementation needs. 

In summary, our contributions are: 

• A multi-layer visualization task taxonomy for interactive 
Gantt charts and their common auxiliary views, 

• A classifcation of data queries and their relationship with the 
proposed visualization task taxonomy for representing discrete 
event data visualized by Gantt charts, and 

• A literature review of scholarly articles over the last 30 years 
that have used Gantt charts as signifcant view. 

2 GANTT CHART TERMINOLOGY AND RELATED WORK 

We discuss Gantt chart data, encoding, and related surveys. 

Time

Track

Event Dependency

Figure 1: Gantt chart showing a window of time and three tracks. 

Data. The data items represented by Gantt charts are discrete 
events that have a partial order, typically due to some form of tem-
poral attribute. We will refer to this ordering attribute as time. Thus, 
Gantt chart data fall into the general category of event sequence data. 
Gantt charts are typically used when the events have a duration, i.e., 
the start and end times are different. 

The events are typically divisible into multiple sequences by one 
or more of their attributes, e.g., events performed by different people 
can be organized as per-person sequences. 

The literature has used several terms for the attribute used to 
divide sequences, such as schedule, location, resource, person, pro-
cess, or task. We choose the term track as it is still general but less 
overloaded in comparison to others (e.g., location, schedule, task, 
process). While time has an intrinsic order, tracks may have zero or 
more meaningful orderings. 

Gantt charts are commonly used when there are relationships be-
tween events of different tracks. For example, in parallel computing, 
processor 1 might execute a function (event) only after receiving 
a message created by a function (event) on processor 2. We refer 
to these kinds of cross-track relationships as dependencies and the 
events they connect as dependent events. The set of dependencies 
and dependent events together forms a dependency graph. 

Events may have several more attributes associated with them in 
addition to the temporal, track, and dependency attributes. Some 
datasets may have multiple attributes that could be considered for 
time or track. While the track is an event attribute, it may also be 
treated as the central data unit for another view. For example, if 

mailto:kisaacs@sci.utah.edu
mailto:sayefsakin@sci.utah.edu


tracks are employees, “employees” could be the data item of focus 
for another visualization. Thus, tracks can have additional attributes 
associated with them. 

Encoding. The most prevalent form of a Gantt chart (Figure 1) 
is a two-dimensional visualization where time is mapped to the 
horizontal axis and tracks are displayed on the vertical axis. Each 
event is represented as a rectangular bar drawn according to its start 
time, end time, and track along these axes. Thus, the length of the 
bar represents its duration. Interactive Gantt charts allow panning 
and zooming on both axes. 

Other arrangements exist, such as swapping the horizontal and 
vertical axes [9] or creating three-dimensional Gantt charts with 
a two-dimensional track layout, sometimes for symmetry (e.g., a 
circular layout [10]) or geographical [35] relations between tracks. 

We focus on the two dimensional form only in this work. 
Dependencies between events are encoded as line segments or 

arrows connecting their associated dependent events. 
Our examples use straight lines for dependencies, but orthog-

onal edges are sometimes used, especially in commercial project 
management tools [2]. 

While the organization of bars is the most salient feature of a 
basic Gantt chart, frequently auxiliary encodings focus on the depen-
dencies. By making the dependencies and dependent events more 
salient, the displays becomes more like a node-link diagram of the 
dependency graph. 

Using a dependency graph to help manage the scale and complex-
ity of the Gantt chart is a common strategy found in our literature 
review and thus we included it in our analyses. 

Related Work. Several works [2,14,36] survey temporal or event 
sequence data broadly, providing a general overview of time-oriented 
data visualization techniques. 

Parallel computing-specifc surveys [12, 20] demonstrate Gantt 
charts for large-scale trace data among others. Peiris et al. [29] 
developed a task taxonomy for timestamped instantaneous events 
without dependencies. Our work goes further in depth with Gantt 
charts specifcally. 

3 GANTT CHART TASK TAXONOMY AND DATA QUERIES 

We conduct a survey of Gantt charts used in visualizations with an 
emphasis on the visual tasks supported. We present our methodology, 
the derived tasks, and a translation of the tasks discovered into a set 
of data queries. Figure 2 presents a heatmap of our visualization 
tasks and their mapping to data queries where each cell indicates in 
how many papers the task was observed. 

