
Towards Enhancing Low Vision Usability of Data Charts 
on Smartphones 

Yash Prakash , Pathan Aseef Khan , Akshay Kolgar Nayak , Sampath Jayarathna , 
Hae-Na Lee , and Vikas Ashok 

Fig. 1: Use scenario for GraphLite: (a) selecting themes, (b) making data choices, and (c) personalizing data appearance. 

Abstract—The importance of data charts is self-evident, given their ability to express complex data in a simple format that facilitates 
quick and easy comparisons, analysis, and consumption. However, the inherent visual nature of the charts creates barriers for 
people with visual impairments to reap the associated benefts to the same extent as their sighted peers. While extant research has 
predominantly focused on understanding and addressing these barriers for blind screen reader users, the needs of low-vision screen 
magnifer users have been largely overlooked. In an interview study, almost all low-vision participants stated that it was challenging 
to interact with data charts on small screen devices such as smartphones and tablets, even though they could technically “see” the 
chart content. They ascribed these challenges mainly to the magnifcation-induced loss of visual context that connected data points 
with each other and also with chart annotations, e.g., axis values. In this paper, we present a method that addresses this problem by 
automatically transforming charts that are typically non-interactive images into personalizable interactive charts which allow selective 
viewing of desired data points and preserve visual context as much as possible under screen enlargement. We evaluated our method 
in a usability study with 26 low-vision participants, who all performed a set of representative chart-related tasks under different study 
conditions. In the study, we observed that our method signifcantly improved the usability of charts over both the status quo screen 
magnifer and a state-of-the-art space compaction-based solution. 

Index Terms—Low vision, Graph usability, Screen magnifer, Graph perception, Accessibility 

1 INTRODUCTION analysis, and consumption [30]. Popular data charts such as bar and 
line graphs are used for visualizing stock values, census, product sales, Data charts have become commonplace online and in academic and 
customer ratings, currency exchange rates, and hospitalization rates. professional settings, given their ability to condense and express com-
Given the widespread use of data charts, they must be usable for people plex data in a format that facilitates quick and easy comparisons, trend 
of all abilities, including those with visual impairments. However, data 
charts are inherently visual; therefore, there is a need to adapt the charts 

• Yash Prakash, Pathan Aseef Khan, Akshay Kolgar Nayak, Sampath to make them usable for people with visual disabilities who rely on 
Jayarathna,and Vikas Ashok are with Old Dominion University. E-mail: assistive technologies such as screen readers (e.g., JAWS, NVDA) or 
yprak001, pkhan002, anaya001@odu.edu and screen magnifers (e.g., ZoomText, Apple Zoom). 
sampath,vganjigu@cs.odu.edu While there exist a few works that have studied chart accessibility as 

• Hae-Na Lee is with Michigan State University. E-mail: leehaena@msu.edu. well as proposed solutions to address the chart usability problems for 
Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication blind screen reader users [42, 53, 68, 81], the visualization needs of low 

xx xxx. 201x; date of current version xx xxx. 201x. For information on vision screen magnifer users concerning charts are still an uncharted 
obtaining reprints of this article, please send e-mail to: reprints@ieee.org. research territory. Low vision refers to impairments in one or both 
Digital Object Identifer: xx.xxxx/TVCG.201x.xxxxxxx eyes that cannot be rectifed with glasses, contact lenses, medication, or 

surgery. A salient aspect of low vision condition is poor visual acuity 

https://orcid.org/0000-0001-8593-327X
https://orcid.org/0009-0000-1186-6780
https://orcid.org/0009-0000-9992-9706
https://orcid.org/0000-0002-4879-7309
https://orcid.org/0000-0002-2183-1722
https://orcid.org/0000-0002-4772-1265
mailto:reprints@ieee.org
mailto:leehaena@msu.edu
mailto:sampath,vganjigu@cs.odu.edu
mailto:anaya001@odu.edu


(less than 20/70), so people with low vision typically depend on a screen 
magnifer to access content via enlargement [16, 62]. However, content 
enlargement comes with a price – low vision users can only view a 
small portion of the chart content at any instant, as screen size is limited, 
especially on smartphones. Low vision users have to, therefore, move 
their magnifer lens over the content to view the occluded portions, 
an activity referred to in the literature as panning. Thus, interaction 
with enlarged charts or graphs can be discomforting for low vision 
users on smartphones even though they can technically “see” the charts 
since they often have to pan to-and-fro between different portions of 
the enlarged charts to make data comparisons and comprehend overall 
trends in data (e.g., see Figure 2). 

To uncover and understand the chart usability issues of low-vision 
smartphone users, we conducted an interview study with 14 low-vision 
participants with different eye conditions. Despite the heterogeneity 
of the participant pool, all participants stated that it was arduous and 
tedious to interact with charts on smartphones, mainly due to two 
reasons. First, the participants mentioned that they could not easily 
associate axis labels with data points (e.g., ‘y’ coordinate value of a bar 
in a bar chart). Second, the participants specifed that it was mentally 
taxing to compare data points, especially if these points were distant 
from each other in the chart. A common aspect in both these reasons 
specifed by the participants was that they could not see the desired 
information simultaneously (e.g., axis labels and a bar in a bar graph, 
desired subset of data points in a bar graph). Therefore, they had to 
memorize individual pieces of information as they moved the magnifer 
lens to and fro over different portions of a chart. 

To address these chart usability issues on smartphones, we present 
GraphLite, a mobile assistive technology that enables low-vision users 
to customize charts and seamlessly navigate through different ‘views’ 
of the chart, showcasing select data points within the magnifer window. 
In essence, GraphLite allows screen-magnifer users to use selective 
attention to visualize various relevant information in charts, e.g., selec-
tively view desired data points for quick comparison and trend analysis 
across various portions of bar and line charts (see Figure 1), thereby 
enabling users to perform quick-and-easy visual comparison between 
desired data points mentally, and consequently reducing the signifcant 
amount of panning and cognitive effort. Moreover, GraphLite employs 
space compaction methods to further improve interaction usability by 
decreasing horizontal panning and providing a simple one-fnger tap 
gesture-based interface to reduce the dependency on the default two or 
three-fnger zoom-and-pan gestures. 

In a user study with 26 low vision participants, we observed that 
GraphLite reduced the time to perform representative chart tasks com-
pared to the baseline methods – default screen magnifer and a state-
of-the-art method that converted charts to tables [13]. The subjective 
feedback for GraphLite was also signifcantly more positive than the 
baselines. All study participants stated that GraphLite signifcantly re-
duced their mental burden while interacting with data charts by enabling 
them to view desired content within the viewport despite magnifcation. 

In sum, our contributions are: (i) The fndings of an interview study 
uncovering the interaction challenges that low-vision users face while 
interacting with data charts using screen magnifers; (ii) An assistive 
technology application that provides an alternative interactive mode 
for charts, enabling users to customize chart data and selectively view 
desired data points next to each other; and (iii) The fndings of a 
user study with 26 low-vision participants evaluating the effcacy of 
GraphLite against state-of-the-art solutions. 

2 RELATED WORK 

2.1 Low Vision Interaction with Smartphones 

Extant research concerning smartphone interaction needs and behavior 
of people with visual disabilities has predominantly focused on screen 
reader users [32, 38]. In contrast, prior research on the needs of low 
vision screen magnifer users is still in its infancy [15, 73]. Szpiro 
et al. [73] conducted a study to understand the interaction behavior 
of low-vision screen-magnifer users on touch devices such as smart-
phones. Their study uncovered multiple accessibility and usability 
challenges: (i) Many participants struggled to pan back and forth after 

Fig. 2: Low-vision chart interaction using screen magnifer. 

content enlargement; (ii) The participants had to remember and make 
use of different multiple-fnger gestures to use the screen magnifer 
accessibility features; and (iii) Uniform content enlargement aspect 
of screen magnifers made it challenging to navigate and understand 
the application content. While this research sheds light on general ob-
stacles faced by low-vision users on smartphones, the extent to which 
these issues impact low-vision users’ experience with charts remains 
unknown, which will be covered in our interview study (Section 3). 

Preliminary works exist that propose solutions to improve usability 
for low vision screen magnifer users [47,57]. Almost all of these works 
have based their solution ideas on the concept of context preservation 
after content enlargement, using some form of space compaction [7,31]. 

While the research mentioned above primarily focused on generic 
aspects of low-vision interaction with smartphones and desktops, they 
did not directly address the unique low-vision needs associated with 
visualizations such as data charts. However, the main ideas, such 
as space compaction and context-preservation, are still helpful, and 
therefore, we adopted these ideas while designing GraphLite. 

2.2 Accessibility and Usability of Data Charts 

A few research studies have focused on improving the user experi-
ence of blind people while interacting with data charts. These so-
lutions include automatic generation of textual alternatives [34, 37], 
sonifcation-based interfaces [2, 29], alternative tactile and multi-modal 
interfaces [20, 21], question and answer systems [36, 54], and tabular 
representations of charts [13, 24]. 

These solutions for improving interaction with data charts primar-
ily target blind screen-reader users. While low-vision users can also 
use these solutions, they are not specifcally tailored for low-vision 
interaction. Moreover, graphical visual decoding-based issues faced by 
low-vision users have yet to be thoroughly explored, and there is no 
present solution inherently designed for low-vision users. We address 
this gap in this paper by introducing a novel system GraphLite that 
strives to improve the usability of charts specifcally for low-vision 
screen-magnifer users. 

2.3 Data Extraction from Charts 

Chart reverse-engineering refers to the process of analyzing and decon-
structing a visual chart or graph to understand its underlying data, 
structure, and the methods used to create it [59]. Plenty of rule-
based [23, 35, 59, 66], automated tool-based [12, 35, 55, 56], and deep 
learning-based [13, 48, 52] extraction techniques currently exist to ex-
tract all necessary information from charts. 

While the tool-based approaches are effective for data extraction, 
the need for user engagement in automated tools can cause cognitive 
overload for low-vision users due to the excessive screen magnifer 
interaction with the user interface. On the other hand, rule-based al-
gorithms are not scalable for real-world scenarios and have longer 
processing times. Therefore, for GraphLite, we chose an extraction al-
gorithm using deep learning. Specifcally, we employed the ChartOCR 
method [52], a deep hybrid framework that combines the strengths of 
deep learning and rule-based methods for data extraction. ChartOCR 
has demonstrated state-of-the-art performance on bar, line, and pie 
charts within the custom benchmark dataset ExcelChart400K. This per-
formance surpasses classical rule-based models such as Revision [66], 



and other deep learning-based models such as Vis [13], ResNet+Faster-
RCNN [13, 48], ResNet+Rotation RNN [48], and even commercial 
products such as Think Cell [75]. Note that GraphLite is not tied to 
ChartOCR per se; any chart data extraction technique can be used in 
place of ChartOCR. 

