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Fig. 1: (a) Merge tree distances, where trees are matched and edited, are computationally heavy and slow to compute. This leads to
analyses that can be a bottleneck in scientific workflows. (b) Here, we show a Multidimensional scaling (MDS) visualization of a test
dataset and the significant runtime necessary to produce a pair-wise distance matrix. (c) Rather than directly compute tree distances,
we treat merge tree comparison as a learning task using our novel Merge Tree Neural Network (MTNN) to calculate the similarity. (d)
MDS of the same data as (b) using MTNN. This reduces comparison times by orders of magnitude (5, here) with extremely low error
added compared to the state-of-the-art merge tree distance.

Abstract—Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree
comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge,
we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN
enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as
effective encoders for graphs, in order to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next,
we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with
a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and
examine our model’s generalizability across various datasets. Our experimental analysis demonstrates our approach’s superiority
in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than 100× on the benchmark datasets while
maintaining an error rate below 0.1%.

Index Terms—Computational topology, merge trees, graph neural networks.

1 INTRODUCTION

A fundamental challenge in scientific visualization is analyzing and
visualizing data, such as scalar fields, at speeds that support real-time
exploration. Consider Topological Data Analysis (TDA) [17], which
is now a critical component in many visualization pipelines due to its
ability to extract and succinctly summarize structural information from
complex datasets. TDA has been shown to effectively visualize [11,23]
and analyze a wide range of applications in chemistry [9, 21], neuro-
science [31], social networks [2], material science [23], energy [41],
and medical domains [28, 32, 51], to name a few. However, TDA
approaches can be quite slow to compute due to their computational
expense. Therefore, they are difficult to use in scenarios where a quick
answer is needed for an analysis.

In particular, Merge Trees (MTs) [8, 17] serve as expressive topolog-
ical descriptors that capture the complex structure of data, encoding
the evolution of topological features with a history that records how
their components merge. Despite being a powerful tool in various
domains, the computational cost associated with distance calculations
for merge trees has been a significant limitation. This is due to the core
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operation of computing the distance on merge trees needing to com-
pare the optimal matching between the nodes of the merge trees. This
matching is known to be NP-hard [1, 10]. Given the importance, yet
great difficulty, of computing merge tree distances, a variety of metrics
and pseudo-metrics have been proposed, such as functional distortion
distance [8], edit distance [46], interleaving distance [20, 33], and dis-
tances based on branch decomposition and matching [42]. While many
of these distance metrics are computationally challenging, it is worth
noting that they are not universally NP-hard [8]. Some metrics may
have polynomial-time algorithms under specific conditions. However,
these methods usually require complicated design and implementation
based on discrete optimizations. Despite not being exponential, the
time complexity is usually still polynomial or sub-exponential in the
number of nodes in the merge trees.

In this work, we take a different approach. To address the challenge
of fast comparisons, we re-frame it as a learning task. Once the sim-
ilarities of merge trees become learnable, we reduce the comparison
runtime by avoiding the need to compute matchings between two MTs.
To do so, we first need an encoder to map merge trees to a vector space,
and learn this embedding model to position similar merge trees closely
and dissimilar ones far apart in this space. We focus our investigation
on graph neural networks (GNNs) as our primary encoder, a technique
extensively studied for graph embeddings yet unexplored for merge
trees.

In the following, we introduce the first merge tree neural network
(MTNN) that uses GNNs to learn merge tree similarity. In particular,
we design a neural network model that maps a pair of merge trees to a
similarity score. At the training stage, the parameters involved in this
model are learned by minimizing the difference between a predicted
and a true similarity score, which is the interleaving distance on labeled



merge trees [53] in this work. At the test stage, we obtain a predicted
similarity score by feeding the learned model with any pair of unseen
merge trees.

To effectively learn both the structural and topological information
of merge trees, we need to design the neural network architecture
carefully. Traditional GNNs only encode structural information of
graphs, not merge trees. We introduce two key strategies to address
this gap: firstly, we employ the graph isomorphism network (GIN)
as our encoder, which excels in identifying structural distinctions in
merge trees due to its design for graph isomorphism tasks. Secondly,
we develop an innovative topological attention mechanism designed
to identify and highlight important nodes within a merge tree. This
mechanism re-weights nodes based on their ground truth MT distance
and nodes’ topological significance (persistence).

We conduct our experiments on five datasets: a synthetic point cloud,
two datasets from time-varying flow simulations, one from a repeating
pattern flow simulation, and one of 3D shapes. On all datasets, MTNN
significantly enhances efficiency, accelerating the runtime by over 100
times while maintaining a low error rate when compared to a target MT
similarity metric [53].

Our contributions can be summarized as follows:
• The first neural network model for merge tree similarity (MTNN);
• A novel topological-based attention mechanism for GNNs;
• An evaluation that shows MTNN’s extremely precise(< 0.1%

mean squared error) and fast (> 100× speedup) similarity mea-
sures;

• An evaluation of the generalizability of trained models; and
• An open-source implementation for reproducibility.1

The paper is organized as follows: Section 2 discusses related work,
focusing on the computation of distance between merge trees and the
application of learning methods for graph similarity. Section 3 provides
the necessary preliminary background. In Section 4, we examine the
using GNNs for merge trees. Our proposed model, MTNN, is detailed
in Section 5. Section 6 presents our results, and Section 7 concludes.

2 RELATED WORK

Our approach is informed by two main areas of research: (1) the
computation of distances between merge trees and (2) learning graph
similarity using graph neural networks (GNNs). This section discusses
the related works on merge tree distance and learning graph similarity
using GNNs. For the definitions of merge trees, their distances, and
GNNs, please refer to Section 3.

2.1 Merge Trees Distance
Many distances on merge trees exist: the interleaving distance [20, 33],
the edit distance [7, 16], the functional distortion distance [8], and the
universal distance [6]. While these distances are valuable for their
stability and discriminatory capabilities, computing these distances
often becomes impractical due to their NP-hard nature [1, 10].