3.1 Methodology 

We obtained an initial list of papers from surveys that feature Gantt 
charts [12, 14, 20]. We then expanded our list through searches in 
IEEE Xplore and Google Scholar using the following keywords, 
sourced from the surveys: Gantt chart, timeline visualization, event 
sequence visualization, schedule visualization, execution trace visu-
alization, trace analysis, performance analysis, performance visual-
ization, parallel program analysis, task parallel trace analysis, and 
time-series charts. We collected papers with promising abstracts, 
resulting in 137 research articles. We fltered these papers to those 
including interactive Gantt charts, resulting in a set of 35 papers. 

We also identifed 11 additional commercially available online 
tools that use Gantt charts (see supplemental materials). We did 
not fnd additional tasks by investigating their websites. We do 
not include them in Figure 2 as their Gantt view features were not 
described in detail in their publicly available documentation. 

For each paper, we examined at the description of use, task anal-
yses if they existed, the visualization itself, and any use cases or 
evaluation. The initial round of qualitative coding focused on identi-
fying, distilling, and tagging how the Gantt chart was used—what 
visualization tasks it was supporting. We then made a second pass 

to merge, split, and elaborate on the codes. This two-round process 
resulted in 29 distinct low-level visualization tasks. We categorized 
them into groups based on their intended higher-level user goal. 

3.2 Gantt chart task taxonomy 

We defne the 29 visualization tasks, T1 - T29, collected into eight 
groups by their higher level user goals. We cite example sources 
from the literature leading to each task. The full list of sources for 
each task are presented in the supplemental material. 

These are visualization tasks, focused on the functionality the 
Gantt chart and its closely related auxiliary views need to provide 
over what the user is trying to accomplish. Choosing this perspective 
supports both the evaluation of data management strategies and tasks 
to support when implementing Gantt charts. 

3.2.1 Event Overviews 

These tasks involve viewing some or all of the discrete event data, 
often to get an overview or general context. 

T1: Display the full Gantt chart. This is the most basic draw 
operation of the Gantt chart. For all but the smallest datasets, render-
ing the chart to ft on screen will involve some sort of aggregation, 
fltering, or overplotting, but we assume in our data queries that 
all of the data must be accessed. Often, visualization designers 
use a highly aggregated view as an overview to help with further 
navigation [22, 27, 31, 42]. 

T2: Display event attributes. Basic Gantt charts only directly en-
code time and track attributes. Color and labels are sometimes used 
to show additional attributes or auxiliary views may be used. Gantt 
charts often support requesting additional attributes interactively, 
initiated by brushing over the chart [3,26] or by clicking [30] or hov-
ering [9] on individual bars. The attributes are then shown in a sepa-
rate static view [22, 26, 33], multiple coordinated views [9, 27, 33], 
via lenses [21, 25, 27], or tooltips [4, 9, 21]. 

T3. Display a window. This task shows a subset of the data in 
time and/or track space. It can be an outcome of other tasks (e.g., T10 
- Browsing) or of directly specifying the window. Common modes of 
access include brushing over time [1, 33], zooming, panning, textual 
input, or selecting through a derived dependency diagram [9]. 

T4. Re-encode. This tasks describes alterations of the Gantt 
encoding, such as mapping an axis to a different attribute set [15,30] 
or changing the domain of an existing axis, such as switching the 
notions or calculation of time [19, 21, 42]. 

T5. Compare events from multiple datasets. This task presents 
multiple datasets. This is presented either with an additional win-
dow [22, 33] or within the same Gantt window [5]. 

3.2.2 Analyze Derived Data 

Users may wish to explore derived data, such as summaries, aggre-
gations, or clusters. These can help users understand their data at a 
higher level than individual events. 

T6. Display event distributions. This task provides context to 
event attributes. Common methods include showing percentages of 
the whole [1], histograms [33], or outliers to some condition [21,34]. 

