
Intuitive Design of Deep Learning Models through Visual Feedback
JunYoung Choi*

VIENCE Inc.
Korea University

Sohee Park†

VIENCE Inc.
GaYeon Koh‡

Korea University
Youngseo Kim§

VIENCE Inc.
Won-Ki Jeong¶

VIENCE Inc.
Korea University

Figure 1: Proofreading structural issues in a deep learning model (U-Net [17]) can be effectively done using a proposed visual
feedback-based no-code approach (a) compared to the conventional code-based method (b). Developers can identify and correct
errors in the up pooling layer by comparing the spatial dimension (height of the node) of the layer outputs in the initially constructed
deep learning model (c). Errors in layer placement can be identified and corrected through the color of the nodes (consecutive
colors are assigned if there is a recommended layer placement order). Incorrect forward connections can be corrected through the
representation of expected structural errors (e.g., a flashing red when different spatial dimension tensors are combined) (d). This
iterative process of correction makes it easy to build a model that reflects the developer’s intent (e).

ABSTRACT

In the rapidly evolving field of deep learning, traditional method-
ologies for designing models predominantly rely on code-based
frameworks. While these approaches provide flexibility, they cre-
ate a significant barrier to entry for non-experts and obscure the im-
mediate impact of architectural decisions on model performance.
In response to this challenge, recent no-code approaches have
been developed with the aim of enabling easy model development
through graphical interfaces. However, both traditional and no-
code methodologies share a common limitation that the inability
to predict model outcomes or identify issues without executing the
model. To address this limitation, we introduce an intuitive visual
feedback-based no-code approach to visualize and analyze deep
learning models during the design phase. This approach utilizes
dataflow-based visual programming with dynamic visual encoding
of model architecture. A user study was conducted with deep learn-
ing developers to demonstrate the effectiveness of our approach in
enhancing the model design process, improving model understand-
ing, and facilitating a more intuitive development experience. The
findings of this study suggest that real-time architectural visualiza-
tion significantly contributes to more efficient model development
and a deeper understanding of model behaviors.

*e-mail: jychoi@vience.co.kr
†e-mail: wings159@vience.co.kr
‡e-mail: hellenkoh@gmail.com
§e-mail: k0seo0330@vience.co.kr
¶e-mail: wkjeong@vience.co.kr

Index Terms: Deep learning, visual programming, explainable AI.

1 INTRODUCTION

Deep learning represents one of the most innovative developments
in recent times, having achieved breakthroughs in a variety of ap-
plications including image recognition, natural language process-
ing, and medical diagnosis [4]. The foundation of these achieve-
ments is the design and training process of complex and diverse
neural network models. Traditionally, these models have been de-
veloped using code-based frameworks [14, 13], which provide a
high degree of flexibility and control to expert developers. How-
ever, this approach demands considerable effort because it involves
understanding deep learning concepts and learning programming
languages such as Python. As a result, most end-users, who typi-
cally lack expertise in these areas, find it challenging to build and
utilize deep learning models due to these obstacles.

Recently, no-code approaches [9, 2, 21] have emerged in an
effort to make deep learning model development accessible to a
broader user base. This approach allows models to be constructed
easily through a graphical interface, allowing even users with lim-
ited programming skills to develop complex deep learning mod-
els. This promotes the generalization of deep learning technology
and paves the way for developers from diverse backgrounds to con-
tribute to the field.

Although deep learning programming has become easier with
the efforts, additional steps are still necessary to validate whether a
deep learning model is designed as intended, such as executing the
model at the code level. For example, structural errors such as inef-
ficient placement of layers in the designed deep learning model, or
incorrect input and output shapes, can only be discovered through
the tedious and annoying debugging process of executing and ana-



lyzing the model. What if it were possible to check whether every-
thing is going as intended during the model design phase?