Recent efforts aim to define more computationally feasible distances
for merge trees. For instance, the edit distance on merge trees, as
discussed in [46, 47], identifies the optimal edit operations between
merge trees and has been experimentally shown to be more discrimi-
native than both the bottleneck and one-Wasserstein [17] distances. In
the [47], they introduced the local merge tree edit distance, specifically
designed to analyze local similarities within merge trees. Despite the
work in [49] demonstrating greater discriminative power than the pre-
viously proposed edit distances for merge trees, by employing a new
set of improved edit operations, the computational cost is significantly
higher, which hinders their practical application.

The interleaving distance requires an initial labeling of the merge
trees, followed by the identification of the optimal matching between
the labeled merge trees. This process, which establishes a computable
metric known as the labeled interleaving distance, is introduced in [20].
Yan et al. [54] adapted this distance for practical use and incorporated
geometric information in the labeling strategy in [53]. Similarly, Curry

1https://osf.io/2n8dy

et al. [15] employed the Gromov–Wasserstein distance to label merge
trees and compute the labeled interleaving distance.

Branch decomposition trees (BDTs) represent another method that
first converts merge trees into BDTs (i.e., transferring edges of merge
trees as nodes in a new tree), and then finds pairwise matching between
these transformed trees [8, 36, 37, 42, 43, 50]. This process adds extra
computational steps, further increasing complexity.

Applications utilizing merge trees distances, such as sketching [29]
or encoding merge trees [36, 37], primarily operate in the original
space, necessitating optimal matching between merge trees or their
BDT variants. Machine learning has been used for merge trees in the
work of Pont et al. [36], who applied neural networks to merge trees
for compression and dimensionality reduction. Our work focuses on
fast comparison. The previous work also uses a novel but classic auto-
encoder with merge trees and BDTs as input, requiring a transformation
step. In addition, their model is not designed to be generalizable
across datasets, and their use of Wasserstein distance in training is
computationally more intensive than our approach.

In summary, existing work either proposes a rigorous definition of
distance with theoretical guarantees but with NP-hard computation
or describes a similarity measure with practical applications that still
require optimal matching between merge trees. No existing work
focuses on mapping merge trees to vector space for efficient comparison.
The closest approach is the work of Qin et al. [40], who map topological
persistence diagrams to a hash for fast comparison. Merge trees are a
more expressive and more complex topological abstraction than these
diagrams. In our work, we utilize GNNs to map the merge trees to a
vector space and re-frame merge tree comparison as a learning task.

2.2 Learning Graph Similarity and Dissimilarity
Graph (dis)similarity computation is a fundamental problem in graph
theory. The graph edit distance (GED) [19] is a widely recognized met-
ric between graphs, defining the minimum number of edit operations
required to transform one graph into another. Despite its popularity,
GED is known to be an NP-hard problem [56].

With the advancements in graph neural networks (GNNs), it is now
possible to encode graphs into vector spaces effectively [24, 27, 52].
This capability allows GNNs to compute a similarity or dissimilarity
score quickly. These methods employ an end-to-end framework to learn
the graph representation that can, after training, map pairs of graphs to
a similarity score.

A common approach in this area is the use of a Siamese neural
network architecture [14], which processes each graph independently,
but in parallel, to aggregate information. A feature fusion mechanism
then captures the inter-graph similarities, and a multi-layer perceptron
(MLP) is applied for regression analysis. This method is typically
trained in a supervised manner using the mean squared error (MSE)
loss against the ground truth similarity scores.

Many GNN-based approaches for learning graph similarity have
great promise due to the competitive performance in both efficiency
and efficacy [4, 5, 30, 39]. For example, the graph matching network
(GMN) [30] is the first deep graph similarity model, which computes
the similarity between two given graphs by a cross-graph attention
mechanism. SimGNN [4] turned the graph similarity task into a regres-
sion task, and leveraged the graph convolutional network (GCN) [27]
layers with self-attention-based mechanism on the model.

However, despite the growing popularity of GNN-based methods for
graph similarity, their application to topological descriptors like merge
trees has not been explored. Topological deep learning is a rapidly
evolving field, although it primarily focuses on using topological fea-
tures to enhance deep learning models [25, 34, 57]. Our perspective
focuses on the inverse: designing deep learning models specifically for
topological descriptors. Our research establishes the initial connection
between GNNs and merge trees, potentially laying the groundwork for
future developments in machine learning and TDA.

3 PRELIMINARIES

In this section, we outline the foundational concepts of this work,
beginning with merge trees induced by scalar fields and the common

https://osf.io/2n8dy
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Fig. 2: An illustration of merge tree. On the left, a scalar function
is represented by an orange line, highlighting the critical points, and
showcasing how these points merge and connect topologically. On the
right, the corresponding merge tree of sub-level set filtration.

distances used for topological comparisons. Then, we describe graph
neural networks (GNNs), which serves as the core architecture for
encoding merge trees for topological comparison.

3.1 Scalar Fields and Merge Trees
Consider a dataset represented as (X, f ), where X denotes a topological
space, and f : X→ R denotes a scalar function, which is a continuous
real-valued function. This function f assigns a real number to each
point in X, reflecting a characteristic of interest within the dataset. This
is often referred to as a scalar field.

An equivalence relation ∼ f is defined on X, where x ∼ f y if both x
and y belong to the same connected component of the sub-level set Xa
for a threshold value a in f . Consequently, two points are equivalent
under ∼ f if they exhibit a shared characteristic under the threshold a.

This leads to the definition of T −
f := (Xa, f ) as the join tree for

the dataset (X, f ). The join tree encapsulates how dataset compo-
nents merge as the threshold a varies. The split tree T +

f := (Xa, f ) is
similarly constructed using super-level set to depict component splits
with changing thresholds. Each of these two trees is called a merge
tree T f := (Xa, f ), illustrating the evolution of topological features in
relation to f . In this work, we use join trees to capture the connectiv-
ity of sub-level sets, with the global maximum being the tree’s root.
Example merge tree for a 1D function is shown in Fig. 2.