2.4 Responsive Visualizations 

Responsive visualization design involves creating multiple versions 
of data visualization in order to accommodate different screen sizes 
and device types [28, 39]. A plethora of prior research works have ex-
plored various ways in which visualizations can be adapted for ‘smaller 
screens’, primarily focusing on visual elements and structure [18,41,77], 
as well as interaction methods [40, 43, 70]. 

Hoffswell et al. [28] proposed a system that provides immediate 
cross-device previews, enabling designers to see the impact of their 
edits across multiple devices in real-time, and supports the propagation 
of successful edits to other views, ensuring a cohesive user experience. 

While this approach provides chart designers with hands-on experi-
ence in designing multiple responsive versions, it can be tedious and 
often requires multiple design iterations. To mitigate these challenges, 
automated tools such as MobileVisFixer by Wu et al. [77] have been 
proposed. MobileVisFixer utilizes a Markov Decision Process model 
to automatically redesign SVG-based visualizations, improving their 
readability and usability on smaller screens. 

While the ability to automate certain edits, like repositioning leg-
ends, may be widely useful, authors may still need to manually edit 
visualizations in ways that are diffcult to automate, such as rewriting 
text annotations. To address this, Kim et al. [40] developed Dupo, a 
‘mixed-initiative authoring tool’ designed to streamline the creation 
of responsive visualizations across different screen sizes. The Dupo 
interface integrates manual editing tools with automated design sug-
gestions, which allows users to customize designs, manage edit history, 
and explore responsive suggestions while also providing additional 
controls for fne-tuning and quick edits. 

These responsive visualization solutions primarily focus on adapt-
ability for sighted users, ensuring that visualization charts remain in-
formative and legible across various device platforms, such as mobile 
and desktop. While low-vision users can beneft from these responsive 
visualizations, their needs are not fully addressed. They require addi-
tional forms of responsive visualization tailored to their specifc needs. 
In this research, we explore various usability issues faced by low-vision 
users, formulate design requirements, and build GraphLite to cater to 
the unique needs of low-vision users. 

3 LOW VISION USABILITY ISSUES WITH DATA CHARTS 

We conducted an IRB-approved interview study with 14 low-vision 
screen magnifer users to uncover their interaction issues with data 
charts on smartphones. We specifcally gathered information on partici-
pants’ experiences with data charts, such as their frequency of encoun-
ters, common settings of interaction, and the chart types they usually 
engage with in daily life. Examples of seed questions included: What 
problems do you face when interpreting data charts?, In what type of 
charts do you face the most problems?, and How do you work around 
these issues?. The collected interview feedback was then qualitatively 
analyzed using an open coding technique [65], where we iteratively 
reviewed the user responses and identifed key insights, pain points, 
and themes that reoccurred in the data. 

3.1 Findings 

In the interviews, 6 participants frequently reported encountering bar 
charts, while 5 participants mentioned line charts. These charts were 
predominantly observed in news articles (by 5 participants), social 
media (by 4 participants), and blogs (by 4 participants). Given their 
familiarity and frequent exposure to these charts, participants’ feedback 
and responses were tailored around bar and line charts. Therefore, in 
this paper, we focus primarily on bar and line charts. 
(a) Associating bar chart data points with corresponding axis labels 
under magnifed view is arduous. A majority (12) of the participants 
stated that it was often tedious and cumbersome to fnd the label values 

of data points in bar charts and line graphs. This can be explained 
as follows: for sighted users, the perceptual effort to associate label 
l with bar b on the primary key axis of graph g is computed as 230 
units for the saccadic movement from the bar to the label [19]; 150 
units for the discrimination of the label [49]; and 300 units for word 
recognition [33]. This cognitive burden is amplifed for low-vision 
individuals because they have shorter and more frequent saccades and 
fxations [76]. However, other considerations also impact the total effort 
required, such as the loss of visual context when panning and the issues 
arising from high zoom levels. Specifcally, a slight misalignment of 
the magnifcation window during panning can cause the disappearance 
of contextual information, as noted by (7) participants. They elaborated 
that precise navigation of the magnifer lens in a straight line from 
the data point to the axes was necessary for accurately estimating the 
data point’s values. Any disruption in focus during this process usually 
meant restarting the estimation process entirely. 
(b) Visually comparing data points that are far apart in bar/line charts 
is too diffcult. Many participants (8) mentioned that visually com-
paring data points demanded slow, precise, and concentrated manual 
movement of the magnifer lens, which was mentally and visually 
tiring. All participants mentioned that making comparisons between 
data points that were far apart from each other was extremely diff-
cult, mainly due to the magnifcation-induced loss of spatial/visual 
relationships between the data points and the increasing diffculty of 
comparing non-adjacent data points – a phenomenon known as separa-
tion effect loss [74]. For bar charts, 10 participants stated that attention 
predominantly gravitated towards taller bars, sometimes resulting in the 
oversight or complete neglect of shorter ones. Additionally, taller bars 
often cast a visual “smudge” in the space around them. When the user 
tries to identify the height of a tall bar, the smudge on top of the bar is 
misinterpreted as part of the bar, causing participants to overestimate 
its height. Regarding line charts (9), participants stated that issues like 
smudging and blurring persisted, complicating the analysis of trends. 
While participants could grasp a general sense of the chart, pinpointing 
the precise slope of the lines was arduous. 
(c) Need to individually memorize data values for making compar-
isons between data points. One of the strategies mentioned by 6 partic-
ipants to overcome data-comprehension diffculties in a bar/line chart 
was to determine and memorize the (axes) values of data points one at 
a time and then compare them mentally to comprehend the differences. 
Four participants explained that this strategy was always required for 
charts with many data points. Two participants even felt that if the 
number of data points was high, there was little beneft gained by vi-
sualizing this data as charts since they had to remember and mentally 
compare raw values. 

The fndings from the interview study clearly demonstrate the need 
for a tailored solution that addresses the specifc challenges faced by 
low-vision users when interacting with data charts. 

4 GRAPHLITE ARCHITECTURE AND INTERFACE DESIGN 

4.1 Design Considerations and Requirements 

The design of GraphLite was informed by insights gathered from inter-
views with low-vision users and a review of prior research. 
Visual Memory and Selective Focus. When sighted individuals en-
counter visual data, the transfer of information to working memory 
from the sensory memory is infuenced by two main factors: the dis-
tinct features of the visualization and the viewer’s deliberate focus. The 
completion of processing in working memory allows for the storage of 
information in long-term memory. The act of selectively focusing on 
specifc information during the working memory phase is what deter-
mines the content stored in long-term memory. This focused attention is 
characterized by an effort to disregard certain stimuli or aspects deemed 
irrelevant while concentrating on those considered important [51]. 

For people with low vision, capturing information in sensory mem-
ory is different; they cannot observe distinct features of the chart due 
to impairments that cause smudging or blurring (see section 3.1(b)). 
Moreover, their focus is diverted to easily noticeable features, like taller 
bars in bar charts, or it might be divided due to the need to separately 



examine different components, such as labels and axis values (see 
section 3.1(b)). To supply working memory with accurate informa-
tion, they depend on two methods: (1) visual aids like magnifcation 
tools, which introduce several challenges specifcally due to loss of 
spatial/visual context (refer section 3.1(a)), and (2) adaptive techniques, 
including auditory feedback, such as alternative text or data presented 
in table format, which essentially bypasses the visual advantages of 
graphical representations. For low-vision users, the information re-
tained in the long-term memory might be detached from the actual 
representation of the chart (refer section 3.1(c)). 

Optimizing the Locus of Selection. To effectively address the unique 
challenges faced by low-vision users in processing visual information, 
we focused on creating a design approach that optimizes the “locus of 
selection”-—the critical stage at which specifc information is chosen 
for deeper cognitive processing [45], drawing inferences from “per-
ceptual load theory” principles, which involves breaking down visual 
tasks into smaller, manageable segments and integrating multimodal 
feedback to substantially improve selective attention [44]. 

Customizable Visual Attributes for Early/Late Selection. Customiza-
tion options for visual attributes such as color, contrast, font style, 
and size are necessary for low-vision users. This initial customiza-
tion serves as an effective cognitive flter for “early selection,” which 
involves the screening of sensory input at the onset before detailed 
processing [45]. This allows users to minimize visual disturbance from 
the very beginning. This is backed by prior research, e.g., by Wurm et 
al. [78], who found that although acuity and color are independent of 
each other, color improved object recognition for low-vision users and 
it also improved the overall interaction experience with faster reaction 
times (353ms color advantage [78]). 

Moreover, graphical comprehension involves interpolating data in 
charts and understanding various underlying relationships within data; 
this can also be referred to as “read between data” (i.e., integrating and 
interpreting) [64]. While existing solutions for low-vision users gener-
ally “read beyond data” (i.e., generating and predicting), the favor of 
preserving chart semantics is typically lost in the process (refer section 
2). To bring back the ability to “read between data” for low-vision 
users, GraphLite allows them to selectively view and trim down charts. 
Therefore, support should also be provided for “late selection”, which 
involves diving deeper after an initial overview [45], e.g., by enabling 
selective focus on crucial data points. Furthermore, focusing solely on 
specifc data points through single selective attention is insuffcient for 
comprehensive analysis; a multi-attention mechanism plays a critical 
role in enhancing interaction with complex visualizations. This can 
be achieved via multiple ‘views’ of a single data chart, empowering 
users to undertake several rounds of “late selection”. GraphLite was 
designed to accommodate the above requirements as explained next. 

4.2 GraphLite Overview 

Figure 3 presents an architectural schematic illustrating the workfow 
of GraphLite prototype. When the user loads a webpage in GraphLite, 
it leverages a custom-trained Inception-V3 model [79] to proactively 
identify the charts on the webpage as well as their types (e.g., bar chart, 
line chart). After recognition, GraphLite automatically extracts all 
information (e.g., labels, legends, data values, etc.) from the charts 
using an extended ChartOCR model [52]. Next, when the user selects a 
data chart with a single tap gesture, GraphLite generates an accessible 
proxy interface specifcally designed for low-vision users. 

A one-fnger long-press gesture [5] on the proxy interface automati-
cally opens up selection options, which can used to pick and view only 
a few data points of interest. Users can create multiple such ‘views’ 
if desired, by tapping on the ‘NEXT’ option. When the user fnally 
selects the ‘DONE’ button, the frst view is presented to the user by de-
fault. The user can navigate to the other self-created views using simple 
left/right swipe gestures. In addition, the proxy interface also provides 
an assortment of customization options to set the color, background, 
font, etc., to further improve usability. GraphLite also applies space 
compaction while rendering views of charts in the proxy interface to 
maximize the utilization of screen space, thereby reducing the user’s 

Fig. 3: Architectural schematic of GraphLite. 

panning effort. The full implementation details, including front-end 
and backend components, along with the corresponding code, are all 
available on GitHub1. 