T7. Aggregate events. This task combines multiple events into 
a derived value such as the average, minimum, and maximum of 
certain attribute values, often time. Gantt chart-based visualizations 
have displayed the aggregated events several ways, including with a 
separate aggregate Gantt view [22, 28, 33], a magnifcation lens [21], 
re-encoding the chart area [38], and using juxtaposed marks [15]. 

T8. Derive event attributes from dependencies. Some analyses 
involve calculating metrics based on dependencies. For example, in 
computing contexts, ‘inclusive time’ can be computed by summing 
durations of dependencies of an event. These derived metrics may 
be presented within the Gantt chart or separately [1, 33]. 

T9. Display patterns. Patterns of events and dependencies that 
can be defned, identifed, and displayed [9, 19] for some data. 



Data Queries T1. D
isp

lay f
ull G

antt

T2. D
isp

lay e
ve

nt a
ttr

ibutes

T3. D
isp

lay a
 w

indow

T4. R
e-enco

de

T5. C
ompare datase

ts

T6. D
isp

lay e
ve

nt d
ist

rib
utio

ns

T7. A
gg

rega
te eve

nts

T8. D
eriv

e attr
ibutes

T9. D
isp

lay p
atte

rns

T10. B
ro

wse

T11. H
igh

lig
ht e

ve
nts

T12. L
ooku

p eve
nts

T13. A
gg

rega
te tr

acks

T14. D
isp

lay t
rack 

attr
ibutes

T15. R
e-order t

rack
s

T16. R
emove

 tr
ack

s

T17. C
ompare tr

acks

T18. F
ilte

r e
ve

nts 
and tr

ack
s

T19. C
usto

mize
 fil

ters

T20. D
isp

lay d
ependency 

gra
ph

T21. F
ollo

w paths

T22. L
ink n

odes a
nd eve

nts

T23. H
igh

lig
ht d

ependencie
s

T24. D
isp

lay d
ependency 

attr
ibutes

T25. C
ompare dependency 

gra
phs

T26. D
isp

lay g
raph m

etri
cs

T27. U
pdate eve

nt d
ata

T28. A
nnotate

T29. E
xp

ort

Q1. Get data from range 20 6 4 4 13 18 2 24 8
Q2. Get event attributes 23 6
Q3. Get data on pattern match 5
Q4. Get events in cond. range 23 26
Q5. Get track details 16 9
Q6. Get track ordering 5

Q7. Get node neighbor details 15 13
Q8. Find node by attribute 7
Q9. Calculate graph metrics 3
Q10. Get graph by attributes 5 19 1

Q11. Add annotation 2
Q12. Update event 2
Q13. Remove track 1

No Query 9 4

Event-related 
Fetches

Dependcy-
related 
Fetches

U
pdate 

Q
ueries

Figure 2: Mapping between data queries and interactive visualization tasks for Gantt charts. Each heatmap cell denotes in how many papers we 
observed the given visualization task. Tasks observed in each paper are supplemental materials. These counts suggest common tasks to support 
and possibilities for handling scale. The counts indicate which queries are the most common and may be considered for optimization. 

3.2.3 Search 

These tasks support various forms of searching. 
T10. Browsing. This task encompasses zooming and panning in 

the Gantt chart, leading to T3 (displaying a window). Most of the 
visualizations in our literature review support this task. 

T11. Highlight events. Highlighting events based on some 
attribute value is prevalent in Gantt chart visualization and is essen-
tially a locate-type user task. It is complementary to event fltering 
(T18). Commonly, events are highlighted with color [1, 6, 19, 22, 28, 
33, 42], but other encodings, such as additional visual marks [37] or 
re-organizing the Gantt bars [21, 25], have also been used. 

T12. Lookup events. This task involves displaying the context 
of a particular event within the Gantt chart and/or auxiliary views. It 
is often the outcome of selection in one view causing related views 
to update. For example, 

clicking on a line of code could re-center the Gantt chart to the 
corresponding bar. Alternatively, clicking on a Gantt bar could 
highlight source code [1, 41, 42] or related geographic data in a 
map [15] (e.g., where the event occurred). 

