
Evaluating and extending speedup techniques
for optimal crossing minimization in layered graph drawings

Connor Wilson , Eduardo Puerta , Tarik Crnovrsanin , Sara Di Bartolomeo , and Cody Dunne

These ���������
correspond to techniques

for speeding up the
layout algorithm.

We apply di�erent
combinations to achieve

faster optimal layouts.

Symmetry breaking

Butter�y reduction

Heuristic starting

assignment

Polyhedral constraints

Collapse leaf nodes

Mirrored variables

Cycle constraints

Continuous variables

Branch on x-vars
10 75 140

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

10 75 140

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

Fig. 1: We aim to create faster and more scalable methods of fnding layered graph layouts with the minimum number of crossings.
We characterize nine techniques to improve the performance of an integer linear programming (ILP) formulation and empirically test
their improvement. We call these switches since they can be toggled and combined. Here, we show the performance of two switches
and highlight an optimal control fow graph layout from our case study, with fnal node placements generated by the bendiness reduction
of Di Bartolomeo et al. [9] performed in sequence after crossing minimization (full layouts available at https://osf.io/5vq79). These
control fow graphs can grow very large but beneft from minimal crossing visualizations to aid human task performance.

Abstract—A layered graph is an important category of graph in which every node is assigned to a layer, and layers are drawn as parallel
or radial lines. They are commonly used to display temporal data or hierarchical graphs. Previous research has demonstrated that
minimizing edge crossings is the most important criterion to consider when looking to improve the readability of such graphs. While
heuristic approaches exist for crossing minimization, we are interested in optimal approaches to the problem that prioritize human
readability over computational scalability. We aim to improve the usefulness and applicability of such optimal methods by understanding
and improving their scalability to larger graphs. This paper categorizes and evaluates the state-of-the-art linear programming formulations
for exact crossing minimization and describes nine new and existing techniques that could plausibly accelerate the optimization algorithm.
Through a computational evaluation, we explore each technique’s effect on calculation time and how the techniques assist or inhibit one
another, allowing researchers and practitioners to adapt them to the characteristics of their graphs. Our best-performing techniques
yielded a median improvement of 2.5–17× depending on the solver used, giving us the capability to create optimal layouts faster and for
larger graphs. We provide an open-source implementation of our methodology in Python, where users can pick which combination of
techniques to enable according to their use case. A free copy of this paper and all supplemental materials, datasets used, and source
code are available at https://osf.io/5vq79.

Index Terms—Integer linear programming, layered graph drawing, layered network visualization, crossing minimization, edge crossings

1 INTRODUCTION

In a layered graph, every node in the graph is assigned to a layer and
edges connect nodes in different layers. Layered graphs (also called
layered networks) are commonly used to represent sequential and hierar-
chical relationships across a wide variety of domains, including machine
learning [33, 54], biology [5], the humanities [20], and more. Usually,
layered graphs are shown using node-link visualizations, which means
that human task performance in reading them heavily depends on the spa-
tial layout of nodes and edges [2]. Computing this layout is most often
done using heuristic algorithms which are fast, but produce suboptimal

• The authors are all with Northeastern University. E-mail: [wilson.conn |
puerta.e | t.crnovrsanin | dibartolomeo.s | c.dunne]@northeastern.edu.

Manuscript received xx xxx. 201x; accepted
xx xxx. 201x. Date of Publication xx xxx. 201x; date of current version xx xxx.
201x. For information on obtaining reprints of this article, please send e-mail
to: reprints@ieee.org. Digital Object Identifer: xx.xxxx/TVCG.201x.xxxxxxx

results, particularly for sparsely connected graphs [31, 46]. Conversely,
other methods focus on the optimality of the result but require more time
and computational resources and are, therefore, less scalable.

Straightline edge crossing minimization is the most important
aesthetic criterion for graph readability [25, 42]. The goal is to create
a node-link visualization for a given graph with the fewest number
of edges that cross over each other. Traditionally, this is done using
heuristics which quickly produce layouts with few crossings. Notably,
the Sugiyama framework for graph visualization [46] breaks this into
steps: nodes are frst assigned to layers, and are reordered within layers
using a barycentric method to produce a drawing with few crossings.
This approach creates very readable graph visualizations, and is widely
used in graph drawing libraries [4, 17].

Typically, methods are implemented with the goal of balancing the
runtime and optimality of the layouts generated, but in this paper we
focus on the creation of layouts with a provably-optimal number of
overlapping edges. Not only does the optimal crossing minimization
approach create more readable graphs, but it can also be used to

https://orcid.org/0000-0002-6936-4078
https://orcid.org/0000-0003-4664-4365
https://orcid.org/0000-0002-4397-5532
https://orcid.org/0000-0001-9517-3526
https://orcid.org/0000-0002-1609-9776
https://osf.io/5vq79
https://osf.io/5vq79
mailto:wilson.conn@northeastern.edu,puerta.e@northeastern.edu,t.crnovrsanin@northeastern.edu,dibartolomeo.s@northeastern.edu,c.dunne@northeastern.edu
mailto:wilson.conn@northeastern.edu,puerta.e@northeastern.edu,t.crnovrsanin@northeastern.edu,dibartolomeo.s@northeastern.edu,c.dunne@northeastern.edu
mailto:reprints@ieee.org

benchmark the speed of heuristic layout algorithms and the readability
of their layouts. However, optimal layouts can take a long time to
compute, making heuristics more suitable for larger graphs.

This paper focuses on speeding up the creation of provably-optimal
layouts using Integer Linear Programming (ILP). The advantage of
ILP formulations is that they allow us to use powerful existing solvers,
many of which are commercially available and very quick in practice.
As ILP techniques and computer speeds improve, the computational
cost of these exact methods approaches the realm of practicality
for larger and larger graphs, leading researchers to speculate that
optimal techniques will eventually replace heuristics for layered graph
layouts [16]. Another beneft is that ILP is extremely fexible—we can
combine constraints for whichever criteria we desire into a combined
ILP model and explicitly input how much we want the result to favor
one criterion over the others [9, 16]. Finally, ILP is uniquely positioned
to solve specifc problems, such as the layout of sparse graphs, which
are often in greatest need of minimal crossing visualization due to the
increased importance of individual edges. While heuristics perform
worse on sparser graphs, ILP’s performance skyrockets [31].