Persistence Persistence is a quantity derived from persistent ho-
mology [17] that tracks the lifetime of a topological feature. This is
often important in analysis. For instance, low persistence features are
often deemed to be noise, while high persistence features are considered
to encode important topological properties. In the context of our work,
persistence is used to track the evolution of connected components of a
sub-level set of a scalar function. A persistence pair (b,d) represents a
topological feature that is born in the sub-level set Xb and dies going
into the sub-level set Xd . b and d correspond to the critical points m
and s where b = f (m) and d = f (s). In our join trees, a feature is born
at a minimum and dies when it merges with an older, in terms of f ,
feature. The persistence of such a pair is defined as the difference in
function value at the two critical points, d −b.

3.2 Distance on Merge Trees and Graphs
Below, we first define graph edit distance, which GCNs primarily focus
on reproducing. We then describe how edit distance on merge trees
differs. Finally, we describe the distance we use as our ground truth,
the interleaving distance.

Graph Edit Distance The graph edit distance (GED) [19] between
two graphs G1 = (V1,E1) and G2 = (V2,E2) is the minimum cost of
transforming G1 into G2 using node and edge insertions, deletions, and
substitutions. It’s defined as:

De(G1,G2) := min
S∈O

{
∑

op∈S
δ (op)

}
,

where O represents the set of all valid sequences of graph edit oper-
ations that transform G1 into G2, S is a specific sequence of graph

edit operations from O, and δ (op) is the cost function that assigns a
non-negative real number to each edit operation op in the sequence S.
This operation could be the insertion, deletion, or substitution of a node
or an edge.

Each operation op has an associated cost, and ∑op∈S δ (op), the
total cost of a sequence S, is the sum of the costs of its individual
operations. The GED is then determined by finding the sequence S
with the minimum total cost that transforms G1 into G2.

Edit Distance on Merge Trees The edit distance between merge
trees builds on tree edit distance, which is a specific case of GED where
the cost operation is only on nodes. Given two merge trees, denoted
as T1 and T2, it is defined as [46]:

De(T1,T2) := min
S∈O

{δ (S)},

where O represents the set of valid tree edit operations, and S represents
a sequence of these tree edit operations that transform T1 into T2.
The cost function δ assigns a non-negative real number to each edit
operation, which is defined as [46]:

δ (m → s) = min
{

max(|bm −bs|, |dm −ds|),
(|dm−bm|+|ds−bs|)

2

}
δ (m → λ ) =

|dm−bm|
2

δ (λ → s) = |ds−bs|
2

where λ denotes the empty set and m and s are nodes in T1 and T2,
respectively. The first cost is for a node relabel operation from m to s.
Next is deleting a node m. The last cost is adding a node s.

This is similar to GED, but the cost is formulated to account for
topological persistence. Consider nodes m ∈ T1 and s ∈ T2, each node
encodes a topological feature, (bm,dm) and (bs,ds). In particular, bm is
the function value where m is born. dm is the function value where m
dies. For sublevel sets, bm < dm. This distance computation is shown
in Fig. 3.

Interleaving Distance on Merge Trees To compute the interleav-
ing distance on merge trees, the trees need to be labeled first. A labeled
merge tree, denoted as T = (T ,π), including a merge tree T with a
labeling π : [a]→VT where [a] is the set of labels, {1, ...,a}, and VT
is the set of merge tree vertices [20]. π only needs to be surjective since
a vertex can have multiple labels. The interleaving distance on labeled
merge trees is calculated based on the induced matrix TM(T ,π). This
matrix also can be referred to as the least common ancestor (LCA)
matrix and defined as:

TM(i, j) = f (LCA(π(i),π( j)),
where f (LCA(·)) denotes the function value of LCA of a pair of vertices
with labels i and j, 1 ≤ i, j ≤ a. Given two labeled merge trees T1 =
(T1,π1) and T2 = (T2,π2) that share the same set of labels, [a], the
interleaving distance between labeled merge trees is defined as:

Di(T1,T2) = ∥T 1
M −T 2

M∥∞,

where ∥TM∥ = maxi j |TMi j| is the L∞ norm. In [53], they proposed
geometry-aware labeling strategies and, for brevity, we refer the reader
to their paper for those details. But, at a high level, their labeling
minimizes a cost function that accounts for the geometric structure of
the tree along with the function value differences between nodes in
the tree. In this way, topological persistence is encoded in the labeling
strategy. The interleaving distance is used as the ground truth merge
tree distance in our training.

3.3 Graph Neural Networks (GNNs)
Given a graph G = (V,E) with nodes V and edges E, where each
node v ∈ V has an initial feature vector h(0)v , GNNs update the fea-
ture representation of each node by leveraging the structural context
provided by the graph [24]. In particular, each node aggregates fea-
tures from its neighbors (Message Function), updates its own features
(Update Function), and finally produces an embedding (Embedding)
that represents either the node’s or the entire graph’s comprehensive
features. As Fig. 4 shows, the message function is responsible for ag-
gregating information from a node’s neighbors, which is then integrated
into the node’s feature vectors through the update function.
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Fig. 3: Edit distance on merge trees example. The transformation from
merge tree 1 to merge tree 2 needs two nodes to relabel operations,
where the relabeled node is highlighted in the red circle.

Fig. 4: Example of the GNNs process for a single node. Left: a graph
with node features. Right: message function and update function for the
target node 3. This node receives information from its directly connected
neighbors, nodes 1, 2, and 4. Notably, node 4 further communicates a
message from its adjacent node 5. In the end, the feature of node 3 is
updated by aggregating all incoming messages.

