
Accelerating Transfer Function Update for
Distance Map based Volume Rendering

Michael Rauter*

Competence Center for Preclinical
Imaging and Biomedical Engineering,
Faculty of Health, University of Applied

Sciences Wiener Neustadt, Austria

Lukas Zimmermann
Department of Radiation Oncology,

Medical University of Vienna, Austria

Markus Zeilinger
Competence Center for Preclinical

Imaging and Biomedical Engineering,
Faculty of Health, University of Applied

Sciences Wiener Neustadt, Austria

Figure 1: Volume renderings for kingsnake [2], stag beetle [9], and manix [18] datasets applying different transfer functions

ABSTRACT

Direct volume rendering using ray-casting is widely used in prac-
tice. By using GPUs and applying acceleration techniques as empty
space skipping, high frame rates are possible on modern hardware.
This enables performance-critical use-cases such as virtual reality
volume rendering. The currently fastest known technique uses vol-
umetric distance maps to skip empty sections of the volume during
ray-casting but requires the distance map to be updated per trans-
fer function change. In this paper, we demonstrate a technique for
subdividing the volume intensity range into partitions and deriv-
ing what we call partitioned distance maps. These can be used to
accelerate the distance map computation for a newly changed trans-
fer function by a factor up to 30. This allows the currently fastest
known empty space skipping approach to be used while maintain-
ing high frame rates even when the transfer function is changed
frequently.

Index Terms: Computing methodologies—Computer graphics—
Rendering, Theory of computation—Design and analysis of
algorithms—Data structures design and analysis.

1 INTRODUCTION

Direct volume rendering is an important technique to get insight
into a volume dataset. Direct volume rendering has the advantage
of not relying on volume segmentations while producing high qual-
ity renders. The main technique in direct volume rendering is vol-
ume ray casting where a ray is cast from the camera eye point to
every pixel in the target render image [15, 13]. Discrete steps are
taken along the ray covering the volume’s bounding geometry. At
each position the corresponding volume’s voxel values are sampled
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and interpolated. Those sampled voxel values are then mapped us-
ing a transfer function (TF) to rendered color and opacity values as
described by Kniss et al. [12]. This can be done by either using a
1D mapping from intensities, or a 2D mapping from intensities and
gradient magnitude. Voxels along a single ray’s path are blended
together for the final projected pixel color in the rendered image.

The high computational demands of volume rendering pose a
challenge but with the growing computing performance of graphics
processing units (GPUs) in recent years and optimized accelera-
tion techniques volume rendering with high interactive frame-rates
and high rendering resolutions became a reality. Even especially
demanding use cases as volume rendering in virtual reality are pos-
sible [7, 3, 11, 6, 19, 22, 17, 5, 8].

Two important acceleration techniques are early ray termination
and empty space skipping. Early ray termination stops the ray step-
ping iteration for a given pixel as soon as the aggregated opacity ex-
ceeds a certain threshold. Empty space skipping allows to step over
voxel positions along the ray that do not contribute to the output
pixel’s color. This is done by using an acceleration data structure
providing information about how much space can be skipped[4].

Our paper demonstrates an acceleration technique for a certain
part of distance map based empty space skipping as described by
Deakin and Knackstedt [1]. We show how the acceleration data
structure (the distance map) can be recomputed faster which is re-
quired in case the TF is altered. This is achieved by subdividing the
whole volume’s intensity range into partitions. We derive individ-
ual distance maps from the respective intensity partitions. Given
a newly changed TF, these partitioned distance maps can be effi-
ciently combined into an updated distance map.

2 RELATED WORK

Empty space skipping (ESS) methods can be classified into object-
order and image-order ESS methods [14]. Here, we focus on the
latter class.

Krüger and Westermann use an occupancy map encoding dis-
joint blocks of 83 voxels storing the blocks’ minimum and



maximum intensity values with non-zero transparency contribu-
tions [13]. This basically amounts encoding a single level of an
min/max octree, in contrast to standard min/max octree implemen-
tations [14, 21]. Alternatively, the acceleration structure can be an
octree of binary values encoding the occupancy of its nodes as em-
ployed by Levoy [16].