To address this issue, we propose a visual feedback-based no-
code approach that enables developers to intuitively understand and
analyze the structure of the model by visualizing its architecture in
real time throughout the model development process. The proposed
method is based on a dataflow-based visual programming approach.
The method includes the dynamic changing visual encoding of each
node in the dataflow, the aligning of these nodes, and the representa-
tion of predicted structural errors. A user study was conducted with
deep learning developers to demonstrate that the real-time architec-
ture visualization enables the model design process more efficient,
improves model understanding, and provides a more intuitive de-
velopment experience. The results contribute to the advancement
of deep learning technology by enabling developers to better pre-
dict model performance and behavior, thus allowing for the devel-
opment of more effective models.

We have also developed a graphical user interface (GUI) ap-
plying proposed method through a web platform1, enabling re-
searchers to try it out in practice.

2 RELATED WORK

2.1 Conventional deep learning development

In recent years, the field of artificial intelligence models has con-
tinued to expand, and the deep learning technology has been devel-
oped [23, 22, 18]. With the rapid development of the deep learn-
ing field, conventional deep learning model design methodologies
are mainly based on code-based frameworks [16] utilizing libraries
such as TensorFlow [1, 14] and PyTorch [13]. Although these tools
offer developers flexibility and ease of use, enabling them to tackle
complex architectures, they still require familiarity with the pro-
gramming language underlying the code, such as Python, and ex-
pertise in deep learning.

2.2 No-code deep learning development

Recently, there has been several researches on the construction of
deep learning models in a no-code manner, utilizing GUIs to fa-
cilitate high accessibility. Tamilselvam et al. [21] proposed a vi-
sual programming method, enabling users to construct deep learn-
ing models by connecting layers and convert them to code through
simple interactions. Calo et al. [2] have developed visual program-
ming method with simple visualizations of data passing through
the layers and visualizations of training metrics to analyze the
model. However, these methods are not easy to analyze and val-
idate the model during the deep learning programming phase, such
as whether the actual model was built as intended and whether
there were any structural issues [3]. Several studies have also dis-
cussed the importance of this no-code approach to deep learning
programming. In particular, Esposito et al. [3] have highlighted
the importance of developing methods or platforms that allow real
end-users, rather than deep learning experts, to develop the models
themselves. Furthermore, Li et al. [9] discussed that these methods
should not only facilitate rapid and iterative prototyping, but also
provide proper feedback. While no-code deep learning methods are
being developed and their importance is being studied, research on
visualization methods for understanding and providing appropriate
feedback to validate the built models is just beginning.

3 METHODS

In this section, we introduce a visual feedback-based no-code ap-
proach for building deep learning models that provides appropriate
feedback during the model design phase.

1https://vience.io/vience-canvas/mlops/sample

Figure 2: The visual encoding elements of each node in visual pro-
gramming. Each node is visualized using information from a corre-
sponding layer and information from its output tensor. The visualiza-
tion of the node is modified in real time as the developer modifies the
parameters of the layer or modifies the connections between nodes.

Figure 3: Node alignment methods that utilize forward connection
and layer information. Depending on the type of the model, develop-
ers can build a model using the Simple alignment method (a), which
considers the topological order of the forward connections and places
them in a horizontal line, or the U-Net shape alignment method (b),
which additionally adjusts the vertical height of the nodes through the
spatial dimension of the corresponding layer’s output tensor.

Note that the scope of this work is limited to the case where the
input data has a spatial dimension (e.g., an image) to better demon-
strate the effectiveness of visual feedback.

3.1 Model construction with visual feedback
To support the prediction of outcomes during the design phase of a
deep learning model, we utilize a dataflow-based visual program-
ming approach that connects nodes (corresponding to each layer
of a deep learning model) to create a graph [21]. We propose a
dynamic visual encoding method that interactively visualizes each
node through the corresponding layer’s information, such as output
tensor shape, layer type, and layer parameters.

Deep learning model flow: We named the deep learning model
created by connecting each node through visual programming
method as model flow. Each node corresponds to a layer of the
model, such as fully-connected layer, convolution layer, activation
layer, etc., and the connection between nodes corresponds to the
forward connection of the model. The model flow starts from the
dataset node (the starting point of the forward connection) and ends
at the trainer node (the final output of the forward connection).
At each node, developers can set layer parameters, such as kernel,
stride, padding size, etc., according to the corresponding layer type.