4.3 Chart Data Extraction 

We used the robust ChartOCR method [52], a deep hybrid framework 
that takes advantage of both deep learning and rule-based methods for 
chart data extraction. We leveraged the CornerNet architecture [46], 
incorporating a 104-layer HourGlass network [58] as the backbone 
for ChartOCR to effciently extract key points in bar and line charts, 
respectively. For example, the key points for the bar chart are the 
top-left and bottom-right corners of each bar. GraphLite then groups 
each of the top-left and bottom-right key points sequentially to obtain 
bounding boxes of bars. It also computes the height of each bar using 
these top-left and bottom-right key points. Similarly, for line charts, 
the key points are the pivot points along the lines. GraphLite then uses 
a hierarchical clustering algorithm to group these key points into their 
respective lines. Once grouped, the key points are correctly associated 
with their lines, enabling the reconstruction of the lines on the chart. 
GraphLite then leverages the OCR engine AWS-Rekognition (AWS-
Rekognition DetectText API) [4] to extract relevant features from charts 
(e.g. title, axis labels, legends, scale, etc.). GraphLite then stores all 
the data values and their corresponding x-axis labels, as well as other 
relevant features from the chart, in a JSON format. 
Training. We trained ChartOCR [52] for bar and line charts on Nvidia 
V100 GPU with 128GB memory per node, where the learning rate was 
set to 0.0025, we further decreased the learning rate by a factor of 10 
for the last 5000 batches. The overall batch size was set at 27 and the 
total step size was set to 450000. For optimization, we made use of 
the well-known Adam optimizer [80]. We employed an early-stopping 
strategy during the model training process to optimize performance and 
prevent overftting. 

4.4 Proxy Interface Design 

We designed the GraphLite’s proxy interface by adhering to the accessi-
bility guidelines proposed by Alcaraz et al. [1]. As illustrated in Figure 
1, we designed the user interface of GraphLite to be navigable with 
simple one-fnger gestures in contrast to the status-quo two-fnger slide 
gestures offered by in-built OS accessibility services. To access the 
proxy interface, the user simply needs to tap on a chart in the current 
webpage. In the proxy interface, the user can execute a simple upward 
swipe gesture to invoke the ‘Theme picker’ to customize the appear-
ance of the chart according to their preferences. A long press-and-hold 
gesture on the proxy interface pops up a check box interface with all 
the chart’s x-axis labels. To navigate the list of options, the user can 
simply swipe down the pop-up interface. 

To select any x-axis labels of choice, the user must tap on the corre-
sponding check box. Following a selection, pressing the ‘NEXT’ button 
triggers the interface to refresh, allowing users to make additional se-
lections as needed. This iterative selection process continues until 
the user is satisfed and decides to conclude by pressing the ‘DONE’ 
button. Upon fnalizing their selections, GraphLite integrates a space 
compaction algorithm1 for both bar and line charts, optimizing element 

1https://github.com/accessodu/GraphLite.git 

https://github.com/accessodu/GraphLite.git


spacing under magnifcation. This algorithm adjusts the spacing and 
scaling of bars and line segments to maximize screen space usage, 
presenting a curated visualization that incorporates only the selections 
specifed by the user. These customized views can be navigated using 
swipe gestures, enabling users to peruse through various chart visu-
alizations that refect their chosen options via the proxy interface, as 
shown in Figure 1. 

Moreover, this interface extends its customization capabilities by 
allowing users to directly interact with individual data elements, such 
as bars in a bar chart or lines in a line chart. After tapping on these ele-
ments, users can invoke the ‘Theme Picker’ once again to apply distinct 
color changes to selected data points. To close the GraphLite proxy 
interface, the user can simply tap the blue button on the interface. Note 
that GraphLite does not block access to the original chart visualization; 
this is by design to ensure that the user always has a backup option 
in case of errors, e.g., incorrect data extraction by the GraphLite’s 
data extraction algorithm. The implementation and technical details 
of GraphLite are provided in the appendix, and a video demonstrating 
GraphLite in action and explaining the interaction workfow is available 
on GitHub1. 

4.5 Implementation details 

We implemented GraphLite as an Android mobile browser application 
developed using Flutter open source framework [22]. When the user 
loads a webpage, GraphLite leverages in-built Dart functions [17] to 
extract the DOM of the webpage and send it to the backend server via a 
POST request. Beautiful soup [61] Python package was used to extract 
all images in the DOM, which were then labeled with positional IDs. 
The images were then sent to a custom-trained Inception-V3 model [25]. 
Following this, images were annotated with fags (True, False) based 
on whether they were data charts or not. All chart images were sent to 
the ChartOCR [69] to extract data attributes. The respective chart IDs, 
fags, and attributes were packaged into a JSON object and sent to the 
Flutter module. When the user taps on a chart, the syncfusion futter 
charts [72] package uses the chart data in the JSON object to recreate a 
new chart in the proxy interface. Additional functionalities, including 
typography adjustments, data point selection via checkboxes, swiping 
through various views, and customizing the color of individual data 
points, were implemented using Flutter’s built-in features. The futter 
inappwebview package [50] was utilized to integrate web content and 
enable interactions with charts within the app. To establish a communi-
cation channel between the Flutter app modules and the backend server 
modules, we used the Flask REST API [60]. 

5 EVALUATION 

We conducted an IRB-approved user study with low-vision screen 
magnifer users to assess the effcacy of GraphLite. We managed to 
recruit 26 low-vision participants (16 female, 10 male) for the study2. 
Full participant demographic details are available on GitHub1. 

5.1 Design 

In a within-subject experimental setup, the participants were asked to 
perform representative chart tasks under the following conditions: 

• Screen Magnifer (SM) – The participants used the status quo 
screen magnifcation accessibility features to do the tasks. 

• Tabular Representation (TBL) – The participants could interact 
with tabular representations of the charts to do the tasks. This 
condition was chosen to represent extant solutions that convert 
charts to tables for better accessibility, as seen in example [13]. 

• GraphLite with only Space Compaction (SC) – The participants 
could leverage only the space compaction feature of GraphLite. 

• GraphLite with Space Compaction and Confguration (SCC) – 
The participants could leverage both space compaction and cus-
tomization (color, contrast, font) features of GraphLite. 

2The typical size of low-vision user studies is between 12 to 20. We enrolled 
slightly more participants due to the relatively higher number (5) of conditions 
in our study. 

• GraphLite with Space Compaction, Confguration and Feature 
selection (SCCF) – The participants could leverage all features. 

In our study, participants engaged in a series of tasks tailored to 
assess their interaction with bar and line charts. For designing the 
tasks, we consulted prior work in information visualization [63] that 
has introduced various taxonomies categorizing tasks that connect 
visualization techniques with user cognitive processes. The insights 
from our earlier interview study helped identify the relevant taxonomies 
for this study and directly informed our choice of tasks. Specifcally, 
we found Amar et al.’s taxonomy [3] of low-level tasks to be most 
ftting for our study. This taxonomy includes a series of tasks designed 
to require minimal reasoning about the data, thereby making it ideal 
for our study’s focus. The chosen tasks were: 

• Task 1: Pairwise Comparison required participants to compare 
predetermined data points. 

– The frst subtask (SBC) involved comparing a single pair, 
such as sales from Wednesday to Saturday. 

– The second subtask (MBC) involved comparing multiple 
pairs, like sales from Thursday to Saturday, Monday to 
Friday, and Tuesday to Sunday. 

• Task 2: Selective Filtering focused on data fltration, where 
participants identifed data entries meeting specifc criteria. 

– The frst subtask (SBF) involved pinpointing days when 
sales fell below 1 million. 

– The second subtask (MBF) required fltering a range of 
sales fgures to identify multiple data points, such as fnding 
days when sales were between 1 and 2 million. 

• Task 3: Trend Prediction was adapted to emphasize trend predic-
tion (LTP), asking participants to predict sales trends of a product 
across the following month based on prior monthly data. 

• Task 4: Trend Comparison was introduced, focusing on trend 
identifcation and comparison (LTC). For example, participants 
were tasked with identifying the overall trend in stock prices over 
a defned range of months and comparing the trend with another 
range of months. 

To reduce the impact of confounding variables such as the learning 
effect, we used different bar and line charts for the fve study condi-
tions, i.e., for Task 1 and Task 2, we curated ten bar charts, fve for 
each task. We ensured that all ten bar charts were similar, with each 
chart containing 20 data points (i.e., bars) and having identical initial 
formatting in terms of color, contrast, font, and spacing. For Task 1, 
we pre-selected data points such that the frst data point was randomly 
picked from the leftmost three data points in the bar chart, and the 
second data point was randomly picked from the rightmost three data 
points. This selection strategy ensured participants interacted with the 
majority of the chart data while maintaining a consistent separation 
effect across tasks, thereby mitigating potential confounds as noted in 
Talbot et al. [74]. A similar approach was followed for Task 2. For 
the line charts, we employed the same methodology in chart creation, 
ensuring each chart contained 20 data points. For Task 3, participants 
were required to predict the trend following the 20th data point. In 
Task 4, we selected trends from different parts of the charts for com-
parison, ensuring that users traversed through most of the charts. The 
trends were chosen based on identifying the best possible correlations 
between line segments, thereby facilitating a comprehensive analysis 
and interaction with the chart data. We also ensured that the chart data 
extraction was accurate for all these graphs. The assignment of charts 
to conditions and the ordering of conditions were counterbalanced to 
the best extent possible using the Latin square method [8]. 

5.2 Procedure 

The user study was conducted over a month to accommodate 26 partic-
ipants. Three sessions were available each day from Monday to Friday, 



with each session lasting between 2 to 2.5 hours. Two experimenters 
were available per session, each accommodating one participant. Par-
ticipants had the fexibility to choose any of these sessions and were 
required to attend three sessions to complete the study. The experi-
menter began by obtaining formal consent from each participant and 
briefy explaining the study’s goals. Participants were then introduced 
to the TBL and GraphLite interfaces and took part in practice ses-
sions. In the study, each subtask—SBC, MBC, SBF, MBF, LTP, and 
LTC—was allotted 10 minutes completion time. After completing each 
subtask, participants flled out the SUS and NASA-TLX questionnaires 
to capture their usability and workload perceptions. The experimenter 
also noted user-interaction behaviors and collected qualitative feedback 
in exit interviews. All study activities and data were recorded with con-
sent, and participants received an Amazon gift card. Further details on 
the participant’s demographics, apparatus, methodology, Charts used 
in the study, and the schedule of the study are available on GitHub1. 

