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(a) Violin plots for T1–T4 time (lower is better). (b) Histograms for T1–T4 accuracy (higher is better). (c) Order relationships in a, b.

Figure 1: Response time (a) and accuracy (b) results for UT weights α0, α0.5, and α1, and their order (c). The dot marks mean (a)
and median (b), while lines show 50%/75% highest density continuous interval (a) and 50/75 quantile interval (b).

ABSTRACT

Real-world datasets often consist of quantitative and categorical
variables. The analyst needs to focus on either kind separately or both
jointly. We proposed a visualization technique tackling these challenges
that supports visual cluster and set analysis. In this paper, we investigate
how its visualization parameters affect the accuracy and speed of cluster
and set analysis tasks in a controlled experiment. Our findings show
that, with the proper settings, our visualization can support both task
types well. However, we did not find settings suitable for the joint task,
which provides opportunities for future research.

Index Terms: Visual cluster analysis, set visualization.

1 INTRODUCTION

Real-world datasets often consist of a mix of quantitative and categorical
variables. Analysis tasks may alternatively or simultaneously involve
i) cluster analysis based on multidimensional similarity and ii) set
tasks on categorical variables. In previous work [16], we developed a
visualization technique that tackles both tasks. It is called “UnDRground
Tubes” (short UT) and based on a metro map metaphor. Multidimen-
sional data points are visualized as glyphs and embedded in 2D using
Multidimensional Scaling [18]. Overlaps are avoided by displacing
glyphs onto regular grid positions. Users can control the glyph layout
with UT ’s weight parameter α. It defines how the data points’ pairwise
multidimensional and set distances are preserved. At α=0, distances in
the grid correspond only to the former (Figure 2a), while at α=1, to the
latter (Figure 2b). Settings in between will show a mix of set and multi-
dimensional distances. Sets are visualized by colored lines that connect
glyphs in the same sets. UT ’s pipeline parameter controls whether lines
are routed heuristically or optimally. Thus, users can flexibly switch
between cluster and set analysis using UT. We extensively evaluated
UT with qualitative approaches: An ICE-T [22] evaluation yielded
very high scores, and experts successfully applied multidimensional
and set tasks toward their analysis goals [16]. However, it remained an
open question how well UT is suited to particular tasks when “opposite”
weights are used, e.g., set tasks at α = 0. Likewise, it was unknown
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what advantage, if any, weights 0<α <1 afford. Thus, we still have
to devise UT guidelines. To do so, we describe a controlled experiment
to answer the following research question: How do accuracy and speed
of cluster and set tasks relate to UT ’s weight and pipeline parameters?

Our contributions are thus the following:

• We devise an experiment to test the suitability of various UT
visualization styles on cluster and set analysis tasks (Section 3).

• We analyze the experiment results using appropriate frequentist
statistics (Section 4).

• Based on the analyzed results, we suggest guidelines for
employing UT (Section 4.4).

(a) α0 weight, optimal pipeline. Zoomed
glyphs added as inset for better visibility.

(b) α1 weight, heuristic pipeline. Zoomed
glyphs added as inset for better visibility.

Figure 2: Example stimuli for task T3 (Section 3.1) from the experiment.

2 RELATED WORK

Our work relates to empirical studies in the context of visual cluster
analysis and set visualization.

2.1 Visual Cluster Analysis Using DR Scatterplots
Clustering is an essential wide-spread class of data analysis methods,
and various flavors were proposed over time [26]. We focus on
visual cluster analysis using 2D dimension reduction (DR) scatterplots