Node visual encoding: Each node in the model flow has its vi-

https://vience.io/vience-canvas/mlops/sample


Figure 4: Error cases that can be detected through visual feedback in models from the no-code method. The connections between nodes and
the node alignment method can be used to find incorrectly connected forword connections (a), and tensors with different spatial dimensions
connected to a concatenation node will blink red to indicate possible errors (b). Furthermore, if there is a recommended layer placement order,
the nodes are displayed in a continuous color (c) to help developers find out where the layer placement order is incorrect (d).

sual encoding change in real time according to the information in
the corresponding layer (Fig. 2). The visual encoding method is uti-
lized from the two-dimensional visualization method used in many
existing deep learning papers [17, 6]. The horizontal width of a
node is proportional to the number of channels (or features) in the
layer output tensor, and the vertical height is proportional to the
spatial dimension of the layer output tensor.

Node alignment: The nodes are aligned from left to right ac-
cording to the order of their forwarding connection. In the event
of concatenation, such as skip connections, they are placed in topo-
logical order. Node alignment in the vertical direction can be ac-
complished through the use of a simple alignment method (Fig. 3a)
that positions nodes according to model characteristics (e.g., in the
form of a model figure of a convolutional neural network (CNN)
model [10]) or a U-Net shape alignment method (Fig. 3b) that
aligns nodes according to their spatial dimension (e.g., in the form
of a model figure of an encoder-decoder model [17]). In the U-Net
shape alignment method, nodes with the same spatial dimension
outputs are aligned in the same row.

Structural error representation: The above node alignment
methods allow developers to compare the output sizes of layers
in the same row, or to visually detect and correct errors in setting
layer-specific parameters (Fig. 4). Furthermore, if there is a cor-
rect sequence for the layers of a deep learning model (e.g., the or-
der of convolution, normalization, and activation layers proposed in
Ioffe et al.’s study [7]), the color brightness is changed step by step
according to the recommended sequence (Fig. 4b), thereby enabling
developers to visually verify the proper positioning of the layers
(Fig. 4c). In the event that structural issues are expected, such as the
concatenation of tensors with different spatial dimensions through
concatenation nodes, a visual warning (Fig. 4d) is displayed to de-
tect and correct structural errors during the deep learning model
design phase.

3.2 Implementation

The proposed method operates through a web-based GUI, and the
process of generating deep learning code and training from the cre-
ated model flow is performed on the server side by connecting to
the server through a RESTful API.

To build the web-based GUI, we used the TypeScript-based Re-
act [26] and the visual programming library Rete.js [19]. For the
RESTful API, we used FastAPI [15] in Python environment. The
deep learning code converted from the model flow is based on the
PyTorch library [13].

4 EVALUATIONS

A user study was conducted with five deep learning developers (P1-
5) to investigate the potential of visual feedback in the process of
building deep learning models. The participants had at least one
year of experience in the field of deep learning development, pri-
marily using Visual Studio Code [11] and PyTorch [13]-based de-
velopment. During the pre-interviews, they identified a number of
challenges associated with the conventional approach to working,
including the necessity of possessing a certain level of expertise to
implement a desired idea and the need to modify others’ code due to
incompatibilities in format. One participant (P5) also discussed the
difficulty of understanding the model structure. He also mentioned
that he has been using tools such as TorchViz [25] and TensorFlow
Graph Visualizer [24] to visualize the model structure, but they are
limited in their ability to provide comprehensive insights (e.g., only
show layer information).

4.1 Task and procedure
The study involved three tasks: error detection (T1), structural dif-
ference identification (T2), and performance improvement (T3).
Each task was executed using three different methods for building
deep learning models: the conventional method (code-based pro-
gramming, M1), the basic visual programming-based method with-
out visual feedback [21] (M2), and the visual programming-based
method with visual feedback (our approach, M3). We used the Py-
Torch library in the Visual Studio Code environment for M1.