Message Function: The message function aggregates features from
neighboring nodes. For a node v, the message function M can be
defined as:

m(l+1)
v = ∑

u∈N (v)
M(h(l)v ,h(l)u ,evu),

where h(l)v is the feature vector of node v at layer l, N (v) denotes the
neighbors of v, and evu represents the edge features between nodes v
and u.

Update Function: The update function U integrates the aggregated
messages with the node’s current state to compute its new state:

h(l+1)
v =U(h(l)v ,m(l+1)

v ),

where h(l+1)
v is the updated feature vector of node v at layer l +1.

Embedding: After processing through L layers of the GNN, the
final embedding zv for a node v is obtained, which can be used for
downstream tasks like classification or clustering:

zv = h(L)v .

For a whole graph embedding, an aggregation function (e.g., sum,
mean, or max) is applied over all node embeddings to produce a single
vector representing the entire graph. GNNs do not always generalize
across different graph sizes, especially from small to large graphs, as
noted in [55]. Therefore, the number of layers is determined by the
graph’s size and complexity. For large graphs, careful tuning and tech-
niques like hierarchical pooling or attention mechanisms are essential
for scalability. Through these mechanisms, GNNs offer a powerful
framework for learning from graph-structured data, which we adapt to
the context of merge trees for our topological comparison.

4 GNNS MEET MERGE TREES

This section describes our methodology for adapting GNNs to merge
trees. While GNNs have demonstrated effectiveness in learning on
graph-structured data, the application to merge trees is not directly
translatable due to unique topological characteristics inherent to merge
trees. See Fig. 5. To address this, we enrich the node features with
topological information. Specifically, we assign an attribute to each
node derived from its scalar function value. Moreover, our objective
goes beyond learning the structure of merge trees; we are focused on

a more complicated task, learning merge tree distance. To this end,
we employ GCN similarity [4], a model initially designed for graph
similarity learning, adapting it to the context of merge trees. This
adaptation allows us to establish a baseline for our approach. More
details are given below.
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Fig. 5: An illustration of two merge trees and their graph structure. From
left to right: critical points (dots) in two scalar functions, showcasing
how these points merge and connect topologically. In the middle are
corresponding merge trees, highlighting structural differences. Finally,
the graph structure of the two merge trees is identical but differs in
function value labels.

4.1 Graph Convolutional Network (GCN) Similarity
Following [4], the computation of the merge tree similarity has the
following steps: (1) a GNN transforms the node of each tree into a
vector, this is called node embedding; (2) a tree embedding is computed
using attention-based aggregation; (3) a joint embedding is obtained by
comparing node and tree-level embeddings to capture a comprehensive
similarity between the merge trees. (4) Finally, the joint embedding
is fed into a fully connected neural network to get the final similarity
score. Below, we provide more details on these steps.

Initialization The inputs to our approach are merge trees, stored
as adjacency matrices. The nodes of a merge tree are weighted with
the normalized ([0,1]) function value. The ground truth distance is also
normalized.

Node Embedding Computation For the first step, we compute
a node embedding using a graph convolutional network (GCN) [27],
a type of GNN that updates the node features by aggregating features
from their neighbors. The formula for node level updates in a GCN can
be expressed as:

h(l+1)
v = σ

(
∑

u∈N (v)∪{v}

1√
d̂vd̂u

h(l)u W (l)+b(l)
)
,

where h(l+1)
v is the feature vector of node v at layer l + 1; σ is a

non-linear activation function, such as ReLU(x) = max(0,x); d̂v is the
degree of node v, plus 1 for self-loops; W (l) is the weight matrix at
layer l; and b(l) is the bias at layer l. Given a pair of merge trees Ti,T j ,
We obtain the node embedding hiv and h jv for each node of Ti and T j
via the GCN.

Tree Embedding For tree embeddings, we use attention-based
aggregation. Attention-based aggregation is designed to assign weights
to each node based on a given similarity metric. hn ∈ Rm is the em-
bedding of n-th node, where m is the size of embedding. The global
context c ∈ Rm is obtained as

c = tanh(
1
|V |

|V |

∑
n=1

hnWc), (1)

where |V | is the number of nodes and Wc ∈Rm×m is a learnable weight
matrix. Next, each node should receive attention relative to this global
context. The attention-weight embedding for a node is
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h∗n =
|V |

∑
n=1

µ(hT
n c)hn,

where µ(·) is the sigmoid function. The tree-level embedding H∗ is
aggregated from all re-weighted node embeddings, h∗. H∗ = ∑

|V |
n=1 h∗,

where |V | is the number of nodes in merge tree.

Joint Embedding Computation For step three, the joint embed-
ding is obtained by comparing both tree-level and node-level embed-
dings. We first describe how to compare the tree-level embedding using
neural tensor networks (NTNs) following [44]:

Dtree(H∗
i ,H

∗
j ) = σ(H∗T

i W [1:K]
t H∗

j +Vw[H∗
i ·H∗

j ]+bt),

where Dtree is the tree-level vector that encodes similarity, σ(·) is an
activation function, W [1:K]

t ∈ Rm×m×K is a weight tensor, [H∗
i ·H∗

j ]

is concatenation operation between H∗
i ,H

∗
j , Vw ∈ RK×2m is a weight

vector, and bt ∈RK is a bias vector. Here, K is a hyperparameter for the
size of Dtree. In summary, the NTN provides a measure of similarity
between two tree embeddings.

To assess node-level similarities, we compare the node embeddings
from two trees, Ti and T j. Letting Ni and N j be the number of nodes
in Ti and T j, respectively, this comparison yields an Ni ×N j simi-
larity matrix. Specifically, the similarity matrix Dnode is calculated
as Dnode = σ(HiHT

j ), where Hi ∈RNi×m and H j ∈RN j×m are each the
matrix of node embeddings for trees Ti and T j. σ(·) is an activation
function that normalizes the scores into the same range, (0,1). To
address the discrepancy in node counts between trees, we zero-pad
the trees with fewer nodes to match the node count of the trees with
more nodes. Specifically, we append zero or null nodes to the end of
the node list in the smaller trees. This approach ensures that the size
difference between trees is accounted for in the similarity assessment
without altering the original structure of the trees..