5.3 Data Analysis 

From the study data, we computed the following metrics for each study 
condition: (i) Task completion times, (ii) Task completion rates, (iii) 
Task performance accuracies, (iv) SUS usability scores, and (v) NASA-
TLX workload scores. We then used these metrics to compare the 
different study conditions using standard statistical tests and determine 
if there was a signifcant positive impact of GraphLite on the overall 
performance and user experience of the participants. For analyzing the 
subjective exit-interview feedback and experimenter notes, we adopted 
a qualitative analysis method, specifcally an open coding technique 
followed by axial coding [65], where we iteratively went over the user 
data and identifed recurring observations and insights. 

5.4 Abbreviations 

For convenience, Table 1 lists all the abbreviations and placeholders 
that will be used in the rest of the paper to present the results. 

Table 1: List of Abbreviations and Placeholders. 

SM : Screen Magnifer MBC : Multi-bar Comparison 
TBL : Table of Content MBF : Multi-bar Filtering 
SC : Space Compaction LTC : Line Trend Comparison 
SCC : SC + Customization TLX | SUS : Usability Scores 
SCCF : SCC + Feature Selection Task-1 : Pairwise Comparison 
SBC : Simple Bar Comparison Task-2 : Selective Filtering 
SBF : Simple Bar Filtering Task-3 : Trend Prediction 
LTP : Line Trend Prediction Task-4 : Trend Comparison 

5.5 Results 

5.5.1 Task Completion Times 
We measured task completion time as the time (in seconds) a participant 
took to do a task under a given condition. If a participant failed to 
complete a task, then the maximum allotted time (i.e., 10 minutes) 
was considered as the completion time. The results are presented in 
Figure 4. Overall, there was a signifcant impact of the study condition 
on the task completion times (Friedman test, χ2 = 74.6, p < 0.001). 

Bar Charts: Task 1 For the SBC subtask, we observed that the SCCF 
condition had the best performance (Mean: 235.1s, Median: 239.5s, 
Min: 122s, Max: 355s) whereas the SM condition exhibited the poor-
est performance (Mean: 531.34s, Median: 552.3s, Min: 423.5s, Max: 
600s) among all the study conditions. Pairwise tests between con-
ditions showed that the SCCF condition yielded signifcantly better 
results compared to all other study conditions except the TBL condition 
(Post-hoc Conover’s test with Benjaminyi-Hochberg FDR adjustment, 
SCCF vs. TBL: p = 0.07). We also observed that the TBL condition 
signifcantly outperformed the SC and SCC conditions (TBL vs. SC: 
p = 0.001, TBL vs. SCC: p = 0.002). 

Similar observations were made for the MBC subtask; however, 
in contrast to the SBC subtask, we noticed a signifcant difference 
between the SCCF condition (Mean: 326.4s, Median: 317.9s, Min: 

188.7s, Max: 442.7s) and the TBL condition (Mean: 421.7s, Median: 
429.8s, Min: 355s, Max: 535.5s). 

This observed trend suggests that as tasks grow in complexity with an 
increased number of comparisons and variables, the effectiveness of the 
TBL condition starts to diminish, whereas the SCCF condition exhibits 
a noticeable performance improvement. This observation highlights the 
potential of the SCCF approach in handling complex analytical tasks 
within graphical data interpretation, especially as the demands of data 
analysis become more intricate. 

Bar Charts: Task 2 For the second task, average task completion times 
revealed that when participants were asked to engage with smaller 
ranges of data for selection, for example, if the participant was to 
identify stocks in the range of 3 million to 5 million revenue, a simple 
fltration task, the SCCF condition (Mean: 422s, Median: 422.6s, Min: 
341.9s, Max: 501s) and the TBL (Mean: 446.6s, Median: 452.2s, 
Min: 376s, Max: 512.3s) condition showed nearly similar performance. 
However, as the scope of the data range for fltration expanded, for 
example, if the participant was asked to flter stocks in the range of 3 
million to 8 million revenue, a notable enhancement in performance 
under the SCCF condition (Mean: 377.6.4s, Median: 348.2s, Min: 
265.7s, Max: 532s) was observed Vs. TBL (Mean: 476.9.4s, Median: 
489.6s, Min: 377.8s, Max: 579.8s) (Post-hoc Conover’s test with 
Benjaminyi-Hochberg FDR adjustment, SCCF vs. TBL: p < 0.001). 

Summary: A closer inspection of the recorded data revealed that while 
performing the tasks in SM, SC, and SCC conditions, the participants 
often had either concentration lapses or accidentally executed incorrect 
panning gestures, so they had to repeat the process multiple times to 
complete the task. In the TBL and SCCF settings, horizontal panning 
issues were markedly reduced, streamlining the task execution process. 

Nonetheless, the TBL condition exposed a notable drawback when 
participants performed both tasks with increased complexity. Here, par-
ticipants faced diffculties in retaining and recalling specifc data values, 
often necessitating backtracking for verifcation. This requirement for 
frequent memory recall and verifcation introduced additional cognitive 
load, leading to uncertainty and ineffciency among participants as they 
cross-checked and reassured themselves of the data points in question 
for both tasks, thereby increasing overall completion times. 

Line Charts: Task 3 For the third task, the SCCF condition demon-
strated the shortest average completion times (Mean: 243s, Median: 
267s, Min: 166.5s, Max: 310s), outperforming the SM condition, 
which had the longest times (Mean: 528.9.6s, Median: 544s, Min: 
435.5s, Max: 588s). Statistical analysis revealed a signifcant advan-
tage of the SCCF condition over all others, according to post-hoc 
Conover’s test with Benjamini-Hochberg FDR adjustment. 

Line Charts: Task 4 For the fourth task, SCCF maintained its superior 
performance with the best average task completion times, distinctly 
better than the SM condition and the others in comparative analysis 
(SCCF versus SM: p < 0.001, SCCF versus SC: p < 0.001, SCCF 
versus SCC: p < 0.001, SCCF versus TBL: p = 0.03). These fndings 
consistently indicate that SCCF is the most effective condition for 
conducting trend analysis. Additionally, the TBL condition showed 
improvement in the second task, narrowing the performance gap with 
the SCCF condition compared to the frst task by 67%. 

Summary: In the SM, SC, and SCC conditions, participants were 
required to continuously track trends with the aid of a magnifer, mov-
ing them in a non-linear fashion. Any deviation in the path not only 
increased the task completion time but also signifcantly compromised 
the accuracy of their analysis. 

The TBL condition naturally made it challenging for users to discern 
and predict trends due to the increased cognitive load. For instance, 
predicting a trend over 12 months necessitated participants to recall 
trends month by month, mentally collating these values into a cohesive 
trend. This process often had to be repeated multiple times to ensure 
accuracy and confdence in their judgments. However, in the SCCF 
condition, they could swiftly navigate through multiple views by buck-
eting selective data points in groups across 12 months. A simple swipe 
gesture allowed them to observe trends without the need to meticulously 

https://528.9.6s
https://476.9.4s
https://377.6.4s


Fig. 4: Task completion time statistics, in seconds, for all the tasks and study conditions. Note: For the MBF task, only the TBL and SCCF conditions 
are included, as participants were unable to complete this task within the time limit under the SM, SC, and SCC conditions. 

consider each underlying value, thus simplifying predictions. 
Compared to the SCCF condition, the TBL condition showed im-

proved performance in tasks involving the comparison of multiple 
trends rather than predicting trends. This improvement can be attributed 
to the ability of users in the TBL condition to categorize and compare 
values within specifc ranges without needing to assess the entire trend 
from start to fnish. However, for the analysis of trends in line charts, 
the SCCF condition still proved to be superior. This is because it al-
lowed for a more streamlined approach to trend analysis, enabling users 
to focus on broader trend patterns rather than getting bogged down 
by the need to remember and map each data point individually. This 
strategic division of attention, facilitated by selective focus in the SCCF 
condition, signifcantly reduced the cognitive load of trend analysis. 

5.5.2 Task Completion Rate and Accuracy 
The overall task completion rate for a condition was computed as the 
percentage of tasks completed by the participants in that condition. 
Overall, the SCCF and TBL study conditions had the best completion 
rates (100%), whereas the baseline screen magnifer (SM) condition 
had the lowest average completion rate(61.5%). These differences 
in completion rates between the study conditions were found to be 
statistically signifcant (Friedman test3, χ2 = 28.68, p < 0.001). 

A closer analysis of experimenter notes and manual inspection of 
screen-captured videos revealed that the task completion failures were 
mainly due to two reasons: (i) The participants were unable to complete 
the task within the stipulated time limit of 10 minutes, and (ii) The 
participants complained about stress and fatigue while giving up in the 
middle of the task. The latter reason was more common in the SM (4 
participants) and SC (3 participants) conditions. In these conditions, 
the participants frequently mentioned that “there were too many bars” 
and that it was diffcult to keep track of and remember the pre-specifed 
task bars and their y-axis values. The completion rate was slightly 
better in the SCC condition, where some of the participants mentioned 
that it was “easier on their eyes” after changing bar colors and contrast. 
In the TBL and SCCF conditions, all participants completed the tasks. 

To evaluate the precision of participant responses across the four 
distinct tasks—comprising two for bar charts and two for line charts, 
we adopted specifc accuracy metrics tailored to the nature of each task. 
For bar charts, Task 1’s accuracy involved comparing participants’ data 
point comparisons to actual values, while Task 2 evaluated the accuracy 
of identifying points that ft given criteria. Line charts Task 3 measured 
accuracy by matching participants’ trend predictions to real data. Task 
4’s accuracy was binary, based on correctly identifying and comparing 
trends. These tasks assessed participants’ analytical skills across both 
chart types. Note: The accuracy was noted without the inclusion of the 
complexity of tasks. 

3We used this non-parametric test as the data was not normally distributed. 

Bar Charts: We noticed a signifcant difference in the participants’ 
estimation errors between the different study conditions across both 
the tasks (Friedman test4, χ2 = 52.88, p < 0.001), with the TBL con-
dition having the lowest average error of 4.8% (and therefore the best 
performance) for task 1 comparison and nearly the same average error 
as SCCF condition of 9.7% for task 2 fltration and the SM condition 
had the highest average error(18.4% in Task 1 and 19.3% in Task 2) 
for both the tasks. The TBL condition saw a reduction in performance 
during task 2 particularly when increasing the complexity of the tasks 
as participants had to pan through the table multiple times and often 
mixed the rows mainly due to magnifcation misalignment. In the 
remaining three conditions (SM, SC, and SCC), we observed that on 
many occasions, the participants could not view both the y-axis labels 
and a taskbar at the same time due to enlargement, and therefore, they 
had to pan right-to-left along a straight line while mentally visualizing 
the bar height, to estimate the bar’s value or to flter out bars within 
a range. We believe most errors were introduced during this process, 
possibly due to imperfect horizontal panning and/or slight lapses in 
concentration during panning. 