3.2.4 Manipulating Tracks 

These tasks involve manipulating tracks in some way, typically 
interactively. Users may want to manipulate tracks to re-organize 
the data, simplify the view, or do comparisons. 

T13. Aggregate tracks. This task combines multiple tracks, 
often requiring aggregating the events among them. The task can be 
pre-computed [28, 33, 37] or performed interactively [21, 22, 32]. 

T14. Display track detail. This task helps users understand 
how a track attributes may relate to event data. Gantt charts have 
supported showing track details through tooltips [37], track-focused 
lenses [21], color encoding [35], highlighting [1, 11], and drawing 
additional rows to contain the detailed data [32]. 

T15. Re-order tracks. Users may want to change the order 
in which tracks are presented, manually or by attribute. Imple-
mentations include draggable rows [8], re-ordering by a specifc 
event attribute [17], and inputting a re-ordering condition through a 
separate interface [9, 21]. 

T16. Remove tracks. This task enables users to completely 
remove individual tracks from the chart. Of our surveyed papers, 
only Gupta et al. [15] support this task. 

T17. Compare tracks. Though users can compare tracks if 
they are all already on screen, additional measures can be taken to 
ease visual comparison. Techniques like repositioning tracks [37] 
or hiding unrelated tracks [22, 23, 39] ease direct comparison. Pinto 
et al. [31] added percent usage summaries to each track to support 
aggregate comparison. 

3.2.5 Filtering 

These tasks support users focusing on specifc events. 
T18. Filter events and tracks. This task enables fltering events 

and/or tracks depending on event attributes. For example, in the 
medical domain this task could involve fltering patients (tracks) 
with a specifc disease progression. In the computing domain, this 
task might be to flter down to events matching a certain library. This 
task was implemented by most of our surveyed papers with fltering 
in time being the most common. 

T19. Customize flters. Complicated flters often require some 
sort of an interface to construct. Several works [11,13,21,22,30] add 
a dedicated window with dropdown lists, checkboxes, and sliders to 
support building these flters. 

3.2.6 Exploring dependencies 

These tasks support analyzing dependencies. They may involve the 
dependencies as drawn in the Gantt chart or an auxiliary view. 

T20. Display dependency graph. Rather than view only the 
Gantt chart which prioritizes events and tracks, users may want 
to focus on a graph (network) that can be constructed from the 
dependencies. Nodes in this graph can be events or, when shown in 
a separate view, aggregated groups of events. Displaying the graph 
can support identifying motifs in the graph that indicate some sort 
of behavior or pattern. In the literature, displaying the graph has 
been supported by de-emphasizing the other marks [35] or using an 
additional view for the graph [1, 9, 33]. 

T21. Follow paths. This task supports users in following chains 
of dependencies. It has been supported through Gantt chart naviga-
tion [16, 18] or linked through the external graph view [4, 22, 33]. 
Interactive features, such as collapsing sub-graphs [1, 9, 33] further 
help to navigate through a very large graph structure. 

T22. Link nodes and events. In the full dependency graph, 
nodes are events. However, manipulating the graph can lead to 
nodes that represent aggregated events. This task links the node back 



to its composite events, typically as a color highlight [9, 33] of both 
the graph nodes and the Gantt bars. 

T23. Highlight dependencies. This task draws a set of de-
pendencies in the Gantt chart (and dependency graph if separate). 
Often, this selection is done with a specifc path (relating to T21) or 
sub-graph [6, 16, 19, 33, 35, 39]. 

T24. Display dependency attributes. This task enables repre-
senting additional details regarding dependencies in the Gantt chart 
(and dependency graph if separate). This is often done by color 
encoding [11, 23] and additional visual marking [4, 6, 9, 19]. 

T25. Compare dependency graphs. Multiple dependency 
graphs can arise when splitting a dependency graph or consider-
ing other event attributes as dependency sources. This task encom-
passes techniques supporting their comparison. Sun et al. [37] used 
a separate component view with treemaps to support this task. 

T26. Display graph metrics. Statistics about the dependency 
graph, such as depth or total number of nodes and edges, can lead to 
insights about the data. Notions such as the distance between two 
given nodes or their common ancestor may also be sought. These 
values are generally shown in a separate detail view [1, 35, 39]. 