In this paper, we present two standard formulations for layered cross-
ing minimization ILP and analyze nine techniques for improving runtime
across a range of input sizes. To our knowledge, no prior research has
reported on the use of two of these nine techniques, nor has any research
empirically validated any of the techniques or transitivity formulations
we present. To make optimal layered crossing minimization feasible on
larger graphs, we categorize existing approaches and classify the perfor-
mance of each of nine techniques for each of two transitivity types on a
3,200-graph dataset. We then perform a comprehensive benchmark study
of 1,280 different ILP formulations on a dataset of 1,700 graphs, to com-
pare the combined performance benefts of the different techniques. Fi-
nally, we illustrate our formulation with a case study on visualizing code
control fow and compare it with existing formulations in this application.

Specifcally, this paper contributes to layered graph visualization:
1. An empirical comparison of nine new and existing techniques

for faster exact crossing minimization and their scalability to larger
graphs, using two different base formulations and two ILP solvers,

2. A case study demonstrating the practicality of our recommended
method applied to control fow graphs, and

3. An open-source implementation of our exact crossing mini-
mization algorithm in Python for both Gurobi 10.0 [21] (license
required) and HiGHS 1.5 [26] (fully open source), available on
OSF at https://osf.io/5vq79.

2 BACKGROUND AND RELATED WORK

In the following section, we discuss relevant extant layered graph
drawing algorithms. We also survey important heuristics, and
describe notable optimal algorithms, including ILP formulations and
optimization approaches. A review of general graph visualization and
graph drawing is outside the scope of this discussion. However, for an
introduction, see Tamassia’s book [47], Gibson et al.’s survey [19], and
the following systematic review of computational evaluations of graph
layout algorithms [7].

2.1 Layered Graphs

A layered graph G, also referred to as a layered graph, is a structure
consisting of a set of vertices V (also referred to as nodes) and edges E,
where each edge connects two vertices, and a layering L. The layering
is a function L : V → {1,2,3,...,K}, where K is the number of layers
in G. We call a layered graph proper if, for all (i, j) ∈ E, we have
|L(i)−L(j)|= 1. That is, all edges in a proper layered graph are between
consecutive layers, an important property for the use of the formulations
outlined in this paper. When graphs contain edges traversing more than
one layer, we split them up into sections using anchor or dummy nodes
as per Gansner et al. [17]. We refer to the number of nodes in the graph
after this dummy node insertion as total nodes. We then consider a
drawing to be an assignment of nodes to 2-dimensional coordinates,
where nodes in the same layers are drawn aligned, and these layer lines
are parallel and ordered consecutively. For the purposes of layouts in
this paper, layers are drawn vertically.

Layered node-link graph visualizations are used to represent hier-
archical and sequential relationships between entities [23]. These are
useful for visualizing medical time series [1], SQL queries [9], and
navigation techniques [24], for example. Layers can be provided as part
of the data or assigned as a step in the algorithm. Many criteria infuence
the readability of these visualizations. Purchase found edge-crossing re-
duction to have the most signifcant impact on the readability of relations
in a graph [42]. In later work, she formalized seven metrics to measure
the aesthetic criteria that infuence the readability of graph layouts [43].
Hence, layout algorithms range from optimizing some of these criteria,
such as minimizing edge bends [9,46], to constraining the design conven-
tions of specifc domains, like calculating readable metro maps [37, 41].
While many of these metrics are studied, we focus on crossing minimiza-
tion as it is the most important metric for many tasks [42, 53].

Many fast but suboptimal heuristic algorithms have been proposed to
minimize edge crossings for layered graphs. Among the most prominent,
the Sugiyama framework [23, 45, 46] consists of assigning layers to a
graph and then sweeping through them to permute nodes with a barycen-
ter heuristic. Eades and Wormald proposed a similar method in 1994,
with a median heuristic to compute the positions of nodes [14]. In their
paper, they also utilized dummy nodes to ensure multilevel graphs have
a proper layering. This technique is still commonly used and allows us
to make formulations for layered graphs that would otherwise not be
proper. A few years later, Eades, alongside Lin and Tamassia, presented
a degree-weighted barycentric method [13]. All these methods focus
on iteratively sweeping through layers and computing “average” posi-
tions of nodes, with the main differences among them being how they
defne average. The original barycentric heuristic [46] has exceptional
performance [31] and is often implemented in graph visualization li-
braries [27]. Matuszewski et al. [36] propose a k-layer sifting method that
often outperforms the barycentric method at the expense of being slower.

2.2 Optimal Algorithms for Layered Graphs

Alternative to heuristic approaches, graph layouts can be computed by us-
ing precise mathematical expressions, which can be solved for provably
optimal solutions. However, fnding a minimum crossing drawing for
a layered graph is NP-Complete [18] due to the combinatorial nature of
reordering nodes. Hence, many approaches in the literature have focused
on improving the performance and scalability of existing algorithms. In
presenting their framework, Suyigama et al. proposed exact algorithms
for permuting nodes within layers subject to a prior layer assignment step.
For the exact layout, they designed their objective function to minimize
the vertical distance between every pair of nodes at the end of each edge,
which is a quadratic optimization problem [46]. Gansner et al. added
more constraints to linearize the method proposed by Sugiyama [17].

Optimal Formulations using ILP. Jünger and Muntzel proposed
a branch-and-bound algorithm to minimize crossings in 2-layer
graphs [30]. That same year Valls et al. also proposed another
branch-and-bound method [50].

We call a formulation a way to defne a desired property as a
set of integer variables and linear constraints. An ILP model is an
encoded formulation (or multiple formulations) with a corresponding
optimization goal given to an ILP solver. ILP solvers programmatically
fnd an integer assignment to the variables that satisfy all constraints such
that the optimization expression is minimized/maximized. ILP solvers
leverage years of research [28], and commercial solvers such as Gurobi
report yearly performance increases [21]. Therefore, we expect ILP
solvers’ increased performance to translate to more viable and scalable
optimal formulations. This paper aims to compare the performance of
existing ILP models by combining techniques that alter the formulations
themselves or infuence the solver. Below, we discuss the varied
formulations and optimization techniques found in the literature.

Extant ILP Formulations. In 1997, Jünger and Mutzel proposed an
ILP formulation to permute the nodes in the 2-layer case to reduce cross-
ing numbers [30]. They further developed a multilayer approach [31] us-
ing the dummy node strategy. Their formulation directly ensures the tran-
sitivity of nodes by outlining constraints on the vertical position variables
for each pair of nodes. Di Bartolomeo et al. presented another notable
formulation in Stratisfmal Layout [9]. While many other formulations

https://osf.io/5vq79

Table 1: Notation Used in This Paper

Transformed node set of G with dummy nodes inserted
on long edges and |V ′ | total nodes.