While zero-padding ensures that the node count between trees in
each pair is the same, the overall size between different pairs can still
differ. This is because the trees are padded only within each com-
parison pair to match the larger tree in that specific pair. However,
the number of nodes in the larger tree can vary from one pair to an-
other. Following the methodology in [4], we convert this matrix into a
histogram hist(Dnode) ∈ RB, where B is a predefined number of bins.
This histogram representation standardizes the similarity matrix’s size,
facilitating comparison across tree pairs.

It is important to note that converting the similarity matrix Dnode
into a histogram standardizes the similarity matrix’s size, facilitating
comparison across tree pairs. However, this conversion can introduce
distortions and artifacts because histograms are not continuous differ-
ential functions and do not support backpropagation.

To address this, we primarily rely on tree-level embedding compar-
isons to update model weights. The histogram-based node embedding
comparisons are used to supplement the tree-level features, adding extra
performance gains to our model. This approach ensures that the model
benefits from the standardized representation of histograms while main-
taining effective training through continuous tree-level embeddings.

Final In the final step, we combine the tree-level similar-
ity Dtree(H∗

i ,H
∗
j ) with the histogram hist(Dnode) as the joint embed-

ding. A fully connected neural network then processes this embedding
to produce the ultimate similarity score between the merge trees pair
in the [0,1] range. This approach serves as the baseline model in our
study, with its performance detailed in Section 6.

4.2 Graph Isomorphism Network (GIN) Similarity

While our results with GCN similarity on merge tree comparison are
encouraging, the variation in the number of nodes between two merge
trees plays a significant role in distinguishing them. To emphasize the
differences in node count, we further improved the model by replacing
the standard GCN with a graph isomorphism network (GIN) for the
node embedding computation. As presented in [52], GIN is adept at
capturing distinct graph structures. For instance, it can reproduce the
Weisfeiler–Lehman test for graph isomorphism.

The update rule for a GIN is:

h(l+1)
v = MLP(l)

(
(1+ ε

(l)) ·h(l)v + ∑
u∈N (v)

h(l)u

)
,

where h(l+1)
v is node v’s feature vector at layer l +1, MLP(l) denotes

a multi-layer perceptron, and ε(l) is a tunable parameter that balances
the node’s own features with its neighbors’. The summation aggregates
the features of node v’s neighbors, enhancing the representation with
local structural information.

By deploying a GIN, we enriched the model with a more complicated
understanding of node differences across merge trees. In our work,
we incorporated three GIN layers to optimize node feature learning
and report the performance in Section 6. The result shows that this
approach improves performance significantly over the GCN model.

However, it is crucial to note that GIN’s capacity for graph isomor-
phism may not fully capture the subtleties of MT comparisons. For
instance, two merge trees might be structurally the same yet distinct
in a topological sense due to differences in the function values of their
nodes. We extend GIN to a more customized network for merge trees
to address this. This is our final approach, called a merge tree neural
network (MTNN).
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Persistence-weighted Adjacency Matrix

Fig. 7: An example of our persistence-weighted adjacency matrix. Each
entry in the matrix represents the function value difference between
connected nodes in the merge tree. Values highlighted in red denote
entries for nodes that are not directly connected in the merge tree but
are included to capture the persistence pairs. This enhancement allows
for the inclusion of broader topological connections, ensuring the full
topological characteristics of the merge tree are represented.

5 MERGE TREE NEURAL NETWORKS (MTNN) SIMILARITY

As mentioned earlier, effectively capturing the topological characteris-
tics of merge trees is crucial for learning their similarities using GNNs.
We have previously incorporated the function value for the nodes in
a merge tree and applied a GIN to emphasize the node differences
across merge trees. However, we have not yet addressed the inclusion
of another important topological measure: the persistence of features
in merge trees. To integrate persistence, we use a persistence-weighted
adjacency matrix for tree embedding, which we detail in Section 5.1.
Following that, in Section 5.2, we describe how to apply this weighted
matrix in our model effectively, and we outline the learning process in
Section 5.3. An overview of the model is provided in Fig. 6.

5.1 From Persistence to Edge Features
In the context of a merge tree, T , each edge connecting nodes s and m
represents the merging of critical points as the scalar value increases,
denoted as ( f (s), f (m)), which we utilize as an edge feature in our
model. This approach, while useful, captures only incomplete topolog-
ical information, as certain topological features span across multiple
edges forming a path in the merge tree, For example, a persistence
pair (b,d) represents the function values at the birth (b) and death (d)
of a feature, where b is the function value at the local minimum and d
is the function value at the saddle point where this feature merges with
another.

To summarize the full topological characteristics of a merge tree, we
introduce a persistence-weighted edge adjacency matrix Ê. This matrix
is constructed by considering the function value differences between
connected nodes and their connections to neighboring nodes. Specifi-
cally, each entry in the matrix represents the function value difference
between nodes, recording all paths. This enhancement allows us to
extend our analysis from direct pairs like ( f (s), f (m)) to broader con-
nections, capturing ( f (s), f (D(m))∪ f (m)), which includes node m
and its descendants, D(m). Therefore, the complete topological in-
formation is encoded, as the persistence pair has been added. Fig. 7
illustrates how we accomplish this construction.

To integrate this persistence-weighted matrix, we tested two methods:
(1) Incorporating it into GNN architectures like GIN or GCN; (2)
Utilizing it in an attention-based aggregation to map node embeddings
to tree embeddings.

Option (1) introduces modified edges (referred to as "pseudo" edges)
to include persistence information. Consequently, this approach up-
dates node features by utilizing neighbor features via the adjacency
matrix. However, this modification changes the original merge tree
structure in the message updates function of GNNs due to the introduc-
tion of pseudo edges.