SparseLeap is a hybrid object- and image-order ESS method pro-
posed by Hadwiger et al. [10]. An occupancy histogram tree is used
to extract the dataset’s bounding geometry. Per-pixel linked lists of
skippable ray segments are created to efficiently skip empty space
when rendering the volume. A drawback is the requirement of re-
computing the histogram tree and the bounding geometry during
TF changes.

A different approach uses distance maps storing the smallest dis-
tance to the nearest non-transparent block of voxels or rectilinear
grids as proposed by Sramek and Kaufman [20].

Deakin and Knackstedt [1] generate a reduced occupancy map
and the corresponding Chebyshev distance map encoding the dis-
tance to the nearest non-transparent block of voxels utilizing GLSL
compute shaders on the GPU. In terms of rendering time, their vol-
ume renderer outperforms other approaches, e.g., depending on the
dataset used, they report runtimes on average twice as fast as octree-
based methods and SparseLeap. Recomputing the distance map on
a TF change is a limiting performance factor in their approach.

Faludi et al. [5] use an octree of nodes storing a bitfield, where
each bit inside the bitfield encodes the occupancy of an intensity
subrange. Similarly, a bitfield represenation of the currently se-
lected TF is derived. Testing if an octant only contains transparent
voxels according to the TF and thus may be skipped, can be deter-
mined with a binary operation between its bitfield and the bitfield
of the TF. Changing the TF just requires recomputing the TF bit-
field and does not affect performance noticeably. They report ray
marching times 35% slower than Deakin’s approach on average.

3 METHOD

We introduce an optimization technique for updating the distance
map in volume rendering using distance map based ESS. Our ap-
proach allows computing the distance map in less time than before
by utilizing precomputed individual distance maps encoding voxel
occupancies inside specific intensity subranges. The update step
is an aggregation step combining several of those distance maps to
produce the final distance map used for ESS. The TF dictates which
distance maps require merging.

3.1 Intensity-Partitioned Occupancy/Distance Maps
Our approach is inspired by the idea of subdividing the intensity
range similar to how it was done by Faludi et al. [5]. We also split
the intensity range into multiple subranges but instead of storing
the occupancy information in an octree of bitfields we store it in
individual distance maps for the different intensity partitions. The
total range of intensity values used in the volume dataset is subdi-
vided into n intensity partitions. The partitions can be uniformly
distributed over the whole intensity range, but this is not a neces-
sary requirement. For example, it can be beneficial to use a separate
partition for the minimum intensity value ρmin encountered inside
the volume and distribute the other intensity values to the remain-
ing partitions. A single partition p is defined by the lower and up-
per border of its intensity range denoted as integer indices ρ

p
min and

ρ
p
max.

We compute n block-reduced occupancy maps for the respective
subranges which we call partitioned occupany maps (POMs) from
now on. A block of voxels is considered occupied if it contains
at least one voxel with an intensity value from within the intensity
subrange

[
ρ

p
min,ρ

p
max

]
. Block-reduced means that the original vol-

ume dataset is subdivided into non-overlapping blocks of voxels of
size b3. We set b to 4 which was also used as block size by Deakin

and Knackstedt [1]. It is important to point out that the POMs do
only depend on the volume’s voxel intensity values and not on the
TF used for rendering.

Next, we compute n partitioned distance maps (PDMs) from the
n individual POMs. The PDMs encode the Chebyshev distance to
non-empty voxels in the respective intensity subrange.

Both the POMs as well as the PDMs are in block-reduced size
and their computation can be done in a preprocessing step (this re-
sembles a one-time initialization step which only needs to be done
once when a volume is initially loaded).

Whenever the TF is loaded or updated, merging the relevant
PDMs into a final single distance map D′ is done (the TF dictates
the map selection required for merging). D′ is the only entity di-
rectly used for ESS in the renderer. D′ is assembled in two steps:
Step 1: Determine all intensity partitions containing at least one
value getting mapped by the TF to a non-zero alpha value.
Step 2: Compute the element-wise minimum of the corresponding
PDMs. This resembles the combined distance map D′ in Equa-
tion 1.