V ′

Er All (u,v)∈ E such that L(u)= r and L(v)=r+1.

K Number of layers in G.

Binary variable denoting the relative position of nodes
i and j in the layout.

xi,j

Binary variable denoting if edges (i,k) and (j,l) cross.c(i,k),(j,l)

A layered graph G with vertex set V , edge set E, and
layer assignment on the vertices L :V →{1,2,...,K}. G=(V,E,L)

ensured transitivity via direct constraints, Stratisfmal Layout implies this
property by assigning indexed positions to nodes within layers when min-
imizing edge length. Indices are natural numbers, which are transitive on
the “greater than” relation (>). Di Bartolomeo et al. formalized vertical
position constraints as a set of implications relating direct transitivity
constraints to node positions. They proceed to linearize these implica-
tions with a conversion that introduces auxiliary variables to provide
constraints for the ILP. Stratisfmal Layout still implements the direct
transitivity constraints, which creates redundancy in their formulation.

Notable Speedup Approaches. The corpus of ILP formulations also
consists of strategies to improve the solver’s performance. To our knowl-
edge, we are the frst to empirically evaluate these when combined and
compared across different transitivity formulations. Gange et al. provide
a comprehensive evaluation of ILP and MIP solutions for layered cross-
ing minimization using a few of the switches outlined in our work [16]—
the closest computational evaluation to ours in scale of anything we could
fnd in the literature. They propose symmetry breaking, collapsing leaf
nodes, and an improved set of constraints based on the vertex exchange
graph introduced by Healy and Kuusik [22] as potential improvements.

Mutzel proposed leveraging the planarity of graphs on their
formulation by considering constraints based on subgraphs that
guarantee the existence of a crossing [39]. Their work started with
the 2-layer case [40] and was later extended to k-levels by Healy and
Kuusik [22]. Notably, Mutzel described how cycles in 2-layer graphs
guarantee the existence of crossings. Their approach involved creating
constraints that checked for the existence of such subgraphs. Conversely,
we use this insight to remove crossing constraints with known solutions.

Zarate et al. abstracted Sankey Diagrams as layered graphs and
propose an ILP approach for their layouts [56]. They added symmetric
variables on crossings to hone in on possible solutions to increase
performance. Some ILP literature discusses how adding redundant
variables can help the formulation determine solutions faster [32]. They
noticed that if there is a crossing between two vertices, it does not matter
which vertex we consider the frst one in our notation the crossing is
still there. However, adding redundancy is theoretically justifed but
not experimentally verifed. They also proposed enhancing the solver’s
performance by branching on the binary position variables (x-vars).
Branch-and-bound techniques are often used in ILP problems to fnd can-
didate solutions [38]. Their formulation included a crossing constraint,
with x,c∈{0,1}. However, they highlight that since x-vars constraints
are binary, the crossing variables (c-vars) must be integers. Therefore,
they mention they do not have to enforce the constraints that c-vars are
also binary since the crossing constraints imply this. Nonetheless, they
claim that adding branching priorities on x-vars is more effcient, telling
the solver these are more important in fnding the solution space.

Some of these optimizations inspire the “switches” used for the differ-
ent experiments we run to evaluate the performance of different models,
which we further discuss in their respective sections. We also compare
the formulations of Jünger et al. [29], Zarate et al. [56], Gange et al. [16],
and Di Bartolomeo et al. [9] to our own in the context of a case study.

3 METHODOLOGY

Modern ILP solvers allow complex problems to be solved much more
quickly than brute force, provided the problem can be formulated as a set
of linear constraints. Exact layered crossing minimization is one such
problem. We frst defne the standard formulation for layered crossing
minimization, which is a way to transform any input graph into a set of

variables and linear constraints. This formulation has the property that
if we can fnd the assignment to the variables with minimum crossing
variable sum, it will correspond to the layout of the graph with the
minimum possible edge crossings. We then describe two variations
of this formulation which we will later compare empirically. Next, we
detail nine “switches”, which modify the formulation and ILP solver
in ways that could improve the speed of exact crossing minimization
while still returning an optimal solution.

3.1 ILP Formulation

Existing techniques for formulating layered crossing minimization
using ILP follow the same standard template. We assume a proper
layered graph G is given, with a layer assignment L :V →{1,2,...,K}
for every node in V , such that all edges in E connect nodes in different
layers. Given G, we say the following variables and constraints defne
the standard model MG:

• Position variables, denoted xi, j , corresponding to two nodes i and
j. These are defned for every pair of nodes in the same layer. If
i is drawn above j in that layer we write xi, j = 1, and if i is below
j we write xi, j =0.

• Crossing variables, denoted c(i,k),(j,l), corresponding to whether
or not edges (i,k) and (j,l) cross in the drawing of the graph. They
are defned when i, j,k, and l are all unique, for every pair of edges
between the same consecutive layers. If (i,k) and (j,l) cross, we
write c(i,k),(j,l) =1; if they do not, we write c(i,k),(j,l) = 0.

• Crossing constraints, which are given in [9, 56], and in [29] as
a set of inequalities equivalent to:

c(i,k),(j,l)+x j,i +xk,l ≥1
(1)

c(i,k),(j,l)+xi, j +xl,k ≥1

These are defned for every crossing variable c(i,k),(j,l), and
enforce c(i,k),(j,l) ≥ 1 if (i, k) and (j, l) cross. This concept is
illustrated here:

The frst equation enforces c(i,k),(j,l) = 1 when i is above j but k
is below l (illustration 2 above); the second enforces c(i,k),(j,l) = 1
when i is below j and k is above l (illustration 3). Note that these
constraints can be added only if G is a proper layered graph.

• Transitivity constraints, see Sec. 3.2.
When combined into an ILP model, valid assignments to position

and crossing variables correspond to a layout of the input graph. The
sum of all crossing variables is the number of crossings in this drawing.
Therefore, the assignment to these variables with the smallest sum

K−1
OBJ = ∑ ∑ ce1,e2 (2)

r=1 e1,e2∈Er

represents a layout with the fewest crossings. This is the objective
function the ILP solver seeks to minimize. The goal of the ILP solver
is to assign binary values to all x- and c-variables such that the crossing
and transitivity constraints are satisfed and the sum Eq. (2) is minimal.