(multidimensional projections) [15]. Lewis and de Sa [10] investigated
whether people judge DR scatterplot quality consistently and found only
experts do, but novices do not. Sedlmair et al. [19] provide guidance on
visual encoding choices of DR scatterplots regarding class separability.
They found that 2D scatterplots are “mostly good enough,” scatterplot
matrices are sometimes useful, and interactive 3D approaches rarely.
Based on the same datasets, Sedlmair et al. [20] also proposed a
taxonomy of visual cluster separation factors. Tatu et al. [21] assessed
whether some class separation metrics align with human judgment
and found two metrics where this was the case. On the other hand,
Etemadpour et al. [7] conducted a perception-based study. Using five
projection methods, they compared how users could solve several cluster
analysis tasks on four datasets, such as ranking clusters by density. As
expected, no projection method outperformed the others in all tasks or
datasets. Xia et al. [25] later conducted a similar experiment, but instead
of individual techniques, they investigated the differences between
local/global and linear/non-linear DR methods on cluster analysis tasks.
No clear picture emerged here, either, as at least one outlier existed
for each method and task. Espadoto et al. [6] began to tackle the issue
that many projection methods require parameters that influence the
projection quality. They set up a computational experiment and found,
e.g., that UMAP with default parameters is a solid choice across datasets.
Moriaru et al. [14] investigated which quality metrics can predict user
preference of a DR scatterplot. They found that, e.g., scagnostics [24]
or separability measures can be useful for that purpose. While their
combination is starting to be explored [5], no experiment has considered
DR projections in conjunction with categorical data and set tasks.

2.2 Set Visualization
Several works in the literature compare the effectiveness of set visualiza-
tion idioms [2] across tasks. Some studies considered fixed embeddings,
where the position of set members is fixed, such as in spatial sets. Alper
et al. [1] compared LineSets to Bubble Sets. Tasks included identifying
members of a set and judging cardinalities of set relations. Answers were
more accurate with LineSets. Meulemans et al. [13] compared their pro-
posed KelpFusion to LineSets and Bubble Sets. Tasks pertained mostly
to the cardinality of sets or set intersections. They found that KelpFusion
and LineSets are more accurate than Bubble Sets, while KelpFusion had
faster answer times than LineSets. Rodgers et al. [17] compared visual-
ization approaches for “grouped network data”: Bubble Sets, LineSets,
KelpFusion, EulerView, and their own proposal SetNet. Information
about the network and set data were required to solve tasks. They
concluded that EulerView and SetNet outperformed Bubble Sets, Kelp-
Fusion, and LineSets. Other studies focused on free embeddings. Chap-
man et al. [3] compared the effectiveness of Euler diagrams, two kinds of
Venn diagrams, and linear diagrams for the set relation tasks intersection,
subset and disjointness. Participants made fewest mistakes using linear
diagrams. Wallinger et al. [23] compared the effectiveness of six set tasks
with MetroSets, LineSets, and Euler diagrams. On average, MetroSets
performed better than the alternatives. Our visualization approach is not
directly comparable to any of the presented existing works because UT’s
embedding is free and dynamically adjustable by the user. This feature
stands in contrast to approaches where the embedding is fixed (e.g., Kelp-
Fusion [13] for spatial sets) or where it is free but static (e.g., LineSets [1]
for network data). Therefore, our primary goal is to derive guidelines for
UT instead of comparing UT to existing set visualization approaches.

3 EXPERIMENT

This section describes our experiment setup.

3.1 Tasks
We want to test the effectiveness of our visualization technique for
cluster and set tasks. Specifically, we formulated the following:

T1 Given a data point as reference, identify other data points in the
visualization that are identical to the reference.

T2 Given a set as reference, identify data points in the set.

T3 Given two sets as reference, identify data points in their
intersection.

T4 Given a data point as reference, identify other data points that are
identical to the reference and also have ≥1 set in common.

T1 is meant to be a representative task of visual cluster analysis as
it corresponds to membership identification in [25]. Multidimensional
clusters consist of similar data points. As similarity is a fuzzy concept,
we resort to seeking identical data points. This way, we can give clear
instructions to participants. T2 is a basic set task, where participants
enumerate members of a set (A1 in [2]). T3 is a more advanced set task,
where participants enumerate an intersection of two sets (A3 in [2]).
T4 is a joint task combining T1 and T3. Each task is answered by a
selection of data points.