3.2.7 Modifying the data 

These tasks support users in altering the dataset, typically for anno-
tation or to clean or fx the data. 

T27. Updating event data. This task allows users to change 
event attribute data. This has been implemented by overwriting the 
data when a user re-positions an event [5, 21]. 

T28. Annotate. This task involves adding text and additional 
markings to the chart as annotations. Annotation data is separate 
from the base temporal event sequence data. Multiple tools [11, 15] 
support this task. 

3.2.8 Exporting 

User may want to save the visualization outside of the tool. 
T29. Export. Several visualizations [11, 30, 33, 42] provide a 

feature to export in a shareable format such as a PNG or SVG. 

3.3 Data queries for Gantt chart 
We organize the data queries required for the tasks based on the 
similarity of their data access profle. Note T19 (flter customization) 
and T29 (export) do not require fetching additional data. 

3.3.1 Event-Related Fetch Queries 

These queries fetch data associated with events. 
Q1. Get data from a range. The range may be multi-

dimensional, range e.g., time and track. Input: A set of range 
tuples for each dimension being sub-selected. Output: A set of 
events, each with a start time, end time, and track value. Supported 
tasks: T1, T3, T4, T5, T6, T7, T8, T10, and T13. 

Q2. Get the attribute values of an event. Input: The event iden-
tifer. Output: A list of attribute names and their values. Supported 
tasks: T2 and T12. 

Q3. Get data matching pattern. This is a class of queries as the 
calculation to do the pattern match may be intensive and will differ 
by application and use case. Input: A search range similar to Q1 
and the pattern to be matched. Output: A a set of events, each with 
a start time, end time, and track value. Supported tasks: T9. 

Q4. Get events from a range meeting conditions. This query is 
similar to Q1 and Q3, but additional conditions must be met for the 
data to be included. Input: Ranges as in Q1 and conditions the data 
must satisfy. Output: A set of events that meet the condition, each 
with a start time, end time, and track value. Supported tasks: T11 
and T18. 

Q5. Get track details. This query can be implemented in two 
ways, by specifying the tracks directly or by specifying events and 
seeking their associated tracks. Input: A list of track identifers OR 

a list of event identifers. Output: Attribute-value pairs for each 
track in the list OR the set of tracks associated with the input events. 
Supported tasks: T14 and T17. 

Q6. Get track ordering. Input: a list of tracks and a condition for 
their ordering, for example, a track attribute. Output: The ordered 
tracks list. Supported tasks: T15. 

3.3.2 Dependency-Related Fetch Queries 

These queries focus on fetching data associated with dependencies 
or their induced dependency graph. Queries are often performed on 
nodes, which may be individual or collections of events. 

Q7. Get neighbor details of a node. Input: a node in the 
dependency graph. Output: all neighboring nodes and their attribute-
value pairs. Supported tasks: T21 and T24. 

Q8. Find a node by attribute. The search attribute is frequently 
a dependency. Input: An attribute name and value. Output: Nodes 
matching that attribute value. Supported tasks: T22. 

Q9. Calculate graph metrics. The exact query depends on the 
graph metric. Input: None. Output: Metrics of the dependency 
graph such as height and number of nodes. Supported tasks: T26. 

Q10. Get graph by attributes. This query generates a graph 
based on a set of attributes. These attributes can affect connectiv-
ity or membership (e.g., creating a subgraph based on a provided 
range). Input: List of attributes and attribute ranges. Output: The 
constructed dependency graph. Supported tasks: T20, T23, and T25. 

3.3.3 Update queries. 
These queries update the data. They each return a boolean value 
indicating whether the update was successfully executed. 

Q11. Add annotation. Input: Time and track value indicating 
location and content (text) of the annotation. Supported tasks: T28. 

Q12. Update event. Input: The event identifer and attribute-
value pair to be updated. Supported tasks: T27. 

Q13. Remove track. This query marks a list of tracks for omis-
sion in subsequent queries. Input: A list of track identifers. Sup-
ported tasks: T16. 