So, given some input graph, we encode it using the above constraints
to form an ILP model. This is passed to an ILP solver, which works
to fnd assignments minimizing the objective function OBJ, and
we can post-process these assignments to create and visualize the
crossing-minimized drawing.

3.2 Transitivity Constraints

Since node placements are encoded using their position relative to other
nodes instead of absolute position, it is necessary to include constraints
that prevent non-transitive assignments. In order for the variable
assignments produced by the ILP solver to correspond to a valid layout,

there must be additional constraints that ensure the x-variables are not as-
signed values by the ILP solver which disobey transitivity. For instance,
if we start with a graph that has three nodes i, j, and k in the same layer,
nothing stops our ILP solver from setting xi, j = 1, x j,k = 1, and xi,k = 0.
But if we decode what this is actually saying, we fnd out that the ILP
solver has just told us to draw i above j, j above k, and k above i—this
is impossible since we cannot draw i simultaneously above and below k.

There are multiple ways of encoding this transitivity relationship as
an ILP constraint, which we will compare empirically.

3.2.1 Direct transitivity constraints
The original formulation of Jünger et al. [29] enforces transitivity
directly on all triples of nodes in the same layer:

xi, j +x j,k −xi,k ≤ 1
(3)

xi, j +x j,k −xi,k ≥ 0

Equation (3) enforces the relationships xi, j = 1∧x j,k = 1 ⇒ xi,k = 1
and xi, j = 0 ∧ x j,k = 0 ⇒ xi,k = 0, which comes directly from the
defnition of a transitive relation. That is, if we have that i is above j
and j is above k, we require that i is above k. Similarly for the converse,
if we have i below j and j below k, we require that i is below k. These
are added to the ILP model for every combination of nodes i, j,k in the
same layer, guaranteeing a transitive relationship across the entire layer.
This generates O(|V |3) constraints.

3.2.2 Vertical position transitivity
Di Bartolomeo et al. [9] defne an additional integer-valued variable y
for each node representing the vertical position of the node when drawn.
For this to work, we require constraints that ensure that assignments
to x-variables (the relative positions of nodes) are consistent with
assignments to y-variables (the absolute position of each node). The
following inequalities from Di Bartolomeo et al. accomplish this:

zi, j −M ·xi, j ≤0
zi, j −yi −M ·xi, j ≥−M

y j −zi, j −xi, j ≥0 (4)
zi, j −yi ≤0

zi, j ≥0

These constraints implicitly enforce transitivity on the x-variables,
and the authors also use them to relate the x-variables to vertical position
y-variables to better control the placement of nodes in the resultant layout.
M is a fxed upper bound which is set to the size of the largest layer. Eq. (4)
also requires an additional variable zi, j for each variable xi, j, and adds
O(|V |2) constraints to the model in total. For large graphs, this adds far
fewer constraints than Eq. (3). Advanced solvers such as Gurobi [21] can
perform this linearization automatically provided xi, j = 1 =⇒ yi < y j
and xi, j =0 =⇒ y j > yi for each xi, j, the constraints encoded by Eq. (4).

3.3 Switches

Having defned the ILP formulation for crossing minimization, we now
detail nine techniques we call “switches”. In contrast to formulations,
switches can be toggled on and off but never alter the value of the
solution found by the model. Switches are defned as modifcations to the
variables and constraints in an ILP model, or alterations to the behavior
of the ILP solver, in a way that does not affect the optimal solution.

The purpose of these switches is to try and improve the runtime of the
ILP solver and its ability to scale to larger graphs. This is accomplished
by restricting the space of all possible solutions or giving hints to the
solver that guide it toward the optimal solution. Due to the nature
of exponential growth, ILP models will always reach a point where
the inputs get too big, causing runtime to rapidly increase, thereby
dramatically decreasing the feasibility of solution-fnding for graphs
past a certain size. Our goal in defning these switches is to try to reduce
the time complexity of crossing minimization, even if some additional
overhead is required. This expands the range of feasible graph sizes
for the optimizer. To that end, we frst summarize the action behind

Table 2: Switch Descriptions

1. Symmetry breaking: Select the x-variable which
appears in the most crossing constraints and fx it to be
0 before optimizing the model.
2. Butterfy reduction: For each crossing variable
c(i, j),(k,l) whose edges form a butterfy, add the constraint
c(i, j),(k,l)+c(i,l),(k, j) =1.
3. Polyhedral constraints: For each 2-layer 3-claw
motif W , add the constraint ∑W c ≥(i, j),(k,l) 1, and add the
additional dome-path constraints.
4. Mirrored variables: Add both xi, j and x j,i to the
model for all pairs of nodes i, j in the same layer, and
implement the symmetry constraint xi, j =1−x j,i.
5. Cycle constraints: For each fundamental cycle C in
the vertex exchange graph, add constraints 2kC =∑e∈Cce
for even-labeled and 2kC + 1 = ∑e∈C ce for odd-labeled
cycles.
6. Collapse leaf nodes: Replace leaf nodes in the same
layer with one single node, and set the weight of its edge
to the number of leaves removed.
7. Branch on x-variables: Set the ILP solver branching
priority on the x-variables to the highest level.
8. Heuristic starting assignments: Perform the iterated
barycenter heuristic on the input graph, and assign
starting values to the solver variables according to this
initial layout.
9. Continuous variables: Explicitly defne the crossing
variables c(i,k),(j,l) and vertical position variables yi (if
used) in the model to be positive real numbers instead of
integers.

each switch in Tab. 2 before describing them in detail and explaining
our intuition for why it may improve performance.

Switch 1: Symmetry breaking
Gange et al. introduce symmetry breaking in their model, which is
the process of selecting a single x-variable and fxing it to 0 prior to
optimization [16]. This works because there is functionally no differ-
ence, most importantly in crossing number, between a layered graph
layout and the upside-down version of the same layout. This is visible
in Fig. 1, where the two layouts of the graph at top-left are functionally
the same. So, we can fx xu,v = 0 before optimizing the model without
repercussion. So, fxing one single variable breaks this symmetry and
eases the burden on the ILP solver by one decision variable.

Gange et al. implement this by selecting the x-variable that
corresponds to the frst pair of nodes in the same layer. We extend this
technique by selecting not the frst x-variable, but the x-variable that
appears in the greatest number of crossing constraints. This gives the
solver a starting point to leverage for fnding the optimal assignment
to the other variables and simplifes the model as much as possible.