3.2 Datasets
We generated synthetic datasets following the rules outlined here, each
one to be used in one task. A dataset consists of 42 data points, separated
into two groups Cd (distractors) and Ct (targets) with |Ct |=6. The refer-
ence in tasks T1 and T4 was drawn from Ct . We chose ca. 40 data points
to obtain optimally-drawn UT in reasonable time and because glyphs
would otherwise be too small. Each dataset has a multidimensional and
categorical part. Multidimensional Part: Each data point consists of
six variables that may take on an integer from 1 to 3. Targets in Ct have
the same random assignment of six numbers. Distractors in Cd, on the
other hand, have varying random numbers but the Manhattan distance to
Ct must be 1–5. This ensures that Ct is not too easy to identify while Cd
still has enough variance. We show data points as radar charts (Figure 2).
Categorical Part: To model categories realistically, we chose metrics
from a real-world dataset (specifically the most common genres in
the internet movie database): There are six sets in each dataset with
predefined frequencies 0.5,0.25,0.15,0.1,0.1,0.1. Each set must contain
at least two data points and each data point must be in at least one set.
Further, for the T4 reference, there must be at least one set with ≥ 2
data points in Ct and ≥1 in Cd. Sets are visualized as lines (Figure 2).

3.3 Stimuli
The stimuli for participants were UT visualizations of the previously
described datasets. In particular, the independent variables were the
UT pipeline setting (2 factors: heuristic or optimal), which controls
line routing, and the weight α (3 factors: α0,α0.5,α1), which highlights
multidimensional similarity (α0), set similarity (α1), or a mixture
thereof (α0.5) in the glyphs’ layout.

We computed UT on an 18×18 grid (plus 1 row/column padding
on each side) with DGrid gridification [9] and tree support. We found
that projection and network quality metrics are best with the chosen
settings. To determine the grid size, we compared projection metrics of
square grids with side lengths 12,16,18,20,24 for three random datasets
(generated as in Section 3.2 but not used for the experiment). While
metrics were slightly better for a side length of 20, we chose 18 as
we expected solving stimuli to be more difficult with less whitespace
between glyphs. Also, assuming the same viewport size, glyphs could
be displayed bigger using a smaller grid. To avoid displaying similar
stimuli after another, we randomly mirrored visualizations horizontally,
vertically, or both. The line colors were two shades of red, green, and
blue, respectively. We selected the colors using Colorgorical [8] to
optimize for perceptual distance and name difference.

Participants had to first identify the required task in each question
by reading the description. We ensured that each unique description
appeared visually distinct to prevent increased mistakes and fatigue.
After that, they had to press a button to see the stimulus, i.e., UT. They
had to select data points by clicking on glyphs. Once satisfied, another
button had to be pressed to finish the time measurement.



3.4 Research Hypotheses
Our hypotheses relate to UT pipelines and its parameters with regard
to tasks T1–T4 when considering task accuracy and time. Specifically:

H1 α0 is more accurate and faster than the alternatives for T1.

H2 α1 is faster than the alternatives for T2; all have same accuracy.

H3 α1 is more accurate and faster than the alternatives for T3.

H4 α0 is more accurate and faster than the alternatives for T4.

H5 α0.5 is neither the slowest nor least accurate for any task.

H6 The optimal UT pipeline leads to faster answers in T1–T4.

Our rationale for the hypotheses is the following. We expect α0 to be
best for T1 because it will place glyphs similar to the reference close to it,
thus reducing the visual search space compared to α>0 (H1). Similar
considerations apply to H2, but to solve T2, participants only need to
follow a single line. Since the support for each set is a tree, a line may
branch, but we still expect this task to be rather simple, and differences,
therefore, only occur in the answer time. T3, on the other hand, is
more complex, and we again expect that α1 will also lead to better
accuracy due to the improved layout (H3). To solve T4, a viable strategy
for participants is first to find all matching glyphs, then filter those by
sets in common with the reference. This strategy is best supported
by α0 (H4). α0.5 is a compromise between the other two α settings.
While we know from prior experiments that set distances may be over-
represented at α0.5 [16], one could still reasonably expect this layout to
be a robust choice for all tasks, i.e., never be the worst alternative (H5).
Finally, optimally drawn UT visualizations have the same glyph layout
as heuristic UT, but shorter lines and fewer crossings. Due to the reduced
visual clutter, we expect faster answers using the optimal pipeline (H6).