4 DISCUSSION AND CONCLUSION 

We presented a visualization task taxonomy for Gantt charts, an 
intuitive and popular visual idiom for displaying interdependent 
event sequences. Our motivation in creating this taxonomy is to 
support visualization design when using Gantt charts, especially 
in cases where large data in terms of number of events or tracks 
necessitate interactions or additional views beyond the core chart. 
This taxonomy serves as both a language for describing tasks and a 
collection of design strategies found in the literature. 

To further aid both design and research with regards to Gantt 
charts, we paired our task taxonomy with an analysis of the data 
queries required to draw them. Careful consideration of both the 
scaling of the representation, i.e., through the visual and interaction 
design, and the scaling of the data management to support these 
queries, are important for designing and implementing effective 
visualizations to handle the demands of large-scale data produced in 
areas like manufacturing and computing. 

Despite the prevalence of domain applications that can generate 
billions of events [20], we note that most visualizations in our survey 
did not reach that scale in their demonstration, with the largest shown 
datasets limited to millions of events. Thus, there may be tasks not 
yet represented in the literature which thus do not appear in our tax-
onomy. Limitations in managing the data for the the common tasks 
may be hindering creation of additional strategies as using systems 
in the large scale regime is cumbersome. Our list of data queries 
can serve as a basis for choosing and developing data management 
strategies to scale up interactivity in Gantt charts, allowing for fur-
ther research and observation into how people explore large-scale 
Gantt data. 



ACKNOWLEDGMENTS 

This work was supported by the Department of Energy under DE-
SC0022044 and DE-SC0024635. 

REFERENCES 

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs. Concurrency and Computation: 
Prac. & Exp., 22(6):685–701, 2010. 2, 3, 4 

[2] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization 
of time-oriented data, vol. 4. Springer, 2011. 2 

[3] P. André, M. L. Wilson, A. Russell, D. A. Smith, A. Owens, and 
M. Schraefel. Continuum: designing timelines for hierarchies, relation-
ships and scale. In Proc. ACM UIST, pp. 101–110, 2007. 2 

[4] D. Antweiler, D. Sessler, M. Rossknecht, B. Abb, S. Ginzel, and 
J. Kohlhammer. Uncovering chains of infections through spatio-
temporal and visual analysis of covid-19 contact traces. Comp. & 
Graph., 2022. 1, 2, 3, 4 

[5] R. Bell, A. D. Malony, and S. Shende. Paraprof: A portable, extensible, 
and scalable tool for parallel performance profle analysis. In Euro. 
Conf. on Parallel Proc., pp. 17–26, 2003. 2, 4 

[6] J. D ̨abrowski, T. Bartkowiak, P. Wierzchowski, and D. D ̨abrowski. 
Manufacturing line-level root cause analysis and bottleneck detection 
using the digital shadow concept and cloud computing. In Int’l Sci.-
Tech. Conf. MANUFACTURING, pp. 98–111. Springer, 2024. 3, 4 

[7] T. Davidson, E. Wall, and J. Mace. A qualitative interview study of 
distributed tracing visualisation: A characterisation of challenges and 
opportunities. IEEE Trans. on Vis. & Comp. Graphics, 2023. 1 

[8] J. C. De Kergommeaux, B. Stein, and P.-E. Bernard. Pajé, an interac-
tive visualization tool for tuning multi-threaded parallel applications. 
Parallel Computing, 26(10):1253–1274, 2000. 3 

[9] W. De Pauw and S. Heisig. Zinsight: A visual and analytic environment 
for exploring large event traces. In Proc. Int. Symp. on Soft. Vis., pp. 
143–152, 2010. 2, 3, 4 

[10] S. Devaux, F. Bouali, and G. Venturini. Datatube4log: A visual tool 
for mining multi-threaded software logs. In 2014 18th International 
Conference on Information Visualisation, pp. 189–195. IEEE, 2014. 2 

[11] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach-Temam. 
Aftermath: A graphical tool for performance analysis and debugging of 
fne-grained task-parallel programs and run-time systems. In Workshop 
on Prog. Issues for Het. Multicores, 2014. 3, 4 