D′(x,y,z) =
p∈S
min(PDMp(x,y,z)) (1)

S is the set of indices p of partitions determined in step 1, x,y,z are
the integer coordinates of a block.

See Figure 2 for a simplified 2D example of our technique. In
general, D′ may differ from the standard non-partitioned distance
map (D). This happens if different intensity values from the same
intensity partition get mapped to both zero and non-zero alpha val-
ues by the TF. The values of D′ are always an element-wise lower
limit of the values in D (e.g. D′ ≤ D). As a consequence ESS
run-time performance may be worse because less voxels will be
skipped. It can never happen that more voxels than allowed are
skipped making D′ a reasonable approximation and thus replace-
ment of D. Again, refer to Figure 2 and compare D′ to D when
applying TFA (D′ = D) and when applying TFB (D′ ≤ D). D′ is -
as already stated - the only component that needs to be recomputed
when a TF update occurs. Taking the element-wise minimum of
the distance values from the PDMs is computationally less expen-
sive than computing the actual distance transform algorithm which
makes our approach more efficient.

Figure 2: Our method demonstrated for a simplified 2D case (with-
out block-reducing): 1st row from left to right: input intensity map
I, occupancy and corresponding distance map (small squares con-
tain occupancy values) after applying TFA resp. TFB, D′ derived
from the PDMs (D′ = D′

TFA
= D′

TFB
in this example), 2nd row:

the POMs and PDMs using partitions with intensity ranges [0,1],
[2,3], [4,5], and [6,7]; TFs’ intensities to alpha mappings (�0 . . . non-
zero alpha): TFA(0, . . . ,7) =

{
0,0,�0,�0,0,0,�0,�0

}
, TFB(0, . . . ,7) ={

0,0,0,�0,0,0,�0,�0
}

and thus, S = {2,4} for both.



Table 1: Comparison of time required to compute the acceleration structure used for ESS of the original approach [1] compared to our
approach with different numbers of intensity partitions. For each dataset, we report timings for the different TFs used (TFs are those
from Figure 3).

dataset size computation type transfer
function

distance
map [1]

PDMs
(16 partitions)

PDMs
(32 partitions)

PDMs
(64 partitions)

PDMs
(128 partitions)

PDMs
(256 partitions)

manix 512 × 512 × 460

one-time initialization [ms] TF1-TF6 - 58.1 115.3 227.9 454.4 905.2

update time on TF change [ms]

TF1 3.50 0.20 0.27 0.42 0.69 1.30

TF2 2.55 0.20 0.26 0.44 0.70 1.27

TF3 4.31 0.18 0.19 0.28 0.44 0.69

TF4 4.03 0.17 0.22 0.28 0.41 0.71

TF5 3.85 0.20 0.26 0.38 0.58 0.98

TF6 3.66 0.18 0.20 0.26 0.44 0.71

stag beetle 832 × 832 × 494

one-time initialization [ms] TF1-TF6 - 146.4 299.9 608.7 1233.0 2491.8

update time on TF change [ms]

TF1 10.10 0.41 0.55 0.87 1.40 2.58

TF2 0.40 0.41 0.58 0.85 1.38 2.59

TF3 12.23 0.31 0.39 0.58 0.81 1.40

TF4 11.30 0.33 0.40 0.58 0.80 1.42

TF5 11.13 0.45 0.51 0.74 1.14 2.03

TF6 11.12 0.33 0.40 0.57 0.85 1.42

kingsnake 1024 × 1024 × 795

one-time initialization [ms] TF1-TF6 - 228.2 458.2 913.7 1825.9 3659.2

update time on TF change [ms]