The experiment included a pre-interview, task executions, and
a post-interview. Participants performed the tasks sequentially (T1
→ T2 → T3) with varying method orders (P1-2: M1 → M2 → M3,
P3-5: M3 → M2 → M1). In addition, dummy tasks were included
to minimize the influence of previous tasks. The post-interview
measured System Usability Scale (SUS) scores [8] of the proposed
method and gathered feedback on the participants’ experiences.

T1: Error detection Participants identified structural errors in
two given deep learning models using each method. Each given
model contained two errors about the placement of layers (Fig. 4b,
c) and two errors about forward connections (Fig. 4a, d). The pur-
pose of this task was to determine how quickly and accurately each
method could find errors in deep learning models. Each time par-
ticipants found an error, they described the error to an interviewer,
who recorded the time and accuracy of the error detection.

T2: Structural difference identification Participants identified
differences between illustrations of two popular deep learning mod-
els (VGG16 [10] and U-Net [17]) and the given models. The given
models had missing layers, different parameter values (output chan-
nels, padding, etc.), or different layer orders. The first given model



Figure 5: Results for T1 and T2. The plot presents the time taken to
identify each structural error or each structural difference. The table
presents the percentage of correctly identified errors or differences
among the total number of structural errors or total structural differ-
ences (accuracy).

Figure 6: Results for T3. The plot presents the highest performance
(IoU) improvement observed with each method during T3.

(VGG16) had a total of three differences, and the second given
model (U-Net) had a total of six differences. The experiment as-
sessed how quickly participants could understand and analyze the
architecture of the models. The time and accuracy of each identifi-
cation were recorded.

T3: Performance improvement Participants optimized an ini-
tial model’s performance within 10 minutes. The initial model was
a simplified version of the U-Net model for binary segmentation,
and its performance was evaluated based on the Intersection over
Union (IoU) metric at 20 epochs. For M1, model training was
conducted on an Ubuntu server equipped with an Intel(R) Xeon(R)
Gold 6326 CPU and a NVIDIA RTX A6000 GPU. M2 and M3
also utilized the same server via RESTful API for the training pro-
cess. The training dataset utilized in the experiments consisted of
a sampling of 213 images (training: 191, validation: 22) from the
Lizard dataset [5]. For M1, the participants were provided with all
the fundamental code required to train and validate an initial deep
learning model, including PyTorch model code, training code, etc.
The purpose of this task was to study the efficacy of each method
in providing insight into the model and improving its performance
in a relatively short period of time. The interviewer observed the
participants’ behavior while they performed the task.

4.2 Results
Fig. 5 depicts the results for T1 and T2. In T1, the accuracy (ratio
of the number of identified errors) was 80% for M1, 75% for M2,
and 80% for M3. The mean time to identify each error was 102
seconds (±17) for M1, 103 seconds (±17) for M2, and 44 seconds
(±6) for M3. In T2, the accuracy (ratio of the number of identified
differences) was 67% for M1, 58% for M2, and 78% for M3. The
mean time to identify each structural difference was 72 seconds
(±12) for M1, 67 seconds (±14) for M2, and 55 seconds (±10) for
M3. Consequently, the proposed method achieved a significantly
shorter average time in T1 compared to other methods (adjusted
p-values are 0.016 and 0.014 for M1 and M2, respectively, from
a multiple comparison test by Tukey’s HSD [12]). Furthermore,
the proposed method achieved a significantly higher accuracy than
other methods in T2. These results indicate that visual feedback
can facilitate the validation of deep learning models.

Fig. 6 shows the performance (IoU) improvement of the deep
learning model with each method in T3. The performance of a
given initial deep learning model was 0.40, and the average perfor-
mance improvement with each method was 0.51 (±0.02) for M1,
0.52 (±0.02) for M2, and 0.58 (±0.01) for M3. A notable result
here is that P1 was able to improve the model performance much
faster with M3, as it took 5.83 minutes with M2 and 3.83 min-
utes with M3, although the model performance obtained with M2
and M3 are not significantly different (0.54 and 0.55, respectively).
Furthermore, it was observed that P2-5 encountered difficulties in
improving model performance due to structural errors when adding
multiple layers to the model with M1 and M2. In contrast, with
M3, it was observed that errors were easily corrected even when
they occurred. For example, P5 encountered a structural error while
connecting multiple layer nodes to the model through M2 and was
unable to fix the error within the 10-minute time limit. However,
after moving the model to the M3, the structural error was found
and fixed within 12 seconds.