[12] N. Ezzati-Jivan and M. R. Dagenais. Multi-scale navigation of large 
trace data: A survey. Concurrency and Computation: Prac. & Exp., 
29(10):e4068, 2017. 2 

[13] J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. A visual 
interface for multivariate temporal data: Finding patterns of events 
across multiple histories. In IEEE VAST, pp. 167–174, 2006. 3 

[14] Y. Guo, S. Guo, Z. Jin, S. Kaul, D. Gotz, and N. Cao. A survey on 
visual analysis of event sequence data. IEEE Trans. on Vis. & Comp. 
Graphics, 2021. 2 

[15] S. Gupta, M. Dumas, M. J. McGuffn, and T. Kapler. Movementslicer: 
Better gantt charts for visualizing behaviors and meetings in movement 
data. In IEEE Pacifc Vis. Symp., pp. 168–175, 2016. 2, 3, 4 

[16] B. Haugen, S. Richmond, J. Kurzak, C. A. Steed, and J. Dongarra. 
Visualizing execution traces with task dependencies. In Proc. Workshop 
on Visual Perf. Analysis, pp. 1–8, 2015. 3, 4 

[17] M. T. Heath and J. A. Etheridge. Visualizing the performance of 
parallel programs. IEEE Software, 8(5):29–39, 1991. 3 

[18] V. N. Hirakata, M. L. R. Oppermann, V. K. Genro, and A. J. Reichelt. 
Exploring the gantt chart as a tool to highlight double report in case 
series published during the frst wave of the covid-19 pandemic. Sys-
tematic Reviews, 11(1):1–7, 2022. 3 

[19] K. E. Isaacs, P.-T. Bremer, I. Jusuf, T. Gamblin, A. Bhatele, M. Schulz, 
and B. Hamann. Combing the communication hairball: Visualizing 
parallel execution traces using logical time. IEEE Trans. on Vis. & 
Comp. Graphics, 20(12):2349–2358, 2014. 2, 3, 4 

[20] K. E. Isaacs, A. Giménez, I. Jusuf, T. Gamblin, A. Bhatele, M. Schulz, 
B. Hamann, and P.-T. Bremer. State of the art of performance visual-
ization. EuroVis STARs, 2014. 1, 2, 4 

[21] J. Jo, J. Huh, J. Park, B. Kim, and J. Seo. Livegantt: Interactively 
visualizing a large manufacturing schedule. IEEE Trans. on Vis. & 
Comp. Graphics, 20(12):2329–2338, 2014. 1, 2, 3, 4 

[22] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W. 
Ong, B. Schaller, P. Shan, B. Viscomi, et al. Canopy: An end-to-end 
performance tracing and analysis system. In Proc. Symp. on Operating 
Sys. Principles, pp. 34–50, 2017. 2, 3 

[23] H. Koike, T. Takada, and T. Masui. Visualinda: a framework for 
visualizing parallel linda programs. In Proc. IEEE Symp. on Vis. Lang., 
pp. 174–178, 1997. 3, 4 

[24] Z. Liu and J. Heer. The effects of interactive latency on exploratory 
visual analysis. IEEE Trans. on Vis. & Comp. Graphics, 20(12):2122– 
2131, 2014. 1 

[25] S. Luz and M. Masoodian. Improving focus and context awareness in 
interactive visualization of time lines. Pro. HCI, pp. 72–80, 2010. 2, 3 

[26] M. Meyer, F. Beck, and S. Lohmann. Visual monitoring of process 
runs: An application study for stored procedures. In IEEE Pacifc Vis. 
Symp., pp. 160–167, 2016. 2 

[27] W. E. Nagel, M. Weber, A. Arnold, K. Solchenbach, and H.-C. Hoppe. 
Vampir: Visualization and analysis of mpi resources. Supercomputer, 
63(FZJ-2015-02424):69–80, 1996. 2 

[28] L. L. Nesi, V. G. Pinto, L. M. Schnorr, and A. Legrand. Summarizing 
task-based applications behavior over many nodes through progression 
clustering. In Int. Conf. on Parallel, Dist. & Network-Based Proc., pp. 
35–42, 2023. 2, 3 