3.5 Participants
We recruited 49 students as part of an undergraduate visualization
course. Participation was voluntary, but students had to complete an
alternative assignment if they decided against it. Participants (38 male,
11 female) self-reported normal or corrected-to-normal vision. Their
median age was 23 within a range of 20–30.

3.6 Procedure
The study was carried out as a within-subject online survey (every
participant solved each task T1–T4 with all UT variants) using
LimeSurvey. Participants completed it on their own hardware and time.
We structured the survey into the following parts:

1. Welcome: The welcome screen acted as a consent form, where
we outlined the purpose of our study, contact data, and possible
risks when participating.

2. Screening: Participants had to answer questions we used to ex-
clude, e.g., people with dyslexia, uncorrected vision, or too young.

3. Tutorial: We explained individual parts of UT visualizations, the
layouts, how the timing works (start and end buttons), and pro-
vided examples of T1–T4 they had to solve correctly to advance.

4. Experiment: 24 stimuli and 3 control questions. The control
questions were placed at the beginning, middle, and end of the
stimuli. Control questions were identical to a T1 stimulus with
two differences. First, Cd had a minimum Manhattan distance of
6 to Ct (as opposed to maximum distance 5). Second, Ct had a
distinctive glyph image. As such, control questions were much
easier to answer. We split the stimuli into two groups of 12 so that
i) stimuli with same task and α are in separate groups and ii) each
group consists of 6 heuristically and 6 optimally drawn stimuli.
Stimuli in each group were displayed in randomized order.

5. Post-study Questions: Participants had to rate their preference
and confidence in answering T1–T4 using UT with different α.
Ratings were on a 5-point Likert scale.

6. Demographics: We collected demographic data to describe our
participant sample.

Participants were told to complete the experiment with a compromise
of speed and accuracy, i.e., try to answer correctly but also do not spend
too much time on each question. They were allowed to take breaks as
needed as long as they did so before viewing a stimulus (Section 3.3).

4 RESULTS AND ANALYSIS

Figure 1 shows plots of our results. All data and analysis steps can be
found in the supplemental material.

4.1 Data
After filtering for incorrect answers to control or screening questions, we
were left with the sample described in Section 3.5 and had 49 responses
to analyze. We measured the answer accuracy by the F1 score, which
combines two quality metrics in information retrieval: Precision (p)
and recall (r) [12, Sec. 8.3]. The F1 score is calculated as 2rp/(r+p).
Time, as outlined in Section 3.3, was measured by the time difference
between clicks on the start and end buttons in a question.

4.2 Time and Accuracy
Methods. We analyzed time and accuracy for each task separately.

Generally, we checked if the response times are normally distributed
visually and with summary statistics, statistical metrics, and the Shapiro-
Wilk normality test. If it was not, we Box-Cox-transformed them to
a normal distribution. We also checked the homogeneity of variances
visually and with Levene’s test statistic. No transformation was applied
to F1 scores. Instead, we applied nonparametric test statistics. For time
measurements, we then ran a two-way analysis of variance (ANOVA) to
analyze effects of weight (α) and pipeline on response time. Where this
was the case, we followed with Bonferroni-corrected pairwise t-tests.
For accuracy measurements, we used a Kruskal-Wallis rank sum test
to analyze the effect of weight on accuracy. When this was the case,
we ran Dunn’s test for multiple comparisons (Bonferroni-corrected).

H1. We can accept H1: α0 is significantly faster and more accurate
than the alternatives for task T1. Time: The ANOVA revealed a sig-
nificant effect of weight on response time (F(2)=126.839,p<0.001),
but not of pipeline or their interaction. The pairwise t-test showed
significant differences in the mean response time of α0 compared to α1
(t(194)=−15.34,p<0.001) and α0.5 (t(190.5)=−12.58,p<0.001).
Accuracy: The Kruskal-Wallis test showed significant differences
between weight levels (χ2 = 68.569,d f = 2,p < 0.001). Dunn’s test
revealed significant differences in the accuracy of α0 compared to α1
(d=−7.47,p<0.001) and α0.5 (d=−6.83,p<0.001).