Switch 2: Butterfy reduction
This switch involves crossing variables whose edges are part of a 2×2
biclique, or butterfy [44]. This graph motif is 2-level non-planar [39].
Zarate et al. [56] make use of this fact by describing an additional ILP
constraint for any butterfy {(i, j),(k,l),(i,l),(k, j)}⊆E:

c(i, j),(k,l)+c(i,l),(k, j) =1 (5)

In Fig. 2a we can see that swapping the within-layer positions of
nodes k and l does not change that the graph has exactly one crossing.
Likewise for swapping the positions of i and j.

Switch 3: Polyhedral constraints
Jünger et al. study the polytope associated with the solution space of the
layered crossing minimization problem [29], and derive several classes
of constraints which are “facet-defning”, meaning they restrict the so-
lution space of the crossing minimization problem as much as possible.

(a) (b) (c)

Fig. 2: Butterfy reduction pictured in (a), 3-claw motif and dome-path
respectively pictured in (b) and (c).

This switch adds all facet-defning constraints described by Jünger et
al., with the exception of two sets of constraints which are cycle-based.
The fndings detailed in the appendices at https://osf.io/5vq79 and the
recommendation of Gange et al. for cycle-based constraints [16] suggest
that these constraints do not signifcantly improve solution time. Further-
more, switch 2 already studies constraints regarding the 4-cycle.

The only other minimal non-planar 2-layer motif besides the butterfy
is the 3-claw [39], shown in Fig. 2b. Jünger et al. describe additional
constraints for any occurrence of this subgraph [29].

∑ ce1,e2 ≥1 (6)
e1,e2∈W

For any pair of edges e1,e2 ∈W such that the vertex point v of W is
part of exactly one of the two edges, for all 3-claws W in G.

The other set of constraints involves dome-paths (Fig. 2c), which
are added for any 2-layer path on four edges and fve nodes i, j,k,l,m:

xk,l −2xk,m +xl,m −c(i,k),(j,l) −c(i,l),(j,m) ≤0
(7)

−xk,l +2xk,m −xl,m −c(i,k),(j,l) −c(i,l),(j,m) ≤0

Switch 4: Mirrored variables with symmetry constraints
This switch doubles the number of variables by adding both xi, j and x j,i
to the model. Without this switch on, we assume only one of the two is
added, say xi, j. If a constraint requires x j,i we instead substitute 1−xi, j
(the negation of xi, j). The statement “i is above j” being false implies that
“i is below j” is true, hence this substitution is valid. Turning this switch
on also implements the following symmetry constraints from Zarate
et al. [56]: xi, j = 1 − x j,i and ce1,e2 = ce2,e1 for all x- and c-variables,
enforcing the symmetric relationship of the mirrored variables.

This doubles the number of variables used in the model; however,
redundancy in ILP models has been shown to sometimes improve
solver performance [32]. Other previous works typically follow the
precedent of Jünger et al. [29] who do not use mirrored variables, so
for the purpose of this paper we use the more minimal model as default.

Switch 5: Cycle constraints
Healy and Kuusik describe a structure called the vertex exchange graph
which gives rise to additional ILP constraints [22]. The vertex exchange
graph is created from an input graph G by defning a node ⟨u1,u2⟩ for
every same-layer node pair in G (i.e., one node for every x-variable in
the standard ILP model) and connecting pairs of nodes ⟨u1,u2⟩,⟨v1,v2⟩
with an edge if (u1, v1) and (u2, v2) are edges in G (thus the edges
correspond with c-variables in the ILP model). Cycles in this new
graph are odd-labeled if the sum of the c-variables of the cycle edges
is odd and even-labeled otherwise. If this switch is on, add the following
constraints for each fundamental cycle C in the vertex exchange graph:

For odd-labeled cycles C:

∑ ce ≥1 (8)
e∈C

For even-labeled cycles C:

∑ ce ≤|C|−1 (9)
e∈C

Fig. 3: Example of leaf node collapse. The left graph contains a
node with four leaves, highlighted in red, which are combined into a single
node as shown on the right.

These a reduced set of the original paper’s [22] constraints per the
recommendation of Gange et al. [16] (see the appendices at https:
//osf.io/5vq79 for an evaluation supporting this recommendation).

Switch 6: Collapse leaf nodes
Introduced by Gange et al. [16], this switch is unique from the other
switches in that it directly modifes the input graph. The principle of
the technique is to select a leaf node subgraph—two or more nodes
connected only to a single parent node—and remove all the leaf nodes,
replacing them with a single “collapsed” node and edge. Once the
crossing minimized layout is found, the nodes in this subgraph are
re-inserted back into the graph by squeezing them all into the spot left
by the collapsed node. To ensure optimality, the objective function in
Eq. (2) must be updated to

K−1
OBJ = ∑ ∑ we1 we2 ce1,e2 (10)

r=1 e1,e2∈Er

where we is the weight of the collapsed edge and we = 1 if e is not a
collapsed edge. This procedure works because if it is optimal to place
one leaf node in a certain position, then any other leaf nodes must also
be optimally placed if they are immediately adjacent—all leaves will
incur the same number of crossings.

Switch 7: Branching on x-variables
This switch sets the branching priority of all x-variables to 1 and all other
variables to 0. ILP solvers search for potential solutions by branching
on a decision variable, which involves looking at the potential solutions
when the branch variable is fxed. At each branching point, a variable
is selected randomly from the set of variables with the highest branching
priority that has not yet been branched on [21]. Zarate et al. claim this
yields up to 10× performance improvement for large instances [56].

Switch 8: Heuristic starting assignments
This switch uses the straightforward iterated degree-weighted barycenter
heuristic [13] to provide an initial starting assignment for the solver.
ILP solvers perform an iterative process of fnding assignments to the
variables which progressively get closer to the optimal solution, but
modern solvers allow the user to input a valid starting assignment to
the variables. This is not the same as fxing the variable, as is done in

switch 1, because the solver can change the assignments made
by the starting value parameter.

The barycenter heuristic is widely used for crossing minimization
on layered graphs We use it as a reasonable starting point for the ILP
solver. Providing a starting point is suggested to speed up solution time
as it potentially skips early iterations of the ILP algorithm [21].