The average SUS score of our proposed method is 83 (±2.3),
which indicates excellent usability.

4.3 Feedback
Participants noted that the proposed method’s ability to automati-
cally align multiple layers significantly facilitated the rapid identi-
fication of problematic points during model debugging. They also
highlighted the intuitive and easy-to-use UI that can be used imme-
diately without any separate training as a major advantage.

However, some participants noted that the implementation is still
limited to basic layer types, which are insufficient for developing
complex modern models. Additionally, while the dynamic visual-
ization of nodes plays a significant role in understanding the model,
as the model complexity increases and the number of nodes grows,
controlling the model becomes more challenging.

5 CONCLUSION

We proposed a visual programming approach enhanced by visual
feedback for the development of deep learning models. Our user
study demonstrated that the interpretation of deep learning mod-
els becomes faster and more accurate with the proper visual feed-
back. Although the advancement of no-code techniques is broad-
ening the accessibility of deep learning, the importance of proper
visualization for understanding these models is often overlooked.
Our findings emphasize that the development of appropriate visual
feedback is as crucial as the development of no-code deep learning
techniques.

In the future, we plan to apply the proposed method to develop a
visualization-based MLOps [20] framework that can design, train,
validate, and deploy deep learning models with visual feedback.
We will also study visualization methods for model abstraction to
enable easy manipulation of complex models through GUI.



ACKNOWLEDGMENTS

This work was supported by the Startup growth technology devel-
opment program (RS-2023-00257786) funded by the Ministry of
SMEs and Startups (MSS, Korea), ICT Creative Consilience Pro-
gram (RS-2020-II201819) through the Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT), and Basic Science Re-
search Program (NRF-2021R1A6A1A13044830) through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry
of Education.

REFERENCES

[1] M. Abadi. Tensorflow: learning functions at scale. In Proceedings of
the 21st ACM SIGPLAN international conference on functional pro-
gramming, pp. 1–1, 2016. 2

[2] T. Calò and L. De Russis. Towards a visual programming tool to create
deep learning models. In Companion Proceedings of the 2023 ACM
SIGCHI Symposium on Engineering Interactive Computing Systems,
pp. 38–44, 2023. 1, 2

[3] A. Esposito, M. Calvano, A. Curci, G. Desolda, R. Lanzilotti,
C. Lorusso, and A. Piccinno. End-user development for artificial in-
telligence: A systematic literature review. In International Symposium
on End User Development, pp. 19–34. Springer, 2023. 2

[4] M. Gheisari, F. Ebrahimzadeh, M. Rahimi, M. Moazzamigodarzi,
Y. Liu, P. K. Dutta Pramanik, M. A. Heravi, A. Mehbodniya,
M. Ghaderzadeh, M. R. Feylizadeh, et al. Deep learning: Applica-
tions, architectures, models, tools, and frameworks: A comprehensive
survey. CAAI Transactions on Intelligence Technology, 8(3):581–606,
2023. 1

[5] S. Graham, M. Jahanifar, A. Azam, M. Nimir, Y.-W. Tsang, K. Dodd,
E. Hero, H. Sahota, A. Tank, K. Benes, et al. Lizard: a large-scale
dataset for colonic nuclear instance segmentation and classification. In
Proceedings of the IEEE/CVF international conference on computer
vision, pp. 684–693, 2021. 4

[6] B. He, X. Yang, H. Wang, Z. Wu, H. Chen, S. Huang, Y. Ren, S.-
N. Lim, and A. Shrivastava. Towards scalable neural representation
for diverse videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6132–6142, 2023. 3

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In International
conference on machine learning, pp. 448–456. pmlr, 2015. 3