To preserve the original merge tree structure while incorporating per-
sistence information, we choose method (2). This approach leverages

the persistence-weighted matrix in an attention-based aggregation pro-
cess, mapping node embeddings to tree embeddings (Sec. 5.2). Here,
node re-weighting is informed by their persistence, but not exclusively
so. We train the weight matrix to consider both the persistence informa-
tion and the overall merge tree distance (Sec. 5.3), ensuring a balanced
integration of topological features.

5.2 Topological Attention
This section outlines the design of topological attention, leveraging the
persistence-weighted adjacency matrix Ê.

Building on the attention-based aggregation discussed in Sec-
tion 4.1’s Tree Embedding, we reformulate the global context vector c,
replacing Eq.1. We integrate the topological information as:

Norm =
|V |

∑
k=1

∑
l∈N (k)

êkl ,

c = tanh

(
1
|V |

|V |

∑
n=1

(
∑u∈N (n) êun

Norm

)
hnWc

)
,

where u ∈ N (n) is a neighbor node of n, êun ∈ Ê is the persistence-
weighted edge feature of u and n, hn is the embedding of n-th node, |V |
is the number of nodes, and Wc is a learnable weight matrix . To further
break down the the formula above, we have the local weighting factor
for each node v, the sum ∑u∈N (v) êuv computes the total edge weight
connected to v. By dividing this sum by the normalization term Norm,
we normalize the local weighting with respect to the total edge weights
in the tree, ensuring the scale of the features remains consistent. Then,
we use the same calculation as the previous attention-based aggregation.
Note that c is used to compute h∗ which in turn is used to compute the
term, H∗, used in training.

5.3 MTNN Learning
Training of the MTNN uses a Siamese network architecture, utilizing
GINs as encoders to transform input merge trees into node embeddings.
We generate joint embeddings by combining node and tree embeddings,
where the tree embedding is derived using a topological attention-
based aggregation. This aggregation reweights nodes according to
their topological features. Subsequently, we employ an MLP-based
regression network to map the joint embedding to the ground truth
similarity score between the merge trees. The model is trained to
minimize the Mean Squared Error (MSE) loss, defined as:

L =
1
D ∑

i, j∈D
(MLP(H∗

i j)− si j)
2

Here, MLP denotes the MLP-based regression network, and D is the
set of all training merge trees pairs, H∗

i j is the joint embedding and si j
is the ground truth MT distance.

Table 1: Number of merge trees (MTs), the simplification threshold, τ,
employed (same as used in previous work), and their range in node
counts after simplification.

Dataset # of MTs τ # of Nodes

MT2k 2000 0.1 [8,191]
Corner Flow 1500 0.2 [24,30]
Heated Flow 2000 0.06 [12,27]
Vortex Street 1000 0.05 [56,62]
TOSCA 400 0.01 [12,78]

6 RESULTS

While our proposed approach can be generalized to different merge tree
distances, we have chosen the state-of-the-art distance metric from [53]
as our ground truth. This metric is noted for its efficient computation
and is accompanied by an accessible open-source implementation. As
mentioned, this distance is normalized to fall within the [0,1] range to
coincide with a similarity score. To compare the quality of our MTNN
similarity in reproducing [53], we use Mean Squared Error (MSE) as
our evaluation metric.
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Fig. 8: Time steps of the 2D viscous Corner Flow simulation dataset.

6.1 Datasets
We evaluate MTNN on five datasets: MT2k, Corner Flow, Heated
Flow, Vortex Street, and TOSCA. All datasets, except MT2k, were
chosen because they have previously been used in merge tree distance
research [46, 53]. Interestingly enough, three [53] are from a similar
domain: 2D flow simulations. This allows us to test the general appli-
cability of a trained MTNN model across the same domain. Following
the previous work, we de-noise each merge tree for a pre-determined
threshold τ as follows: given a node pair (s,m), where s is a local mini-
mum and m is its emerging saddle point, the persistence is computed
for each pair, p = f (m)− f (s), where f (s) and f (m) are the function
values at node s and m, respectively. If p is less than τ , then node s and
its connecting edge are removed with the children of s being directly
connected to m. Nodes are processed in reverse order of persistence.
This results in the merge tree having fewer nodes and edges, with only
the significant features remaining. More information on merge tree
simplification can be found in [17, 46, 53]. The number of merge trees
and range of node counts after simplification for each are summarized
in Table 1.

As mentioned, all merge trees used are join trees., although the
approach could have also easily used split trees. The comparison uses a
simplified tree based on the same parameters of previous work. Finally,
we used the standard random split, 80% and 20%, of all the merge trees
as training and testing sets for each dataset.

MT2k This dataset is 2000 synthetic 3D point clouds with two
distinct classes. The first features three noisy tori, and the second class
contains three noisy tori plus one noisy sphere. Each point cloud is
constructed by synthetically sampling 100 points from the respective
geometric shapes. Random noise is added during the sampling to
ensure the uniqueness of each data point. Corresponding merge trees
are constructed for each point cloud to represent their topological
features. We apply a persistence threshold (τ = 0.1) in the merge tree
simplification process.

Corner Flow This dataset is 1500 time steps from a simulation
of 2D viscous flow around two cylinders [3, 38]. Following [53], we
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Fig. 9: Time steps of the 2D Heated Flow simulation dataset.
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Fig. 10: Time steps of the 2D von-Kármán Vortex Street dataset.

generate a set of merge trees from the vertical component of the velocity
vector fields. We also use the same persistence threshold (τ = 0.2) for
merge tree simplification as the previous work. See Fig. 8.

Heated Flow This dataset is from a simulation of the 2D flow
created by a heated cylinder using a Boussinesq Approximation [22,
38]. Following [53], we convert each time instance of the flow into a
scalar field using the magnitude of the velocity vector. The persistence
simplification threshold used here is the same as the previous work (τ =
0.06). See Fig. 9.