Switch 9: Continuous variables
Mixed-integer programming (MIP) solvers have traditionally been
used to solve layered crossing minimization, utilizing a branch-and-cut
approach [29]. Confusingly, the terms ILP and MIP are sometimes
used synonymously. With modern solvers, however, users can defne the
integrality of each variable in the model explicitly, and the solver selects
the best algorithms to use on the back end. This switch makes sure the

https://osf.io/5vq79
https://osf.io/5vq79
https://osf.io/5vq79

Table 3: Datasets Used for Empirical Study

Experiment Graphs |V ′ | Per Bin
By Collection

Rome-Lib AT&T

Ind. switches 3170 10-399 100 2959 211

All combos. 1713 10-399 50 1615 98

x-variables are kept as binary variables, but the crossing c-variables
and vertical position y-variables (if vertical position transitivity is being
used) are explicitly defned to be real-valued.

This does not affect the optimal solution of the model:
• Equation (1) ensures c≥0 if c’s edges do not cross and c≥1 if they

do. Since our objective is to minimize the sum of all c-variables,
real-valued c-variables will still all converge to either 1 or 0 in the
optimal solution.

• “<” is a transitive relation on the real numbers and the integers,
so Eq. (4) still enforces transitivity on real-valued y-variables.

A number of solvers have made advancements in algorithms for
mixed-integer programming (MIP)problems, with Gurobi 10.0 claiming
24% improvement over the previous release for large models.1 It may
improve solution time if we can expressly defne some variables in our
model to be real-valued since MIP algorithms may be more effcient
than ILP algorithms for the same problem [51], or signal to the solver
a more effcient way to treat these continuous variables.

4 EXPERIMENT

We will now analyze the effect these nine switches and the transitivity
formulations have on optimization time via a computational evaluation.

4.1 Dataset
The experiment dataset was composed of graphs from standard
benchmark collections AT&T [10] and Rome-Lib [11], detailed in
Tab. 3. Graphs used are available from the Graph Drawing Benchmark
Datasets Repository [8].

For our frst experiment on individual switch evaluation, we com-
bined the entire AT&T collection of 1,276 graphs with the Rome-Lib
collection of 11,528 graphs and randomly sampled 100 graphs for every
10-node interval up to 400 total nodes. Past the [270,280) interval there
were fewer than 100 graphs per 10-node interval, so no sampling was
necessary. In practice, no run of the experiment completed the full
dataset without being cutoff due to timing out. Note that graph size |V ′|
used for the sampling is in terms of the post-processed number of ver-
tices, see Sec. 4.2.1. This dataset contains 3,170 graphs and is included
at https://osf.io/5vq79 with the code that performed the sampling.

For the second experiment evaluating all combinations of switches,
we performed the same steps as for the previous experiment, with the
exception that we sampled 50 graphs per 10-node interval up to 400
total nodes. Sampling was necessary up to interval [310,320), and as
before, no run of the experiment completed the full dataset. The dataset
for the all-combinations experiment contains 1,713 graphs.

4.2 Procedure

We now discuss how we pre-processed and modifed the graphs to create
proper layered graphs. We also detail the evaluation conducted for
individual switches and all combinations of switches.

4.2.1 Graph pre-processing
The Rome-Lib [11] and AT&T [10] graphs do not have a predetermined
layer assignment, hence one must be created for each graph.

First, we interpret the input graph as directed by assuming the frst
node in each edge is the source and the second is the target for the
Rome-Lib graphs. The AT&T graphs are already both directed and
acyclic [10]. We then applied the greedy cycle removal heuristic of
Eades et al. [12], followed by assigning layers using the minimum width

1https://www.gurobi.com/whats-new-gurobi-10-0/

layering heuristic of Tarassov et al. [48]. They suggest using the layering
with minimum width across all combinations of input parameters
UBW = 1,2,3,4 and c = 1,2, which are tuning parameters specifc to
the minimum-width algorithm. We use only UBW = 4 and c=2 as we
do not require perfect width minimization, and these parameter choices
still consistently produce layered graphs with “rectangular” shapes. I.e.,
they had a similar number of nodes in each layer. This rectangular shape
is desirable as it better approximates real-world layered graphs such
as Storyline graphs and time-series data [1, 20], and gives the drawing
a conventional aspect ratio without much unused space. More trivial
approaches, such as assigning layers based on each node’s level in the
tree created by a breadth-frst search, tend to have a few layers with many
more nodes than the others. Finally, we added back the edges removed
by the cycle removal step to re-create the original graph topology.

After pre-processing to ensure we had layered graphs, we ensured
each graph was proper by replacing edges that skip layers by adding
dummy nodes, following the procedure described by Eades and
Wormald [14]. That is, if (u,v) is a long edge, where L(u)+1 < L(v),
we remove edge (u,v) and add nodes d1,d2,...dr where:

L(d1)=L(u)+1
L(d2)=L(u)+2

. . .

L(dr)=L(u)+r =L(v)−1

We then add dummy edges (u,d1),(d1,d2),...,(dr,v).
This process transforms the graph into a proper graph so that crossing

constraints can be imposed correctly. We refer to the number of nodes
in this processed graph (including dummy nodes) as total nodes, which
may be larger than the number of nodes in the original graph. We
henceforth report data using total nodes as the independent variable,
since we fnd that it more closely correlates with solver runtime than
the number of original nodes.

The resultant graph is transformed into its corresponding set of
linear constraints as described in Sec. 3.1, and they are modifed
according to the choice of switches. These are provided to Gurobi
10.0, a state-of-the-art linear programming solver, which computes the
optimal layered graph drawing.

4.2.2 Individual switch evaluation
For both transitivity formulations, we ran a baseline experiment with
all switches disabled. We also evaluated the effect of turning on only
one of the switches at a time. Therefore, we performed 18 runs of the
experiment for each pair of the two transitivity formulations and nine
switches. With the baseline runs, this left us with 20 sets of results.

Each run comprised solving every graph in the experiment dataset
(Secs. 4.1 and 4.2.1) and recording the solver runtime. We separated
graphs into bins by their total nodes in 10-node intervals. When less
than 75% of the graphs in a bin completed optimization within the
cutoff time of 5 minutes, the run was halted. The two baseline runs were
continued for every graph completed in the nine individual-switch runs
for that formulation. This ensured all data points in the experiment had
a corresponding baseline data point for comparison.