Line Charts: In our examination of line charts across various exper-
imental setups and two distinct tasks centered on trend analysis, we 
noted differences in estimation errors that deviated from those seen with 
bar charts. The SCCF condition had the lowest average error of 7.1% 
(and therefore the best performance), and the SM condition had the 
highest average error of 21.1% (worst performance) for the task. The 
superior performance observed in the SCCF condition is largely due to 
participants adopting a strategy that involved grouping their selections 
into particular value ranges for analysis. This approach allowed them 
to quickly evaluate the types of trends by observing shifts in trends 
across different sections of the charts effciently. The higher average 
error observed in the TBL condition, as compared to the SCCF, can be 
attributed to the inherent demands of tabular data interpretation. The 
TBL condition necessitated a sequential and meticulous approach from 
users to extract information, leading to the identifcation of only a select 
few trends, with many potentially relevant patterns overlooked. On the 
other hand, the SCCF condition, by leveraging visual representations, 
offered a more holistic and effcient means for trend analysis. Visual 
charts support the brain’s ability to process information in parallel, 
allowing for a more comprehensive and effective recognition of trends 
without overloading cognitive capacities. 

In the other conditions (SM, SC, and SCC), we observed a pattern 
of errors similar to those identifed in bar charts. This consistency 
suggests that the underlying factors contributing to inaccuracies in 
these conditions are not unique to the type of chart but rather indicative 

4We used this non-parametric test because the raw data was not normally 
distributed as per Shapiro-Wilk test. 



of broader challenges in data interpretation and analysis using screen 5.5.4 Qualitative Feedback 
magnifers that affect both bar and line charts similarly. 

5.5.3 Perceived Usability and Task Workload 

We used the standard SUS questionnaire [9] to measure perceived 
usability. This questionnaire consists of 10 alternative positive and 
negative Likert statements where the participant has to provide a rating 
between 1 (strongly disagree) and 5 (strongly agree) for each statement. 
The ratings from the 10 statements are then assimilated based on a 
formula to generate an overall score between 0 and 100, with higher 
scores indicating better usability. The SCCF received the best SUS 
scores (Average = 85.8, Median = 86, Min = 65, Max = 100) followed 
by the TBL condition (Average = 68.7, Median = 64, Min = 38, Max 
= 100). The SM condition received the least SUS scores (Average = 
51.3, Median = 53, Min = 8, Max = 69). The differences in SUS scores 
between the study conditions were statistically signifcant, according to 
a Friedman test5 (χ2 = 57.1, p < 0.001). 

In the exit interviews, almost all participants attributed their high 
usability ratings for the SSCF condition to the selection criteria aspect 
of GraphLite that they believed saved them a lot of panning effort 
which otherwise would have been necessary to navigate and compare 
data points in charts. The participants also stated that the confguration 
options were extremely important, which explains the relatively higher 
scores for the SCC condition compared to the baseline SM condition 
(post-hoc Conover’s test, SCC vs. SM: p = 0.03). However, we did 
not notice a signifcant difference in usability ratings between the SC 
and SCC conditions (post-hoc Conover’s test, SC vs. SCC: p = 0.06). 
This may be due to the fact that space compaction was a background 
passive feature of GraphLite that the users could not explicitly control 
via the interface; indeed, a few participants (all of whom need less than 
5X zoom) mentioned in the exit interviews that they were so focused 
on customizing the charts that they did not even realize the presence 
of automatic space compaction. The highest variance observed in the 
TBL condition can be attributed to the lack of a uniform consensus 
among participants: while many found the TBL condition less stressful 
and easier to navigate, others experienced diffculty in analyzing trends 
under the same condition. This divergence in experiences contributed 
to the notable variability in the data gathered from the TBL condition. 

We administered the standard NASA-TLX questionnaire [26] to 
asses the perceived workload while the participants did the tasks. 
NASA-TLX also generates a score between 0 and 100; however, un-
like SUS, lower TLX values indicate lesser workloads and, therefore, 
better performance. Overall, we observed a signifcant effect of the 
study conditions on the NASA-TLX scores (Friedman test, χ2 = 92.32, 
p < 0.001). The GraphLite’s SCCF condition received the lowest (i.e., 
best) TLX scores (Average = 22.7, Median = 22, Min = 14, Max = 32) 
condition, whereas the SM condition received the highest (i.e., worst) 
TLX scores (Average = 70.1, Median = 70, Min = 57, Max = 79). The 
TLX scores for the TBL condition were the second best (Average = 
31.7, Median = 31, Min = 24, Max = 45), presumably due to the re-
duced horizontal panning effort needed to complete the tasks compared 
to that needed in the SM, SC, and SCC conditions. 

A closer inspection of the ratings the participants gave to individual 
subscales (Mental Demand, Physical Demand, Temporal Demand, Per-
formance, Effort, Frustration) of the TLX questionnaire revealed that 
poor ratings to the Effort, Mental Demand, and Frustration subscales 
contributed the most towards the higher workload scores in the SM, 
Sc, and SCC conditions. For the SCCF condition, the ratings for all 
the sub-scales were the lowest and, moreover, uniform across all the 
subscales. For the TBL condition, the ratings for the Effort and Frus-
tration were considerably higher than those for the SCCF condition, 
which explains the signifcant difference in overall TLX scores between 
SCCF and TBL conditions. 

5We used this test because the data for some of the conditions were not 
normally distributed. 

Analysis of subjective feedback from participants in exit interviews 
revealed shared insights and observations across multiple participants. 
A few notable ones are presented next. 
Customization options are essential. All participants explicitly stated 
that customization options are essential for conveniently interacting 
with graphs. More than half (16) of the participants mentioned that they 
preferred dark themes while interacting with content and that they often 
experienced issues while interacting with images, including charts un-
der dark themes. These participants further explained that re-rendering 
charts in dark themes were often not ideal, increasing comprehension 
diffculty. To counter this issue, 6 of these 16 participants also men-
tioned that they relied on OS-level color invert accessibility features 
as an alternative to dark themes. However, they mentioned this option 
too often, resulting in chart renderings that were not legible and also 
uncomfortable to view. These participants stated that the fne-grained 
customization offered by GraphLite quickly addressed this issue and 
reduced eye strain. 
Need to reduce vertical panning. Ten participants expressed a de-
sire for a feature that could reduce the vertical panning/scrolling 
in GraphLite. Four of these participants suggested automatic re-
adjustment of unit dimensions so that the overall height of a chart 
is reduced. A couple of participants also suggested adding tooltips that 
displayed the x/y axis labels/values on demand, e.g., a tap on a bar. 
Auto-focus on important chart regions. Nearly a quarter of 6 of the 
participants suggested providing some auto-panning feature that shifted 
focus to different parts of a chart on demand, e.g., with a gesture. For 
instance, P8 wanted gestures that automatically bring the x or y axis 
to the forefront of the magnifer viewport. Similarly, P17 wished that 
GraphLite had a gesture that would automatically move the magnifer 
focus to the top of the current bar in focus. 
Filtering in tabular chart representations. More than half (15) of 
the participants indicated that the usability of the TBL condition (i.e., 
a tabular representation of chart data) could have been signifcantly 
improved by providing a similar fltering feature as that in the GraphLite 
SCCF condition. These participants further explained that fltering 
would make tables a more palatable interface due to reduced vertical 
panning. However, a few (4) participants did mention that tables were 
not a suitable representation to perceive “trends” in data quickly; these 
participants explained that their cognitive effort would signifcantly 
increase with the increase in the number of data points to be compared 
for capturing trends. 

Following participant feedback, we integrated a tooltip feature into 
GraphLite. We then evaluated this new feature, focusing on its effec-
tiveness across bar and line charts. In typical screen magnifcation 
(SM) + tooltip scenarios, we noted that low-vision users often had to 
randomly select bars in bar charts and points in line charts to understand 
their corresponding values. This method proved challenging, especially 
with charts containing more than 10 data points, as participants tended 
to forget which bars or points they had already checked, leading to 
frequent re-use of the tooltip feature. However, integrating the tooltip 
feature with GraphLite greatly enhanced the effciency of this process. 
Users could proactively choose the x-axis values they wanted to focus 
on for comparison or analysis. Employing tooltips in conjunction with 
GraphLite, particularly after data fltration, signifcantly aided users in 
maintaining awareness of the data points on the charts. This combi-
nation of tools effectively streamlined the data interpretation process 
for low-vision users, making it easier for them to interact with and 
understand complex data visualizations. 

6 DISCUSSION 

The user study fndings demonstrated that converting non-interactive 
charts into interactive customizable charts signifcantly improves us-
ability and graphical comprehension for low vision screen magnifer 
users on smartphones. However, our work was not without limita-
tions and the study also illuminated some of the shortcomings of our 
approach, thereby exposing the avenues for future research. A few 
notable limitations and future work directions are discussed next. 



Limitations. GraphLite is dependent on ChartOCR [52] trained on 
the comprehensive ChartEx dataset [11]. This dataset encompasses 
a wide range of bar (e.g., grouped, stacked, normalized, categorical 
vs. ordinal dimensions, horizontal vs. vertical, sorted vs. unsorted) 
and line chart variants (e.g., single series vs. multiple series values 
in line segments), which can be seamlessly supported by GraphLite 
with minimal modifcations to its proxy interface. However, GraphLite 
currently supports only simple bar and line charts, and our evaluation 
was restricted to these types, where data extraction was accurate to 
both avoid confounds and make the tasks comparable. However, data 
extraction is not always accurate, especially if the charts are complex or 
the quality of chart images is not good. Therefore, the performance of 
GraphLite must be evaluated “in the wild” on arbitrary charts where the 
data extraction is not 100% accurate. For this purpose, a separate user 
study is needed to assess GraphLite usability. Furthermore, given the 
tremendous advancements in computer vision and image processing 
techniques in recent years, we anticipate better chart data extraction 
algorithms will be available in the next few years. Given the modular 
implementation of GraphLite, we can easily replace the current extrac-
tion algorithm with these new, improved algorithms, thereby enhancing 
the reliability of GraphLite. 

Moreover, GraphLite transforms static charts into interactive charts 
without considering the underlying label annotations present in the 
static chart, which may reduce the viewer’s ability to grasp certain 
intended takeaways. To address this, we integrated the tooltip feature 
within GraphLite based on qualitative feedback, allowing users to see 
the value of data points on the charts. However, GraphLite does not 
adapt to other forms of annotations, for example, color annotations, i.e., 
if an author uses specifc colors for certain bars in a bar chart to convey 
a particular message, GraphLite does not retain those specifc colors 
when the chart is re-rendered, leading to a potential loss of information 
that the chart designer wants to convey. 