[8] J. R. Lewis. The system usability scale: past, present, and future. In-
ternational Journal of Human–Computer Interaction, 34(7):577–590,
2018. 3

[9] L. Li and Z. Wu. How can no/low code platforms help end-users de-
velop ml applications?-a systematic review. In International Confer-
ence on Human-Computer Interaction, pp. 338–356. Springer, 2022.
1, 2

[10] S. Mascarenhas and M. Agarwal. A comparison between vgg16,
vgg19 and resnet50 architecture frameworks for image classification.
In 2021 International conference on disruptive technologies for multi-
disciplinary research and applications (CENTCON), vol. 1, pp. 96–
99. IEEE, 2021. 3

[11] Microsoft Corporation. Visual Studio Code. https://code.

visualstudio.com/. 3
[12] A. Nanda, B. B. Mohapatra, A. P. K. Mahapatra, A. P. K. Mahapatra,

and A. P. K. Mahapatra. Multiple comparison test by tukey’s honestly
significant difference (hsd): Do the confident level control type i error.
International Journal of Statistics and Applied Mathematics, 6(1):59–
65, 2021. 4

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in
neural information processing systems, 32, 2019. 1, 2, 3

[14] S. Pattanayak. Pro deep learning with TensorFlow 2.0: A mathemat-
ical approach to advanced artificial intelligence in Python. Springer,
2023. 1, 2

[15] S. Ramı́rez. FastAPI. https://fastapi.tiangolo.com/. 3

[16] S. Raschka, Y. H. Liu, V. Mirjalili, and D. Dzhulgakov. Machine
Learning with PyTorch and Scikit-Learn: Develop machine learning
and deep learning models with Python. Packt Publishing Ltd, 2022. 2

[17] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional net-
works for biomedical image segmentation. In Medical image comput-
ing and computer-assisted intervention–MICCAI 2015: 18th interna-
tional conference, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, pp. 234–241. Springer, 2015. 1, 3

[18] F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed. A compre-
hensive overview and comparative analysis on deep learning models:
Cnn, rnn, lstm, gru. arXiv preprint arXiv:2305.17473, 2023. 2

[19] V. Stoliarov. Rete.js. The JavaScript framework for visual program-
ming. https://rete.js.org/. 3

[20] G. Symeonidis, E. Nerantzis, A. Kazakis, and G. A. Papakostas.
Mlops-definitions, tools and challenges. In 2022 IEEE 12th Annual
Computing and Communication Workshop and Conference (CCWC),
pp. 0453–0460. IEEE, 2022. 4

[21] S. G. Tamilselvam, N. Panwar, S. Khare, R. Aralikatte, A. Sankaran,
and S. Mani. A visual programming paradigm for abstract deep learn-
ing model development. In Proceedings of the 10th Indian Conference
on Human-Computer Interaction, pp. 1–11, 2019. 1, 2, 3

[22] R. Thirunavukarasu, R. Gnanasambandan, M. Gopikrishnan,
V. Palanisamy, et al. Towards computational solutions for precision
medicine based big data healthcare system using deep learning mod-
els: A review. Computers in Biology and Medicine, 149:106020,
2022. 2

[23] M. Tsuneki. Deep learning models in medical image analysis. Journal
of Oral Biosciences, 64(3):312–320, 2022. 2

[24] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane,
D. Fritz, D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing
dataflow graphs of deep learning models in tensorflow. IEEE transac-
tions on visualization and computer graphics, 24(1):1–12, 2017. 3

[25] S. Zagoruyko. Pytorchviz: A small package to create visualizations
of pytorch execution graphs and traces, 2018. 3

[26] F. Zammetti. Modern Full-Stack Development: Using TypeScript, Re-
act, Node. js, Webpack, and Docker. Springer, 2020. 3

https://code.visualstudio.com/
https://code.visualstudio.com/
https://fastapi.tiangolo.com/
https://rete.js.org/

	Introduction
	Related Work
	Conventional deep learning development
	No-code deep learning development

	Methods
	Model construction with visual feedback
	Implementation

	Evaluations
	Task and procedure
	Results
	Feedback

	Conclusion