4.2.3 Evaluation of all switch combinations
To fnd the best-performing sets of switches, and to make comparisons
between the different transitivity formulations, we ran an experiment
for all 1024 combinations of switches (29) and formulations (×2).
We used a smaller set of graphs to run the experiment within the time
available. All 1024 formulation-switch combinations were run on the
all-combinations dataset of 1,713 graphs (Tab. 3), with the experiment
halted once fewer than half of the graphs in any 10-node bin were solved
within the cutoff time. The 5-minute cutoff time per graph was changed
to a shorter 1-minute cutoff for this experiment to reduce the number
of compute-hours to perform the experiment. Additionally, the halting
condition was relaxed for this experiment to better compare switch
combinations. Instead, all combinations of switches were evaluated
on all graphs solved by the best-performing combination.

https://visdunneright.github.io/gd_benchmark_sets/
https://visdunneright.github.io/gd_benchmark_sets/
https://osf.io/5vq79
https://www.gurobi.com/whats-new-gurobi-10-0/

10 75 140

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

4

1

10 75 140

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

1

10 75 140

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

4

10 55 100

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

Fig. 4: The left fgure shows performance improvement over the baseline for individual switches. All fgures plot median runtime as a natural log
ratio over the respective baseline, where line color corresponds to the color of the switch. The two center fgures show more detailed information
for the symmetry breaking (1) and mirrored variables (4). The lines are 25% and 75% quartiles, and the darker center line is the median. Data is
truncated once fewer than 75% of the graphs per 10-node interval are solved within the 5-minute cutoff by both the switch technique and the baseline.

Symmetry breaking gives a large performance improvement which increases as input sizes grows, while mirrored variables also improved
with input size but hurt performance on average for most sizes tested. On the right, individual switch results for the HiGHS solver are shown, where

symmetry breaking, continuous variables, mirrored variables, and cycle constraints all perform well. All fgures shown
combine the direct transitivity and vertical position transitivity results. See appendices at https://osf.io/5vq79 for more in-depth results fgures.

4.2.4 Evaluation using different solver
We repeated both of the experiments described above using HiGHS,
an open-source linear optimization solver [26]. Heuristic start
and x-var branch priority are unavailable due to the required func-
tionality being not yet available for HiGHS, and so were left out of both
experiments. All experiment parameters were otherwise kept the same.

4.2.5 Analysis
We report results for these experiments by calculating, for each 10-node
bin, the natural logarithm of the ratio of mean experimental runtime
to the mean baseline runtime. Natural log ratios are additive, symmetric,
normed indicators of relative change [49], allowing us to more easily
compare the impact of a switch on different formulations.

Units. Each data point is reported in optimization time, the time in
seconds it took the ILP solver to determine the optimal solution, with
independent variable total nodes. This ignores setup and pre-processing
time, which took at most a few seconds for the largest graphs.

Hardware/software. We ran the experiments in CentOS Linux with
8 GB RAM & Gurobi 10.0 [21]. For the secondary solver, we used
HiGHS 1.5 [26] available through SciPy 1.10’s linprog.

4.3 Discussion and Results

In the following section we discuss key takeaways and ramifcations of
our experimental results. We also outline ways practitioners can change
their models to improve performance, and the degree of speedup that
can be expected.

4.3.1 Switch performance
Use symmetry breaking to reliably reduce optimization time.
Compared to the baseline, only one switch had a large runtime impact
for both solvers when used in isolation. The overall results are shown
in Fig. 4. Deleting the symmetry in the model by fxing one variable
makes fnding a solution approximately twice as fast (in general), with
even more speedup for larger graphs. For both transitivity formulations,
every combination of switches that included fxing one variable greatly
outperformed the combinations that did not (Fig. 6). It is incredibly
helpful as a universal technique and shows that even advanced ILP
solvers do not always have the capability to recognize the inherent
symmetry of the problem. Adopting this approach may improve runtime
performance for other problems in visualization and beyond. We
recommend that anyone implementing an ILP/MIP model examine the
problem for symmetries that allow you to fx even a single variable.

Combining switches is very successful, but only when
using HiGHS. With the open-source solver HiGHS [26], all

three of symmetry breaking, mirrored variables, and
continuous variables contributed signifcant performance

improvements when using direct transitivity—see Fig. 5. Moreover,
the formulation using these three switches was the best-performing
combination of the experiment, solving an impressive 88% of the 600
graphs tested within one minute. The baseline, meanwhile, solved only
60%. This corresponds to a more than 17× median speedup across
all graphs tested—the combination had a median runtime of 1.9 seconds
while the baseline took a median of 32.5 seconds to complete.

A number of other switches also contributed to strong performance re-
sults when using HiGHS with direct transitivity, namely butterfy
reduction, cycle constraints, and leaf node collapse.
Generally speaking, combining switches together greatly improved the
performance of the HiGHS solver.

This contrasts with the Gurobi results, for which symmetry
breaking drastically improved runtime while the inclusion of additional
switches often slowed the solver down. For instance, using symmetry
breaking with no other switches was a top-performing combination.
Solving the 1150 graphs took a median runtime of 1.7 seconds while
the baseline took 4.2 seconds—a more modest 2.5× speedup. We
suspect that since Gurobi is a very effcient solver optimized for fnding
high-quality potential solutions, the addition of some of our described
techniques is more of a distraction. That is, the solver wastes time
each iteration verifying the additional constraints added by many of
the techniques we describe are upheld when that time would often be
better spent applying solution-fnding and pruning heuristics to advance
towards the optimal solution.

The remaining switches give little performance increase. By
comparison, the remaining six switches do not have much, if any,
positive impact when used in isolation, suggesting their usefulness is
more restricted to specifc graphs, or larger input sizes and cutoff times.
Results for all individual switches are included in the supplemental
materials at https://osf.io/5vq79.

However, switch performance dependends on more than node
count. We were concerned with the variability exhibited in the ILP solver
times and performed additional studies on layer counts and edge density
with a more controlled dataset. Procedures and results are described
in the appendices at https://osf.io/5vq79. We fnd that when
using Gurobi with direct transitivity, both symmetry breaking and

x-var branch priority delay the exponential spike in runtime that
happens when increasing the edge density and number of layers—for
the 50-node graphs studied, symmetry breaking in particular was
able to solve graphs at up to 35% edge density within 5 minutes, while
the baseline was unable to solve the graphs with 25% edge density.

https://osf.io/5vq79
https://osf.io/5vq79
https://osf.io/5vq79

Gurobi
Switch Direct Vertical

13.9% 15.6%
0.61% 0.0%

-2.9% -5.9%

0.22% -0.09%

-0.22% 0.78%

0.61% 0.57%

1.8% 0.09%

0.65% 0.13%

-2.1% -2.5%

HiGHS
Switch Direct Vertical

4.9% 4.7%
1.6% 0.30%

-0.35% 0.22%

2.2% 0.91%

0.78% 2.3%

1.5% 0.74%

— —

— —

1.3% 1.9%

Fig. 5: Median improvement provided by each switch for direct and
vertical transitivity formulations, provided as an increase in the number of
graphs solved in the all-combinations experiment dataset (1,150 graphs
for Gurobi and 600 for HiGHS). Average improvements over 1%—12
graphs for the Gurobi experiment and 6 for HiGHS—are bolded. We
defne improvement for a switch as the difference between the number
of graphs successfully solved for a given formulation and the same
formulation without that switch, presenting the median improvement
over all formulations including the given switch. We see that including

symmetry breaking resulted in being able to solve an average of
160 (13.9%) additional graphs when using Gurobi and direct transitivity.
This is a huge improvement, seeing as each 10-node interval included
50 graphs: including this switch allowed us to routinely solve graphs 30
nodes larger than without the switch, within the same amount of time.