Chart designers, particularly those creating visualizations for dis-
semination on news articles or social media, could possibly face chal-
lenges when adapting their static charts for low-vision users through 
GraphLite’s transformations. These adaptations can be likened to the re-
sponsive design adjustments made when transitioning charts from desk-
top to mobile viewing environments, as discussed by Kim et al. [39]. 
With GraphLite’s features, such as the integration of dynamic theme 
pickers, tooltip enhancements, and selectively view data points, design-
ers are equipped to tailor visualizations for improved chart usability. 
However, these transformations require subjectively prioritizing select 
data elements while potentially altering and completely missing others. 
The challenge lies in maintaining the core message and ensuring that 
key insights remain clear and interpretable for low-vision users. 

To address this, we plan to develop a novel algorithm capable of not 
only extracting data points but also identifying underlying relationships 
between data points based on the design choices made by the designer. 
This approach will highlight key elements and their relationships in 
charts and then present them to low vision users. This approach seeks 
to balance the trade-offs between preserving information richness and 
enhancing accessibility for low-vision users. 

Also, in the study, the participants used the experimenter-provided 
smartphone to do the tasks, not their smartphones. While we did our 
best to accommodate iOS interaction gestures in our evaluation app 
and conducted an extended practice session, it still needs to replicate 
the participants’ comfort while using their phones. Porting GraphLite 
to the iOS platform is more of an engineering effort, and we plan to 
accomplish this in the near future. Subsequent user studies will be 
conducted to further validate our fndings by letting participants do the 
study tasks using their smartphones. 

Lastly, in our work, we did not fully uncover the exact effects of 
zooming and panning user actions on the perceptual effort and chart 
comprehension of low-vision users. Uncovering these correlations 
will require a more extensive study, similar to those in prior works 
on graph perception for sighted people [14, 27, 74], covering various 
chart-interaction scenarios. In future work, we plan to conduct this 
study and build computational interaction models quantifying the chart 
perceptual effort of low-vision users. 

Enhancing data comprehension with Details-on-Demand interac-
tions. Details-on-demand (DoD) interactions in data visualization 
systems allow users to access additional information about specifc ele-
ments as needed, keeping the main display uncluttered. This is typically 
achieved through user actions like hovering, clicking, or performing 
gestures to display detailed data. Current DoD approaches include 
selection-based methods [67, 71], where users select visual objects to 
retrieve details, and zoom-based methods [10], where visualizations 
transform to reveal more information. Future research could explore 
how these interactions reduce the need for panning or auto-focus. We 
envision a controlled study that simulates all existing DoD features 
to examine the function of each feature individually, helping to bet-
ter understand the impact of each on visualization comprehension for 
low-vision users. 

Predictive magnifcation for chart interaction. Prior work [6, 7, 57] 
has shown that automating screen magnifer lens movement to salient 
portions of the content can signifcantly improve usability for low-
vision users. Some of the participants in the user study also expressed a 
desire for “automatic panning” while interacting with charts to reduce 
the number of input gestures. One method to devise an auto-panning 
algorithm for low-vision chart interaction is by understanding the cor-
responding data saliency (e.g., [6]), i.e., the portions of the chart that 
low-vision users typically assign higher priority and attention com-
pared to other portions. For instance, the units and labels on axes 
and the top of bars in a bar chart have a higher saliency compared 
to the empty whitespace regions of the chart. The full saliency heat 
map can be obtained from gaze tracking studies [19], and this saliency 
can be used to automate panning between different portions of a data 
chart, e.g., automatically pan to the top of a given bar in a bar chart 
based on eye movement. Devising such auto-panning algorithms along 
with corresponding user interfaces can signifcantly improve low-vision 
interaction with data charts. 

7 CONCLUSION 

With the increasing use of smartphones among people with low vision, 
there is a need to address the limitations of conventional screen magni-
fer accessibility features: loss of context and slow navigation time. This 
paper addressed these limitations for a specifc case scenario of interac-
tion with data charts, specifcally the popular bar and line charts. An 
interview study with 14 low-vision smartphone users revealed that they 
frequently encountered data charts in their daily smartphone browsing 
activities, but they also stated that the interaction with charts was chal-
lenging due to the magnifcation-induced loss of visual relationships, 
e.g., between different data points, and between data points and chart 
annotations. As an initial effort towards improving low-vision data 
chart interaction smartphones, we designed and developed GraphLite -
a manifestation of the idea of automatically transforming data charts 
that are usually non-interactive images into customizable interactive 
graphs that enable users to selectively view multiple data points close to 
each other, thereby preserving visual context as much as possible under 
screen enlargement. In a user study with 26 low vision participants, 
the GraphLite was found to signifcantly improve the usability of data 
charts over both the status quo screen magnifer and a state-of-the-art 
method while doing typical chart interaction tasks. The subjective feed-
back from the participants also provided future directions for further 
improving GraphLite, e.g., predictive auto-panning. 

SUPPLEMENTAL MATERIALS 

All supplementary materials are available on GitHub at https:// 
github.com/accessodu/GraphLite.git. These include: (1) Excel 
fles with data from the user study, (2) Details on participant demograph-
ics, task assignments, and charts used in the study, (3) Demonstration 
videos related to the study, and (4) The GraphLite codebase. 

ACKNOWLEDGMENT 

We would like to express our sincere gratitude to Amanda Kelly Dcosta 
and Aditya Vishal for their invaluable assistance in system development 
and user study setup. We also thank the anonymous reviewers for their 
invaluable feedback that helped improve the paper. 

https://github.com/accessodu/GraphLite.git
https://github.com/accessodu/GraphLite.git


REFERENCES 

[1] R. Alcaraz Martínez, M. Ribera, and T. Granollers Saltiveri. A sum-
mary of the article: Methodology for heuristic evaluation of the acces-
sibility of statistical charts for people with low vision and color vision 
defciency. In Comunicació a: Congreso Internacional de Interacción 
Persona-Ordenador (21º: 2021: Málaga). Interacción 2020/2021. 2021., 
2021. doi: 10.1007/s10209-021-00816-0 4 

[2] S. Ali, L. Muralidharan, F. Alferi, M. Agrawal, and J. Jorgensen. Sonify: 
making visual graphs accessible. In International Conference on Human 
Interaction and Emerging Technologies, pp. 454–459. Springer, 2019. doi: 
10.1007/978-3-030-25629-6_70 2 

[3] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic 
activity in information visualization. In IEEE Symposium on Information 
Visualization, 2005. INFOVIS 2005., pp. 111–117. IEEE, 2005. doi: 10. 
1109/INFVIS.2005.1532136 5 

[4] Amazon Web Services. Amazon rekognition: Image recognition 
software, ml image & video analysis. https://aws.amazon.com/ 
rekognition/, 2024. 4 

[5] Apple Developer Documentation. Handling long-press ges-
tures. https://developer.apple.com/documentation/uikit/ 
touches_presses_and_gestures/handling_uikit_gestures/ 
handling_long-press_gestures, 2024. 4 

[6] A. S. Aydin, S. Feiz, V. Ashok, and I. Ramakrishnan. Towards making 
videos accessible for low vision screen magnifer users. In Proceedings of 
the 25th international conference on intelligent user interfaces, pp. 10–21, 
2020. doi: 10.1145/3377325.3377494 9 

[7] S. M. Billah, V. Ashok, D. E. Porter, and I. Ramakrishnan. Steeringwheel: 
a locality-preserving magnifcation interface for low vision web browsing. 
In Proceedings of the 2018 CHI conference on human factors in computing 
systems, pp. 1–13, 2018. doi: 10.1145/3173574.3173594 2, 9 

[8] J. V. Bradley. Complete counterbalancing of immediate sequential effects 
in a latin square design. Journal of the American Statistical Association, 
53(282):525–528, 1958. doi: 10.1080/01621459.1958.10501456 5 

[9] J. Brooke. Sus: a “quick and dirty’usability. Usability evaluation in indus-
try, 189(3), 1996. https://www.researchgate.net/publication/ 
228593520_SUS_A_quick_and_dirty_usability_scale. 8 

[10] T. Büring, J. Gerken, and H. Reiterer. User interaction with scatterplots 
on small screens-a comparative evaluation of geometric-semantic zoom 
and fsheye distortion. IEEE Transactions on Visualization and Computer 
Graphics, 12(5):829–836, 2006. doi: 10.1109/TVCG.2006.187 9 

[11] ChartOCR. Deepruledataset. https://huggingface.co/datasets/ 
asbljy/DeepRuleDataset/tree/main, 2023. 9 

[12] C. Chen, B. Lee, Y. Wang, Y. Chang, and Z. Liu. Mystique: Deconstructing 
svg charts for layout reuse. IEEE Transactions on Visualization and 
Computer Graphics, 2023. doi: 10.1109/TVCG.2023.3327354 2 

[13] J. Choi, S. Jung, D. G. Park, J. Choo, and N. Elmqvist. Visualizing for 
the non-visual: Enabling the visually impaired to use visualization. In 
Computer Graphics Forum, vol. 38, pp. 249–260. Wiley Online Library, 
2019. doi: 10.1111/cgf.13686 2, 3, 5 

[14] W. S. Cleveland and R. McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal 
of the American statistical association, 79(387):531–554, 1984. doi: 10. 
1080/01621459.1984.10478080 9 

[15] W. W. W. Consortium et al. Accessibility requirements for people with 
low vision. https://www.w3.org/TR/low-vision-needs/, 2016. 2 

[16] M. D. Crossland, R. S. Silva, and A. F. Macedo. Smartphone, tablet 
computer and e-reader use by people with vision impairment. Ophthalmic 
and Physiological Optics, 34(5):552–557, 2014. doi: 10.1111/opo.12136 

[17] Dart Team. Dart programming language. https://dart.dev/, 2024. 5 
[18] V. Dibia and Ç. Demiralp. Data2vis: Automatic generation of data visu-

alizations using sequence-to-sequence recurrent neural networks. IEEE 
computer graphics and applications, 39(5):33–46, 2019. doi: 10.1109/ 
MCG.2019.2924636 3 

[19] S. Elzer, N. Green, S. Carberry, and J. Hoffman. A model of perceptual task 
effort for bar charts and its role in recognizing intention. User Modeling 
and User-Adapted Interaction, 16(1):1–30, 2006. doi: 10.1007/s11257 
-006-9002-9 3, 9 

[20] C. Engel, E. F. Müller, and G. Weber. Svgplott: an accessible tool to 
generate highly adaptable, accessible audio-tactile charts for and from 
blind and visually impaired people. In Proceedings of the 12th ACM 
International Conference on PErvasive Technologies Related to Assistive 
Environments, pp. 186–195, 2019. doi: 10.1145/3316782.3316793 2 

[21] C. Engel and G. Weber. A user study to evaluate tactile charts with blind 
and visually impaired people. In International Conference on Computers 
Helping People with Special Needs, pp. 177–184. Springer, 2018. doi: 10. 
1007/978-3-319-94274-2_24 2 