TF1 9.63 0.80 1.25 1.97 3.58 6.71

TF2 7.28 0.80 1.25 1.99 3.56 6.70

TF3 21.40 0.63 0.77 1.23 1.94 3.58

TF4 14.59 0.63 0.76 1.23 1.94 3.59

TF5 15.28 0.79 1.08 1.68 2.86 5.39

TF6 9.76 0.66 0.79 1.26 2.09 3.60

3.2 Implementation

We implemented our method in a custom direct ray-casting vol-
ume rendering shader using OpenGL/GLSL with C++. Rendered
images from our renderer can be seen in Figure 1. The computa-
tion of the POMs and PDMs as well as computing D′ was imple-
mented with GLSL Compute Shaders. POMs and PDMs use an
uint8 data type for performance and memory consumption reasons,
distances higher than the maximum unsigned 8-bit integer value
are clamped. Combining the PDMs in the compute shader is done
in several passes, aggregating distances by binding only distance
maps as input textures that have a contribution to D′ according to
the TF. In every pass up to a maximum of 6 PDMs are bound and
combined (2 additional textures being used for flip-flopping input
(result from previous passes) and output texture). The number of
necessary passes depend on the number of PDMs that need to be
combined derived from the non-zero alpha mappings in the TF.

4 RESULTS

To demonstrate the benefits of our approach we conducted a series
of experiments to show the performance gain for the distance map
update on a TF change and the implications to the frame rendering
performance. A video showing volume rendering results with frame
rendering performance is provided as supplementary material.

4.1 Benchmark Configuration

For our performance tests, we use a Windows11 workstation
equipped with an Intel Core i7-13700KF CPU running at 3.4 GHz,
32 GB RAM and a NVIDIA RTX 4090 GPU. The timing measure-
ments for the computation times of the distance maps generation
and update depend on the size of the volume dataset, the TF used
and the intensity partition configuration chosen (we benchmarked
16, 32, 64, 128, and 256 partitions). The timing measurements
for frame rendering depend on the viewport size, the viewport cov-
erage by the volume, the TF used and the chosen rendering op-
tions/parameters (e.g., if early ray termination or ESS is used).

ρmin ρmax
0

1

(a) TF1 ρmin ρmax
0

1

(b) TF2

ρmin ρmax
0

1

(c) TF3 ρmin ρmax
0

1

(d) TF4

ρmin ρmax
0

1

(e) TF5 ρmin ρmax
0

1

(f) TF6

Figure 3: The different transfer functions used: TF1: all intensities
but ρmin are mapped to non-zero alpha values. TF2: all intensity
values are mapped to an alpha value greater than zero. TF3: inten-
sities in the right half are mapped to non-zero alpha values. TF4:
non-zero alpha values in 2nd and 4th quarter of intensity range. TF5:
used for rendering of kingsnake dataset in Figure 1. TF6: used for
rendering of stag beetle dataset in Figure 1.

Viewport size was chosen as 21602, we made the rendering of the
volume cover the vertical viewport extent, early ray termination (if
used) was set to terminate the ray at 0.98 of the maximum possible
alpha value. For the frame rendering benchmark, the camera was
rotated around the vertical axis going through the center of the vol-
ume datasets completing two full rotations over the time period of
10 seconds. With this setup, we tried to reproduce the setup chosen
by Faludi et al. [5].

4.2 Performance Evaluation
We use a few representative TFs for timing measurements in our ex-
periments (see Figure 3). The choice typically affects both the run-
time of computing D′ as well as the actual frame rendering times.
Computation time of D′ is affected because the number of maps to



be combined depends on the TF used. Frame rendering times are
affected because depending on the number and configuration of the
partitions, both intensity values that influence the rendering as well
as those that do not can fall into the same partition. If this hap-
pens this may degrade runtime performance since voxels of those
intensities will be handled as non-skippable. One occurrence of
this issue can be seen in Figure 5 for the setup with 32 uniform
partitions. The required number of partitions to prevent measurable
performance degradations depends on the volume and TF used.