[29] Y. Peiris, C.-M. Barth, E. M. Huang, and J. Bernard. A data-centric 
methodology and task typology for time-stamped event sequences. In 
2022 IEEE Evaluation and Beyond-Methodological Approaches for 
Visualization (BELIV), pp. 66–76. IEEE, 2022. 2 

[30] V. Pillet, J. Labarta, T. Cortes, and S. Girona. Paraver: A tool to 
visualize and analyze parallel code. In Proc. WoTUG-18, vol. 44 
number 1, pp. 17–31, 1995. 2, 3, 4 

[31] V. G. Pinto, L. Stanisic, A. Legrand, L. M. Schnorr, S. Thibault, and 
V. Danjean. Analyzing dynamic task-based applications on hybrid 
platforms: An agile scripting approach. In Proc. Workshop on Visual 
Perf. Analysis, pp. 17–24, 2016. 2, 3 

[32] C. Plaisant, B. Shneiderman, and R. Mushlin. An information archi-
tecture to support the visualization of personal histories. Info. Pro. & 
Management, 34(5):581–597, 1998. 3 

[33] S. A. Sakin, A. Bigelow, R. Tohid, C. Scully-Allison, C. Scheidegger, 
S. R. Brandt, C. Taylor, K. A. Huck, H. Kaiser, and K. E. Isaacs. 
Traveler: Navigating task parallel traces for performance analysis. 
IEEE Trans. on Vis. & Comp. Graphics, 29(1):788–797, 2022. 2, 3, 4 

[34] C. Schaubschlaeger, D. Kranzlmüller, and J. Volkert. Event-based 
program analysis with dewiz. In Proceedings of the Fifth International 
Workshop on Automated Debugging (AADEBUG 2003), September 
2003. 2 

[35] L. M. Schnorr, G. Huard, and P. O. Navaux. Triva: Interactive 3d 
visualization for performance analysis of parallel applications. Future 
Generation Comp. Sys., 26(3):348 – 358, 2010. 2, 3, 4 

[36] G. Shurkhovetskyy, N. Andrienko, G. Andrienko, and G. Fuchs. Data 
abstraction for visualizing large time series. In Computer Graphics 
Forum, vol. 37 number 1, pp. 125–144, 2018. 2 

[37] Y. Sun, Y. Zhang, A. Mosallaei, M. D. Shah, C. Dunne, and D. Kaeli. 
Daisen: A framework for visualizing detailed gpu execution. In Com-
puter Graphics Forum, vol. 40 number 3, pp. 239–250, 2021. 3, 4 

[38] B. Topol, J. T. Stasko, and V. Sunderam. Pvanim: A tool for visualiza-
tion in network computing environments. Concurrency: Prac. & Exp., 
10(14):1197–1222, 1998. 2 

[39] M. Tory, S. Staub-French, D. Huang, Y.-L. Chang, C. Swindells, and 
R. Pottinger. Comparative visualization of construction schedules. 
Automation in Construction, 29:68–82, 2013. 1, 3, 4 

[40] J. M. Wilson. Gantt charts: A centenary appreciation. European 
Journal of Operational Research, 149(2):430–437, 2003. 1 

[41] J. Yan, S. Sarukkai, and P. Mehra. Performance measurement, visu-
alization and modeling of parallel and distributed programs using the 
aims toolkit. Software: Prac. & Exp., 25(4):429–461, 1995. 3 

[42] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable per-
formance visualization with jumpshot. Int. J. HPC Applications, 
13(3):277–288, 1999. 2, 3, 4 


	Introduction
	Gantt Chart Terminology and Related Work
	Gantt Chart Task Taxonomy and Data Queries
	Methodology
	Gantt chart task taxonomy
	Event Overviews
	Analyze Derived Data
	Search
	Manipulating Tracks
	Filtering
	Exploring dependencies
	Modifying the data
	Exporting

	Data queries for Gantt chart
	Event-Related Fetch Queries
	Dependency-Related Fetch Queries
	Update queries.


	Discussion and Conclusion