[22] Flutter. Write your frst futter app. https://docs.flutter.dev/ 
get-started/codelab, 2024. 5 

[23] J. Fu, B. Zhu, W. Cui, S. Ge, Y. Wang, H. Zhang, H. Huang, Y. Tang, 
D. Zhang, and X. Ma. Chartem: reviving chart images with data em-
bedding. IEEE Transactions on Visualization and Computer Graphics, 
27(2):337–346, 2020. doi: 10.1109/TVCG.2020.3030351 2 

[24] C. Goncu, K. Marriott, and J. Hurst. Usability of accessible bar charts. 
In International Conference on Theory and Application of Diagrams, pp. 
167–181. Springer, 2010. doi: 10.1007/978-3-642-14600-8_17 2 

[25] Google Cloud Team. Advanced guide to inception v3 on cloud tpu. https: 
//cloud.google.com/tpu/docs/inception-v3-advanced, 2024. 
5 

[26] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load index): 
Results of empirical and theoretical research. In Advances in psychology, 
vol. 52, pp. 139–183. Elsevier, 1988. doi: 10.1016/S0166-4115(08)62386 
-9 8 

[27] J. Heer and M. Bostock. Crowdsourcing graphical perception: using 
mechanical turk to assess visualization design. In Proceedings of the 
SIGCHI conference on human factors in computing systems, pp. 203–212, 
2010. doi: 10.1145/1753326.1753357 9 

[28] J. Hoffswell, W. Li, and Z. Liu. Techniques for fexible responsive visu-
alization design. In Proceedings of the 2020 CHI Conference on Human 
Factors in Computing Systems, pp. 1–13, 2020. doi: 10.1145/3313831. 
3376777 3 

[29] M. N. Hoque, M. Ehtesham-Ul-Haque, N. Elmqvist, and S. M. Billah. 
Accessible data representation with natural sound. In Proceedings of the 
2023 CHI Conference on Human Factors in Computing Systems, pp. 1–19, 
2023. doi: 10.1145/3544548.3581087 2 

[30] J. In and S. Lee. Statistical data presentation. Korean journal of anesthesi-
ology, 70(3):267–276, 2017. doi: 10.4097/kjae.2017.70.3.267 1 

[31] M. T. Islam and S. M. Billah. Spacex mag: An automatic, scalable, and 
rapid space compactor for optimizing smartphone app interfaces for low-
vision users. Proceedings of the ACM on Interactive, Mobile, Wearable 
and Ubiquitous Technologies, 7(2):1–36, 2023. doi: 10.1145/3596253 2 

[32] M. Jain, N. Diwakar, and M. Swaminathan. Smartphone usage by expert 
blind users. In Proceedings of the 2021 CHI Conference on Human Factors 
in Computing Systems, pp. 1–15, 2021. doi: 10.1145/3411764.3445074 2 

[33] B. E. John and A. Newell. Toward an engineering model of stimulus-
response compatibility. In Advances in psychology, vol. 65, pp. 427–479. 
Elsevier, 1990. doi: 10.1016/S0166-4115(08)61233-9 3 

[34] I. A. Joshi. Unblind the charts: Towards making interactive charts accessi-
ble in android applications. arXiv preprint arXiv:2109.12442, 2021. doi: 
10.48550/arXiv.2109.12442 2 

[35] D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo. 
Chartsense: Interactive data extraction from chart images. In Proceedings 
of the 2017 chi conference on human factors in computing systems, pp. 
6706–6717, 2017. doi: 10.1145/3025453.3025957 2 

[36] K. Kafe, B. Price, S. Cohen, and C. Kanan. Dvqa: Understanding data 
visualizations via question answering. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 5648–5656, 2018. 
doi: 10.48550/arXiv.1801.08163 2 

[37] S. Kanthara, R. T. K. Leong, X. Lin, A. Masry, M. Thakkar, E. Hoque, and 
S. Joty. Chart-to-text: A large-scale benchmark for chart summarization. 
arXiv preprint arXiv:2203.06486, 2022. doi: 10.48550/arXiv.2203.06486 
2 

[38] A. Khan and S. Khusro. Blind-friendly user interfaces–a pilot study on 
improving the accessibility of touchscreen interfaces. Multimedia Tools 
and Applications, 78(13):17495–17519, 2019. doi: 10.1007/s11042-018 
-7094-y 2 

[39] H. Kim, D. Moritz, and J. Hullman. Design patterns and trade-offs in 
responsive visualization for communication. In Computer Graphics Forum, 
vol. 40, pp. 459–470. Wiley Online Library, 2021. doi: 10.1111/cgf.14321 
3, 9 

[40] H. Kim, R. Rossi, J. Hullman, and J. Hoffswell. Dupo: A mixed-initiative 
authoring tool for responsive visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 2023. doi: 10.48550/arXiv.2308.05136 
3 

[41] H. Kim, R. Rossi, A. Sarma, D. Moritz, and J. Hullman. An automated 
approach to reasoning about task-oriented insights in responsive visu-

2 

https://doi.org/10.1007/s10209-021-00816-0
https://doi.org/10.1007/978-3-030-25629-6_70
https://doi.org/10.1007/978-3-030-25629-6_70
https://doi.org/10.1109/INFVIS.2005.1532136
https://doi.org/10.1109/INFVIS.2005.1532136
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_uikit_gestures/handling_long-press_gestures
https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_uikit_gestures/handling_long-press_gestures
https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_uikit_gestures/handling_long-press_gestures
https://doi.org/10.1145/3377325.3377494
https://doi.org/10.1145/3173574.3173594
https://doi.org/10.1080/01621459.1958.10501456
https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usability_scale
https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usability_scale
https://doi.org/10.1109/TVCG.2006.187
https://huggingface.co/datasets/asbljy/DeepRuleDataset/tree/main
https://huggingface.co/datasets/asbljy/DeepRuleDataset/tree/main
https://doi.org/10.1109/TVCG.2023.3327354
https://doi.org/10.1111/cgf.13686
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1080/01621459.1984.10478080
https://www.w3.org/TR/low-vision-needs/
https://doi.org/10.1111/opo.12136
https://dart.dev/
https://doi.org/10.1109/MCG.2019.2924636
https://doi.org/10.1109/MCG.2019.2924636
https://doi.org/10.1007/s11257-006-9002-9
https://doi.org/10.1007/s11257-006-9002-9
https://doi.org/10.1145/3316782.3316793
https://doi.org/10.1007/978-3-319-94274-2_24
https://doi.org/10.1007/978-3-319-94274-2_24
https://docs.flutter.dev/get-started/codelab
https://docs.flutter.dev/get-started/codelab
https://doi.org/10.1109/TVCG.2020.3030351
https://doi.org/10.1007/978-3-642-14600-8_17
https://cloud.google.com/tpu/docs/inception-v3-advanced
https://cloud.google.com/tpu/docs/inception-v3-advanced
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/3544548.3581087
https://doi.org/10.4097/kjae.2017.70.3.267
https://doi.org/10.1145/3596253
https://doi.org/10.1145/3411764.3445074
https://doi.org/10.1016/S0166-4115(08)61233-9
https://doi.org/10.48550/arXiv.2109.12442
https://doi.org/10.48550/arXiv.2109.12442
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.48550/arXiv.1801.08163
https://doi.org/10.48550/arXiv.2203.06486
https://doi.org/10.1007/s11042-018-7094-y
https://doi.org/10.1007/s11042-018-7094-y
https://doi.org/10.1111/cgf.14321
https://doi.org/10.48550/arXiv.2308.05136


alization. IEEE transactions on visualization and computer graphics, 
28(1):129–139, 2021. doi: 10.48550/arXiv.2107.08141 3 

[42] J. Kim, A. Srinivasan, N. W. Kim, and Y.-S. Kim. Exploring chart question 
answering for blind and low vision users. In Proceedings of the 2023 CHI 
Conference on Human Factors in Computing Systems, CHI ’23, article 
no. 828, 15 pages. Association for Computing Machinery, New York, NY, 
USA, 2023. doi: 10.1145/3544548.3581532 1 

[43] Y.-H. Kim, B. Lee, A. Srinivasan, and E. K. Choe. Data@ hand: Fostering 
visual exploration of personal data on smartphones leveraging speech and 
touch interaction. In Proceedings of the 2021 CHI Conference on Human 
Factors in Computing Systems, pp. 1–17, 2021. doi: 10.1145/3411764. 
3445421 3 

[44] N. Lavie, Z. Lin, N. Zokaei, and V. Thoma. The role of perceptual 
load in object recognition. Journal of Experimental Psychology: Human 
Perception and Performance, 35(5):1346, 2009. doi: 10.1037/a0016454 4 

[45] N. Lavie and Y. Tsal. Perceptual load as a major determinant of the locus 
of selection in visual attention. Perception & psychophysics, 56:183–197, 
1994. doi: 10.3758/BF03213897 4 

[46] H. Law and J. Deng. Cornernet: Detecting objects as paired keypoints. In 
Proceedings of the European conference on computer vision (ECCV), pp. 
734–750, 2018. doi: 10.48550/arXiv.1808.01244 4 

[47] H.-N. Lee, Y. Prakash, M. Sunkara, I. Ramakrishnan, and V. Ashok. 
Enabling convenient online collaborative writing for low vision screen 
magnifer users. In Proceedings of the 33rd ACM Conference on Hypertext 
and Social Media, pp. 143–153, 2022. doi: 10.1145/3511095.3531274 2 

[48] X. Liu, D. Klabjan, and P. NBless. Data extraction from charts via single 
deep neural network. arXiv preprint arXiv:1906.11906, 2019. doi: 10. 
48550/arXiv.1906.11906 2, 3 

[49] G. L. Lohse. A cognitive model for understanding graphical percep-
tion. Human-Computer Interaction, 8(4):353–388, 1993. doi: 10.1207/ 
s15327051hci0804_3 3 

[50] Lorenzo Pichilli. Flutter inappwebview. https://pub.dev/packages/ 
flutter_inappwebview, 2024. 5 

[51] S. J. Luck and M. A. Ford. On the role of selective attention in visual 
perception. Proceedings of the National Academy of Sciences, 95(3):825– 
830, 1998. doi: 10.1073/pnas.95.3.825 3 

[52] J. Luo, Z. Li, J. Wang, and C.-Y. Lin. Chartocr: data extraction from charts 
images via a deep hybrid framework. In Proceedings of the IEEE/CVF 
winter conference on applications of computer vision, pp. 1917–1925, 
2021. doi: 10.1109/WACV48630.2021.00196 2, 4, 9 

[53] R. A. Martínez, M. R. Turró, and T. G. Saltiveri. Accessible statistical 
charts for people with low vision and colour vision defciency. In Proceed-
ings of the XX International Conference on Human Computer Interaction, 
pp. 1–2, 2019. doi: 10.1145/3335595.3335618 1 