H2. We can reject H2: We find no differences in accuracy
between weight levels for task T2. α0 leads to significantly slower
response times, but α0.5 is as fast as α1. Time: The ANOVA revealed a
significant effect of weight on response time (F(2)=19.32,p<0.001),
but not of pipeline or their interaction. The pairwise t-test showed
significant differences in the mean response time of α0 compared to α1
(t(193.82)=−4.91,p<0.001) and α0.5 (t(190.88)=−5.68,p<0.001).
Accuracy: The Kruskal-Wallis test did not reveal differences between
weight levels (χ2=2.0896,d f =2,p=0.3518), due to ceiling effects.

H3. We can reject H3: α1 is faster than the alternatives for task T3.
α0.5 and α1 are more accurate than α0. Time: The ANOVA revealed a
significant effect of weight on response time (F(2)=59.44,p<0.001),
but not of pipeline. However, the interaction between them is again
significant (F(2) = 14.02, p < 0.001). Because of the interaction
effect, the main components weight and pipeline cannot be interpreted,
and a pairwise t-test is inappropriate. To analyze interaction effects,



we ran an ANOVA and estimated marginal means (EMM) test
(post-hoc), for pipeline within each level of weight and vice versa.
The results show significant differences between heuristic and optimal
pipelines w.r.t. response time for α1 (e(288) = 4.73,p < 0.001) and
α0.5 (e(288) = −2.37, p = 0.018), but not for α0. For the response
time of weight within each pipeline level, the analysis revealed
significant differences between all weight levels for heuristic pipelines.
For the optimal pipeline, α0 differs significantly from the others,
but there is no difference between α0.5 and α1. Accuracy: The
Kruskal-Wallis test showed significant differences between weight
levels (χ2=41.397,d f =2,p<0.001). Dunn’s test revealed significant
differences in the accuracy of α0 compared to α1 (d=5.58,p<0.001)
and α0.5 (d=5.56,p<0.001), but not between α0 and α1.

H4. We can reject H4: There is no difference in time or accuracy
for task T4. Time: The ANOVA revealed no effect of weight, pipeline,
or their interaction on response time. Accuracy: The Kruskal-Wallis test
also did not yield significant differences in the accuracy of weight levels.

H5. We can accept H5 except for T1. For task T1 (tested by
H1), α0.5 was the slowest and least accurate together with α1. For task
T2 (H2), α0.5 was the fastest together with α1, with no difference in
accuracy. For task T3 (H3), α0.5 was between the other levels regarding
time and more accurate than α0. For task T4 (H4), there was no
difference in accuracy nor time.

H6. We can reject H6. The pipeline had no significant effect
on response time except for α0.5,α1 in task T3. There, the heuristic
pipeline performed significantly better with α0.5 while the optimal
pipeline was significantly better with α1.

4.3 Preference and Open Feedback
Participants rated their confidence and preference in using a given layout
(weight factor) for each task on a 5-point Likert scale. We performed
a Kruskal-Wallis test to determine differences between weight levels.
We followed with a Bonferroni-corrected Dunn’s test to see the
individual comparison results. Confidence ratings poorly correlate
(Spearman’s rank) with accuracy using heuristic (0.27) or optimal (0.24)
UT pipeline. However, a non-negligible correlation (0.66) between
preference and confidence scores suggests that participants may not
have judged their confidence accurately. Consequently, we only report
mean preference ratings. These were generally ordered by which
weight can be expected to be most effective for the given task. For
T1, the ordering was α0=5>α0.5=3.22>α1=1.49 (all significant).
For T2, α1 = 4.71 > α0.5 = 4.06 > α0 = 2.69 (all significant). For
T3, α1 = 4.55 > α0.5 = 3.76 > α0 = 2.04 (all significant). For T4,
α1=4.55>α0.5=3.76>α0=2.04 (all significant except α0.5>α0).