Vortex Street This is an ensemble of 2D regular grids [22, 38],
each with a scalar function defined on the vertices to represent flow
turbulence behind a wing, creating a 2D von-Kármán vortex street.
Following [53], we use the velocity magnitude field to generate merge
trees and apply a persistence simplification with the threshold (τ = 0.05)
to the merge trees. See Fig. 10.

TOSCA This dataset [12] contains a collection of different, non-
rigid shapes of animals and humans. Following [46], we compute the
average geodesic distance field on the surface mesh. Like the previous
work, persistence simplification is used with the threshold (τ = 0.01).
See Fig. 11.

6.2 Implementation Details
Merge trees are computed using TTK [48] and Paraview [45] is used
for dataset visualization. Our implementation utilizes PyTorch [35].
We employ a three-layer GIN [52] as the encoder network with ReLU
activation function with all weights initialized randomly. The output
dimensions for the 1st, 2nd, and 3rd GIN layers are 64, 32, and 16,
respectively. In the NTN layer, we specify K = 16. Following the
approach in [4], we use 16 histogram bins for pairwise node embedding
comparisons. For training, we choose the Adam optimizer [26], setting
the learning rate to 0.001 and the weight decay to 0.0005. The model
is trained with a batch size of 128 over 100 epochs. All datasets are
converted into standard dataloaders compatible with PyTorch Geomet-
ric (PyG) [18] for GNN processing. To present each technique in the
best light, we computed all timings for our ground truth distance [53]

https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/stable/
https://pytorch-geometric.readthedocs.io/en/stable/


Fig. 11: Example 3D models from the TOSCA dataset.

Fig. 12: Comparison of computational times for merge tree distance [53]
and MTNN across different datasets. Times are presented in log scale.
(Runtime for merge tree distance is computed with 16 cores)

on a machine with a 16-Core (8P/8E) Intel I9-12900K CPU @ 5/4 GHz
with 32 GB memory, as the approach benefits most from multiple cores.
MTNN timings are computed on a machine equipped with a six-core
Intel i7-6800K CPU @ 3.50GHz, 68GB of memory, and an Nvidia
3090Ti GPU, since it benefits most from a better GPU.

6.3 Evaluation Results
We evaluate the proposed approach from two perspectives: effective-
ness and efficiency. For effectiveness, we compute the distance between
the predicted similarity and our ground truth distance [53] using mean
squared error (MSE), the standard for learned graph similarity valida-
tion. For efficiency, we record the wall time needed to compute the full
pairwise similarity matrix for the testing set.

Effectiveness Table 2 provides quality results for our machine
learning approaches. This includes the initial GCN, improved GIN, and
our final MTNN model with topological attention. This study focused
on models trained and tested on the same (split) dataset. For readability,
we have scaled each by 103. Since both our ground truth and similarity
output are in the [0,1] range, the error is < 0.1%. Therefore the MSE
between our approach and the ground truth is extremely low. The table
also shows that the GIN model consistently outperforms our initial GCN
model. Finally, our MTNN model in this scenario is comparable to or
better than our GIN formulation. Our MTNN approach outperforms
GIN in cases of higher GIN error, but has diminishing returns as the
error lowers.

Table 3 explores the generalizability of our models. As before, all
error results are scaled by 103 for readability. First, we tested the quality
of our similarity measure in a scenario where the model is trained on

Table 2: MSE error for test datasets for GCN, GIN, and our MTNN
networks. Each dataset was trained on a standard split of the source
data. All results are scaled by 103 for readability, as our errors are
extremely low. This means that all trained networks reproduce the
similarity very close to the ground truth. Our MTNN network improves
the quality of the reproduction, but not in cases where GIN error is already
extremely low.

Dataset GCN GIN MTNN

MT2k 0.53819 0.18996 0.10408
Corner Flow 65.23393 0.00145 0.00312
Heated Flow 36.36125 0.00468 0.00263
Vortex Street 470.82582 0.00008 0.00018
TOSCA 12.60986 0.01542 0.00986

Table 3: MSE error for our datasets on models trained on other data. On
the left is the error of applying the MT2k-trained model. On the right is a
new model trained with a mix of Corner Flow, Heated Flow, and Vortex
Street. Our topological attention is most effective in this scenario, leading
to the lowest error values for each model (bold). Our synthetic MT2k
performs best on the 3D shape dataset, while the model trained on the 3
separate flow datasets is best for the flow data (underlined). All results
are scaled by 103 for readability, so all models return a low error with
most < 0.1%.

Trained on MT2k Trained on CF + HF + VS
GCN GIN MTNN GCN GIN MTNN

Corner Flow 83.93713 0.03507 0.01795 17.20086 1.60534 0.00862
Heated Flow 57.93813 0.16013 0.00501 32.83913 0.23754 0.00573
Vortex Street 541.03814 113.24254 3.78652 178.93201 63.92713 0.17532
TOSCA 27.9381 3.17674 0.2016 37.8729 8.03914 1.63408

merge trees from one data type but is applied to other types. For this,
we used a model trained on the synthetic MT2k dataset. The table
shows that the error is quite low even though we use merge trees from
a 3D point cloud on very different data (i.e., 2D flows and 3D shapes).
MT2k is also a fairly limited and constrained data source. The quality
of these results shows that the MTNN model has the potential to be
generally applied.

Next we tested how a model trained on a mix of like data performs.
In this scenario, we trained on the combination of the Corner Flow,
Heated Flow, and Vortex Street training sets, each sampled equally
by 800. This model was then applied to our test sets. As is shown,
the error is very low for our vector field datasets. This means that
our model seems to generalize well across fields from this domain.
In addition, it performs quite well on the 3D shape dataset but not
as well as the MT2k-trained model. This makes intuitive sense since
TOSCA and MT2k are both geometric 3D datasets. Therefore, with
these results, we can postulate that this model can be generalized with
low error. However, for the lowest error possible, it is best to train on
data in the same domain but not necessarily from the same source (e.g.,
simulation).