[54] A. Masry, D. X. Long, J. Q. Tan, S. Joty, and E. Hoque. Chartqa: A 
benchmark for question answering about charts with visual and logical 
reasoning. arXiv preprint arXiv:2203.10244, 2022. doi: 10.18653/v1/2022 
.fndings-acl.177 2 

[55] D. Masson, S. Malacria, D. Vogel, E. Lank, and G. Casiez. Chartdetec-
tive: Easy and accurate interactive data extraction from complex vector 
charts. In Proceedings of the 2023 CHI Conference on Human Factors in 
Computing Systems, pp. 1–17, 2023. doi: 10.1145/3544548.3581113 2 

[56] G. G. Méndez, M. A. Nacenta, and S. Vandenheste. ivolver: Interactive 
visual language for visualization extraction and reconstruction. In Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing 
Systems, pp. 4073–4085, 2016. doi: 10.1145/2858036.2858435 2 

[57] F. Momotaz and S. M. Billah. Tilt-explore: Making tilt gestures usable 
for low-vision smartphone users. In The 34th Annual ACM Symposium on 
User Interface Software and Technology, pp. 1154–1168, 2021. doi: 10. 
1145/3472749.3474813 2, 9 

[58] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human 
pose estimation. In European conference on computer vision, pp. 483–499. 
Springer, 2016. doi: 10.48550/arXiv.1603.06937 4 

[59] J. Poco and J. Heer. Reverse-engineering visualizations: Recovering visual 
encodings from chart images. In Computer graphics forum, vol. 36, pp. 
353–363. Wiley Online Library, 2017. doi: 10.1111/cgf.13193 2 

[60] Python Basics. Flask rest api tutorial. https://pythonbasics.org/ 
flask-rest-api/, 2021. 5 

[61] L. Richardson. Beautiful soup documentation. https:// 
beautiful-soup-4.readthedocs.io/en/latest/, 2015. 5 

[62] J. L. Robinson, V. Braimah Avery, R. Chun, G. Pusateri, and W. M. 
Jay. Usage of accessibility options for the iphone and ipad in a visually 

impaired population. In Seminars in Ophthalmology, vol. 32, pp. 163–171. 
Taylor & Francis, 2017. doi: 10.3109/08820538.2015.1045151 2 

[63] S. F. Roth and J. Mattis. Data characterization for intelligent graphics 
presentation. In Proceedings of the SIGCHI Conference on Human Factors 
in Computing Systems, pp. 193–200, 1990. doi: 10.1145/97243.97273 5 

[64] E. Russell-Minda, J. W. Jutai, J. G. Strong, K. A. Campbell, D. Gold, 
L. Pretty, and L. Wilmot. The legibility of typefaces for readers with low 
vision: A research review. Journal of Visual Impairment & Blindness, 
101(7):402–415, 2007. doi: 10.1177/0145482X0710100703 4 

[65] J. Saldaña. Coding techniques for quantitative and mixed data. https: 
//www.torrossa.com/en/resources/an/5018667, 2021. 3, 6 

[66] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer. 
Revision: Automated classifcation, analysis and redesign of chart images. 
In Proceedings of the 24th annual ACM symposium on User interface soft-
ware and technology, pp. 393–402, 2011. doi: 10.1145/2047196.2047247 
2 

[67] E. Segel and J. Heer. Narrative visualization: Telling stories with data. 
IEEE transactions on visualization and computer graphics, 16(6):1139– 
1148, 2010. doi: 10.1109/TVCG.2010.179 9 

[68] A. Sharif, S. S. Chintalapati, J. O. Wobbrock, and K. Reinecke. Under-
standing screen-reader users’ experiences with online data visualizations. 
In Proceedings of the 23rd International ACM SIGACCESS Conference 
on Computers and Accessibility, ASSETS ’21, article no. 14, 16 pages. 
Association for Computing Machinery, New York, NY, USA, 2021. doi: 
10.1145/3441852.3471202 1 

[69] soap117. Deeprule. https://github.com/soap117/DeepRule, 2023. 
5 

[70] A. Srinivasan, B. Lee, N. Henry Riche, S. M. Drucker, and K. Hinckley. 
Inchorus: Designing consistent multimodal interactions for data visual-
ization on tablet devices. In Proceedings of the 2020 CHI conference 
on human factors in computing systems, pp. 1–13, 2020. doi: 10.1145/ 
3313831.3376782 3 

[71] H. Subramonyam and E. Adar. Smartcues: a multitouch query approach 
for details-on-demand through dynamically computed overlays. IEEE 
transactions on visualization and computer graphics, 25(1):597–607, 2018. 
doi: 10.1109/TVCG.2018.2865231 9 

[72] Syncfusion. Syncfusion futter charts. https://pub.dev/packages/ 
syncfusion_flutter_charts, 2024. 5 

[73] S. F. A. Szpiro, S. Hashash, Y. Zhao, and S. Azenkot. How people 
with low vision access computing devices: Understanding challenges and 
opportunities. In Proceedings of the 18th International ACM SIGACCESS 
Conference on Computers and Accessibility, pp. 171–180, 2016. doi: 10. 
1145/2982142.2982168 2 

[74] J. Talbot, V. Setlur, and A. Anand. Four experiments on the perception 
of bar charts. IEEE transactions on visualization and computer graphics, 
20(12):2152–2160, 2014. doi: 10.1109/TVCG.2014.2346320 3, 5, 9 

[75] Think-Cell. Think-cell: Powerpoint charts | waterfall, gantt, mekko, 
process fow and agenda. https://www.think-cell.com/en, 2024. 3 

[76] R. Wang, L. Zeng, X. Zhang, S. Mondal, and Y. Zhao. Understanding how 
low vision people read using eye tracking. In Proceedings of the 2023 CHI 
Conference on Human Factors in Computing Systems, pp. 1–17, 2023. doi: 
10.1145/3544548.3581213 3 

[77] A. Wu, W. Tong, T. Dwyer, B. Lee, P. Isenberg, and H. Qu. Mobilevisfxer: 
Tailoring web visualizations for mobile phones leveraging an explainable 
reinforcement learning framework. IEEE Transactions on Visualization 
and Computer Graphics, 27(2):464–474, 2020. doi: 10.48550/arXiv.2008 
.06678 3 

[78] L. H. Wurm, G. E. Legge, L. M. Isenberg, and A. Luebker. Color improves 
object recognition in normal and low vision. Journal of Experimental 
Psychology: Human perception and performance, 19(4):899, 1993. doi: 
10.1037//0096-1523.19.4.899 4 

[79] X. Xia, C. Xu, and B. Nan. Inception-v3 for fower classifcation. In 2017 
2nd international conference on image, vision and computing (ICIVC), pp. 
783–787. IEEE, 2017. doi: 10.1109/ICIVC.2017.7984661 4 

[80] Z. Zhang. Improved adam optimizer for deep neural networks. In 2018 
IEEE/ACM 26th international symposium on quality of service (IWQoS), 
pp. 1–2. Ieee, 2018. doi: 10.1109/IWQoS.2018.8624183 4 

[81] H. Zou and J. Treviranus. Chartmaster: A tool for interacting with stock 
market charts using a screen reader. In Proceedings of the 17th Inter-
national ACM SIGACCESS Conference on Computers & Accessibility, 
ASSETS ’15, 10 pages, p. 107–116. Association for Computing Machin-
ery, New York, NY, USA, 2015. doi: 10.1145/2700648.2809862 1 

https://doi.org/10.48550/arXiv.2107.08141
https://doi.org/10.1145/3544548.3581532
http://dx.doi.org/10.1145/3411764.3445421
http://dx.doi.org/10.1145/3411764.3445421
https://doi.org/10.1037/a0016454
https://doi.org/10.3758/BF03213897
https://doi.org/10.48550/arXiv.1808.01244
https://doi.org/10.1145/3511095.3531274
https://doi.org/10.48550/arXiv.1906.11906
https://doi.org/10.48550/arXiv.1906.11906
https://doi.org/10.1207/s15327051hci0804_3
https://doi.org/10.1207/s15327051hci0804_3
https://pub.dev/packages/flutter_inappwebview
https://pub.dev/packages/flutter_inappwebview
https://doi.org/10.1073/pnas.95.3.825
https://doi.org/10.1109/WACV48630.2021.00196
https://doi.org/10.1145/3335595.3335618
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.1145/3544548.3581113
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1145/3472749.3474813
https://doi.org/10.1145/3472749.3474813
https://doi.org/10.48550/arXiv.1603.06937
https://doi.org/10.1111/cgf.13193
https://pythonbasics.org/flask-rest-api/
https://pythonbasics.org/flask-rest-api/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://doi.org/10.3109/08820538.2015.1045151
https://doi.org/10.1145/97243.97273
https://doi.org/10.1177/0145482X0710100703
https://www.torrossa.com/en/resources/an/5018667
https://www.torrossa.com/en/resources/an/5018667
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1109/TVCG.2010.179
https://doi.org/10.1145/3441852.3471202
https://doi.org/10.1145/3441852.3471202
https://github.com/soap117/DeepRule
https://doi.org/10.1145/3313831.3376782
https://doi.org/10.1145/3313831.3376782
https://doi.org/10.1109/TVCG.2018.2865231
https://pub.dev/packages/syncfusion_flutter_charts
https://pub.dev/packages/syncfusion_flutter_charts
https://doi.org/10.1145/2982142.2982168
https://doi.org/10.1145/2982142.2982168
https://doi.org/10.1109/TVCG.2014.2346320
https://www.think-cell.com/en
https://doi.org/10.1145/3544548.3581213
https://doi.org/10.1145/3544548.3581213
https://doi.org/10.48550/arXiv.2008.06678
https://doi.org/10.48550/arXiv.2008.06678
https://doi.org/10.1037//0096-1523.19.4.899
https://doi.org/10.1037//0096-1523.19.4.899
https://doi.org/10.1109/ICIVC.2017.7984661
https://doi.org/10.1109/IWQoS.2018.8624183
https://doi.org/10.1145/2700648.2809862

	Introduction
	Related Work
	Low Vision Interaction with Smartphones
	Accessibility and Usability of Data Charts
	Data Extraction from Charts
	Responsive Visualizations

	Low Vision Usability Issues with Data Charts
	Findings

	GraphLite Architecture and Interface Design
	Design Considerations and Requirements
	GraphLite Overview
	Chart Data Extraction
	Proxy Interface Design
	Implementation details

	Evaluation
	Design
	Procedure
	Data Analysis
	Abbreviations
	Results
	Task Completion Times
	Task Completion Rate and Accuracy
	Perceived Usability and Task Workload
	Qualitative Feedback


	Discussion
	Conclusion