Open Feedback. We obtained 24 free text responses. Six
mentioned the wording of questions being ambiguous, i.e., that they
were in T3 not sure whether to select glyphs based on AND or OR
relation of lines. Three mentioned that colors were sometimes hard
to distinguish, both across (dark blue and dark red) and within hues
(e.g., light and dark red). Some participants reported to find it easier
finding shared lines than identical glyphs (“because I can just follow
the line”), whereas another said the opposite (“[lines] crossed each other
or skipped points, which made it harder for me to follow them”). One
participant mentioned the “uncertainty” of α0.5 for T1, as it is not clear
how much of the reference’s neighborhood should be considered.

4.4 Discussion
In H2, we explain that α0.5 also lead to faster answers by the imbalance
of projection quality regarding multidimensional and set distances at
α0.5. Set distances were better represented at this weight according to
our earlier experiments. We suggest the same explanation for accuracy
in H3, although it is somewhat curious that only either of the two met-
rics would be affected. Especially interesting regarding H3 and H6 is
also the interaction between weight and pipeline in T3, which happens
in opposite directions. We check the stimuli for α1 for clues. In the

heuristic pipeline, we can see that the two sought lines are always on
the same edge, ordered adjacent to each other, in a connected tree, and
in the center of the image. This is not the case for the optimally drawn
version of the stimulus, where there is a discontinuity in the support
for this intersection, and lines are not adjacent on one edge (see supple-
mental material). We cannot explain the latter; it may be a bug in our
implementation. The situation is reversed for α0.5. The optimal pipeline
has the two lines on the same edges, ordered next to each other. In
the heuristic pipeline, the two sought lines branch a lot and cross other
lines. These comparisons show that, depending on the pipeline, there
can be substantial visual differences in either direction. However, these
mostly did not have an impact on response time. Consequently, there is
no disadvantage to using the heuristic pipeline, which can be rendered
much more quickly. It was surprising to find no effect in H4. A likely
explanation we offer is that participants did not follow the strategy we
anticipated. We expected them to consider the reference’s immediate
neighborhood with α0 and filter these glyphs by shared lines. Instead,
they may have done it the other way and followed incident lines while
excluding non-matching glyphs. This strategy does not yield benefits
with α0, as irrelevant image parts are scanned, but it works for all layouts.
In that case, we would expect more mistakes to happen, which are visible
in Figure 1b (though statistically insignificant). As there is no accuracy
difference for T2 and little difference in response time, this explanation
is consistent with findings for H2 and the preference ratings for T4.

Regarding UT guidelines, our cumulative findings [16] indicate that
heuristically drawn UT are comparable to optimally drawn counterparts
regarding task response time, which makes them attractive for interactive
applications. Separate cluster and set tasks can be efficiently and
effectively carried out with α0 (cluster) and α1 (set) weight settings. For
joint analysis, α0 seems slightly better (T4 in Figure 1a and Figure 1b).
DGrid [9] is to be preferred over our implementation of Hagrid [4], and
tree supports over paths due to faster heuristics.

5 LIMITATIONS

While our tasks aimed to be representative for cluster and set analysis,
many more are possible (see, e.g., [2, 25]). We had to restrict their
number to keep the experiment’s length manageable for participants.
The stimuli in our study were the same size, so comparing task
performance across more complex stimuli would be interesting and
possibly show reduced ceiling effects in T2. We did not control for
the visual complexity of stimuli, as they are challenging to measure.
Another limitation is the participant sample, as it is not only drawn
from the WEIRD (western, educated, industrialized, rich, democratic)
population [11] but also skewed towards males and young adults. It
is unclear how much our findings would translate to other populations.
Finally, comparisons to other set visualization approaches (Section 2.2)
would highlight which to choose when.

6 CONCLUSION

In this paper, we presented a controlled experiment to determine the
effect of UT visualization parameters on cluster and set analysis tasks.
Thus, we tackle joint visual cluster and set analysis, which has not been
explored so far. We could answer our research question: Cluster and
set tasks work as expected at the extremes of UT’s weight parameter.
α0 supports cluster membership identification [25] while α1 supports
finding members of a set or of an intersection of two sets. The middle
setting α0.5 was also a robust choice for set-related tasks. Mostly,
optimally drawn UT do not lead to faster answers. Contrary to our
expectations, neither visualization style was best for the joint task T4,
indicating that further research is required on how to enable combined
visual cluster and set analysis.
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