Efficiency As stated in the beginning, this work aims to create an
approach that can compute merge tree similarity, not only faster than
the state-of-the-art, but also at speeds that could potentially support
real-time analysis. Fig. 12 provides our runtimes compared to the
fast merge tree distance calculation of [53]. Also, as detailed in the
introduction to this section, we chose machines from our available
hardware on which each technique performs best (i.e., more cores vs.
a better GPU). Timings are based on the total time to compute all
pairwise distances for each test dataset. Note that the times are plotted
in log scale. As this figure shows, not only are we significantly faster,
we are orders of magnitude faster ([2-5], 3 median). In addition, the
time to compute similarity for a single pair of merge trees is so small
that it can be considered negligible. Therefore MTNNs can potentially
support interactive queries.

Table 4 shows the training times for each dataset using our approach.
This demonstrates the efficiency of our method, which is comparable
to other GNN methods. Note that these timings are insignificant when



Fig. 13: Topological attention on two merge trees from the TOSCA
dataset. Each row displays the merge tree visualized by the relative
importance, with example inserts within the merge trees. Left: node
importance without topological attention, using the GIN model. The
node colors indicate their relative importance when comparing the two
examples (the darker with red, the higher the weight). Right: node
importance with topological attention using the MTNN model. The GIN
model already emphasizes structural differences between the two merge
trees. But, the introduction of topological attention further emphasizes
these differences, re-weighing the nodes in the high persistence feature
highlighted in cyan.

Table 4: Training times for different datasets (hours).

Dataset MT2k Corner Flow Heated Flow Vortex Street TOSCA

Training Time (h) 4.28 2.86 3.83 1.93 3.95

compared to the time needed to compute the ground truth distances for
training. Additionally, our model is potentially generalizable across dif-
ferent datasets, as shown in Table 3, possibly mitigating training costs.

6.4 Further Analysis and Visualization
To further assess our method, we visualize the effect our topological
attention mechanism has on merge trees. Fig. 13 gives an example pair
from TOSCA. Attention weights on merge tree nodes are displayed
in red, with the intensity indicating the weight magnitude: the darker
the red, the higher the weight. This figure shows node importance
with (left) and without (right) our topological attention mechanism.

As highlighted in cyan, the high persistence feature in the human
model increases in weight due to our attention approach, which makes
intuitive sense. It is interesting to see that the saddle point associated
with the global maximum obtains more weight after applying topologi-
cal attention in both the human and cat models. For the cat model, the
left saddle point associated with the global maximum becomes more
important, and the overall leaf node becomes less important. In the
human model, the right saddle point gains more importance, and only
the leaf node of the left subtree becomes less significant. These ob-
servations indicate that topological attention is highly data-dependent.
This dependency demonstrates the usefulness of topological attention,
as it adapts to the unique characteristics of each dataset, highlighting
critical features that might otherwise be overlooked.

The extremely low error, as detailed in Table 2, demonstrates that
our method accurately learns pairwise similarities, motivating us to
explore how well it reproduces the entire similarity matrix. We ap-
plied multidimensional scaling (MDS) [13] to the similarity matrix
constructed from our ground truth merge tree distance [53] and the
matrix formed from MTNN. MDS maps these matrices into 2D space,
which we can visualize side-by-side. We assigned colors to each point
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Fig. 14: Results from multidimensional scaling (MDS) analysis. Two MDS
maps represent each dataset. On the top are the maps created using a
similarity matrix based on the ground truth merge tree (MT) distance [53].
On the bottom are maps generated from a similarity matrix of MTNN.
The coloring indicates the mean distance, showing how close or far
points are from each other in the MDS space. Comparing the two maps
shows similar patterns in colors and point arrangements. This similarity
indicates that MTNN effectively learns and reflects the relationships
between points.

in the MDS plots based on their average distance to other points. If
MTNN captures the similarity of our ground truth, we would expect
to see similar color patterns and point arrangements. While there are
some differences in the visualization, on the whole, as demonstrated in
Fig. 14, the structures and patterns are indeed similar.

7 CONCLUSION

In this study, we addressed the challenge of topological comparison,
focusing specifically on merge trees. By reconceptualizing this problem
as a learning task, we introduced merge tree neural network (MTNN)
that employs graph neural networks (GNNs) for comparisons. Our
approach is both fast and precise leading to comparisons that are orders
of magnitude faster and extremely low in added error when compared
to the state-of-the-art.

MTNN is the first deep learning model specifically designed for
merge trees comparison, combining modified GNNs with novel topo-
logical attention to jointly learn the distance metric and topological
properties of merge trees. MTNN introduces several key technical
advancements over standard GNNs like GCN: (1) MTNN addresses
node count discrepancies in merge trees comparison by employing
GIN for node embedding computation, emphasizing the differences
in node counts; (2) MTNN enhances the representation of topological
information by initializing node features with function values derived
from the merge tree; (3) MTNN incorporates topological attention by
explicitly integrating persistence information into the aggregation func-
tion, enabling the model to capture and utilize the intrinsic topological
properties of merge trees more effectively.

While our method represents a significant advancement in merge
tree comparisons, it also presents challenges, such as the need for data
to train. However, our experiments demonstrate the model’s potential
for generalization, which can mitigate this issue in its practical applica-
tion. In addition, our test datasets only needed training sets of size in
the hundreds or low thousands, which is relatively low for accurately
trained models.

Future directions for our work include applying our merge tree com-
parisons to various analytical tasks in scalar field analysis, such as
fast topological clustering or error assessment in approximated scalar
functions. A key focus of our future work will be exploring more appli-
cations and datasets that could benefit from the use of merge trees. Our
work opens up a new direction at the intersection of machine learning
and topological data analysis. We believe that our work will encour-
age further investigations and developments in this emerging field,
driving advancements in both theoretical understanding and practical
applications.
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