In Table 1 we show the computation times for generating and
updating the PDMs for a set of partition numbers. We compare
the timings with the original distance map approach [1] which has
to recompute the occupancy and the distance map on a TF change
(we report the combined time). In our partitioned distance map ap-
proach we can precompute the POMs and PDMs. The more parti-
tions are used, the longer it takes to compute D′. On the other hand,
using fewer partitions may affect frame rendering performance neg-
atively (see thoughts in the beginning of this section and regarding
ESS run-time performance in subsection 3.1). Comparing the com-
putation time of the original distance map, we see an improvement
of up to factor 10 for 256 partitions and up to factor 30 for 16 parti-
tions. As one can see the TF used affects the actual timings. On the
stag beetle dataset using TF2 (which maps all intensity values to
non-transparent output values) our approach performs worse than
the original implementation by Deakin and Knackstedt [1]. This
is an edge case where the original occupancy map implementation
is able to immediately return when computing a block’s occupancy
state (since all blocks are occupied). In contrast to this, individ-
ual POMs may likely have unoccupied blocks depending on the
distribution of intensity values in the volume dataset (if all voxels
of a block contain intensities from outside the partition’s intensity
range). Computing the distance map is especially fast for this edge
case since the occupancy map is fully occupied and thus, the dis-
tance computation can be exited early.

In Figure 4 timings for different volume datasets rendered using
different TFs are shown. Rendering times in our PDM approach are
similar compared to the original distance map approach by Deakin
and Knackstedt [1]. For comparison, we also show the timings mea-
sured for their block ESS method. In Figure 5 timings for rendering
the stag beetle dataset using TF6 are compared for different ESS
methods. For our method we show timings when using different
numbers of intensity partitions, both with uniform partition of the
intensity space as well as using a special partition for ρmin. For
TF6, a different number of intensity partitions does not change ren-
dering times significantly with the exception of 32 partitions where
the uniform partitioning breaks down. The reason is that TF6 maps
different intensities from the 1st partition to zero (e.g. ρmin) and
non-zero alpha values resulting in non-skippable intensity values.
The stag beetle dataset contains a high number of voxels with in-
tensity ρmin which degrades ESS performance. With a sufficient
number of partitions, all intensities of the first partition are trans-
formed to the same class of mapped alpha values and no perfor-
mance breakdown occurs. A special partition for ρmin in the 32
partitions case can also prevent the performance degradation.

5 DISCUSSION

Our method allows for TF updates with low performance impact,
nevertheless update times are higher than in the method by Faludi
et al. [5] which does not require recomputing the acceleration struc-
ture. On the other hand, our method is faster in terms of rendering
performance as it extends the fastest currently known volume ren-
dering method (distance-map based ESS) allowing frequent TF up-
dates while maintaining higher frame rates and reducing latency.

Our approach requires additional GPU memory for storing the
PDMs. The total extra amount of memory required depends on the
block size b of the reduced volume and the number of partitions
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Figure 4: Frame rendering times for different datasets (viewport
size 21602) with different TFs and ESS variants. Stacked bars indi-
cate rendering time w/o early ray termination (darker/lighter). PDM
ESS setup: 64 uniform intensity partitions for TF2-TF6, for TF1:
special partition for intensity value ρmin and the other intensity val-
ues uniformly partitioned into the remaining 63 partitions.
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Figure 5: Rendering performance for ray marching on the stag bee-
tle dataset with TF6 from Figure 3f with viewport size 21602 with
early ray termination for different ESS variants. Additionally, oc-
cupancy/distance map update times are shown (these only apply if
the TF is updated).

n. Since the distance maps are textures of unsigned 8-bit integer
data type, the required memory amount in bytes is n× volumesize

b3

with volumesize being the number of voxels in the original volume
dataset. The POMs, which are needed to compute the PDMs, are
just an intermediate result. Each partition is computed indepen-
dently from each other, therefore only one additional texture for
computing the individual POMs is needed. For this purpose, one of
the flip-flopping textures required for computing D′ can be reused.

6 CONCLUSION

We improved distance map based ESS in volume rendering to better
support frequent TF updates. Our method is valuable when volume
rendering performance is the highest priority but also frequent TF
updates need to be done. Nevertheless changing the TF will impact
performance more than in the method by Faludi et al. [5]. Draw-
backs of our approach are additional initialization time for creating
the PDMs as well as extra GPU memory needed which does affect
the maximum possible volume size for in-core volume rendering.
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