Guidelines for using switches. We provide the following summary
of the improvement provided by each switch technique.

Substantially improves runtime

Improves performance, but is solver- or
graph-dependent

May give small improvement

Not recommended

For the best guarantee of fast optimal layouts, it is recommended to
select a number of combinations of switches shown to perform well on
average for your choice of solver and run them in parallel. This also
helps offset some of the variability inherent to the ILP solving process.
For an example of this, refer to Sec. 5.

4.3.2 Transitivity constraint performance
Direct transitivity generally outperforms vertical position tran-
sitivity. Each combination of switches with direct transitivity solved,
on average, 21 more graphs (1.9% of the dataset) than the same com-
bination with vertical position transitivity. It is worth noting that direct
transitivity combinations took more setup time than vertical position
transitivity combinations, which never took more than 1 second. This
is due to the direct transitivity requiring more constraints than vertical
position transitivity—for large inputs, this O(|V |3) versus O(|V |2)
difference starts to become noticeable. Additionally, vertical position
transitivity performs better than direct transitivity for specifc graphs,
oftentimes large graphs with many layers but fewer nodes per layer, as
in Sec. 5. However, for the HiGHS solver all-combinations experiment,
direct transitivity formulations solved 7.0% more graphs on average,
a much more substantial increase than Gurobi. Direct transitivity
formulations also responded better to the addition of switches, seen in
Fig. 5. Therefore, we recommend using direct transitivity constraints,
although experimentation with vertical position transitivity is benefcial
for large many-layered graphs when using effcient solvers.

direct transitivity vert. pos. transitivity

sy
m

m
et

ry
 b

re
ak

in
g

50 100 150

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

50 100 150

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

po
ly

he
dr

al
 c

on
st

ra
in

ts

50 100 150

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

50 100 150

4x

3x

2x

1x

0.5x

↑ Faster

↓ Slower

Fig. 6: All 512 combinations for each transitivity formulation plotted against
their baseline using the natural log ratio of median runtimes. In the top row,
all combinations using symmetry breaking are highlighted in red,
showing that the use of the switch completely partitions the space of all
combinations beyond 50 total nodes. Polyhedral constraints, mean-
while, tend to be on the bottom half of the two partitions performance-wise.

Some types of redundancy are helpful, but others are not.
Lalla-Ruiz et al. claim that redundancy can both help and hinder
the solver performance [32]. We can corroborate this since some of
our techniques introduce redundancy into the model. Specifcally,

mirrored variables doubles the variables and constraints in the
model, but does not typically slow down solution time, even improving
it substantially for some solvers and formulations. However, a study
we conducted found that including both direct transitivity and vertical
position transitivity simultaneously had a large negative impact on
solution time—see appendices at https://osf.io/5vq79.

5 CASE STUDY: VISUALIZING SOFTWARE CONTROL FLOW

Control Flow Graph (CFG) readability is crucial to help reverse
engineers [35,52] and malware researchers [55] extract knowledge from
decompiled binary fles, including malware. Therefore minimizing edge
crossing should be prioritized to facilitate tasks like tracking variables
and tracing activation code in the diagram.

Reverse engineering control fow graphs can be represented as layered
graphs, where nodes correspond to blocks of decompiled assembly code,
and edges represent jumps taken between code blocks [35]. Code blocks
are often ended by JMP or JNZ instructions, followed by an edge connect-
ing to the next code block. Specifc structures can appear in CFG visual-
izations which tell engineers about the nature of the code. For example,
switch instructions generate a large number of outgoing edges from a
single node. The layer assignment for these drawings is typically done
by trying to maximize the number of call arrows pointing in the same
direction before assigning positions within each layer, using a Sugiyama-
style approach [6]. The layouts of these drawings are conventionally
computed with heuristic-based algorithms (Radare2, for instance, cites
Buchheim et al. [3]). The optimal approach we propose can be used to
produce more readable visualizations for reverse engineers. For example,
the readability and utility of control fow graphs generated by tools like
the recent work by Devkota et al. [6] could be further improved by using
layouts with the optimally fewest crossings. While optimal approaches
have rarely been applied in this context in the past because of their high

https://osf.io/5vq79

Command |V ′| |E ′| Baseline Baseline + SL [9] OSD [56] PA [29] OkLCM [16] Ensemble
chmod 511 581 8.95 s 1.59 s 48.7 s 6.03 s 6.21 s 1.61 s 1.43 s
echo 279 333 8.83 s 3.23 s 3.19 s 9.71 s 8.88 s 2.14 s 1.22 s
cp 359 423 9.42 s 13.7 s 6.01 s 12.2 s 13.5 s 13.3 s 2.88 s

Table 4: Control Flow Graph optimization results, reported as the median of fve trials on each graph. All formulations were tested using Gurobi.
The formulations for comparison are, in order, a baseline with direct transitivity and no switches, the same baseline with symmetry breaking,
Di Bartolomeo et al.’s Stratisfmal Layout (SL) [9], Zarate et al.’s Optimal Sankey Diagrams (OSD) [56], Jünger et al.’s Polyhedral Approach to Crossing
Minimization (PA) [29], and Gange et al.’s Optimal k-Level Planarization and Crossing Minimization (OkLCM) [16]. Our ensemble method, taking
advantage of running multiple formulations in parallel, is quickest for all three graphs.

computational requirements, we demonstrate that our approach is viable
for use with control fow graphs with very large numbers of nodes.

We compare an ensemble method of our best switch combinations to
formulations from the literature, which we can also represent as switch
combinations. Di Bartolomeo et al.’s Stratisfmal Layout [9] uses vertical
position transitivity with no other switches. Zarate et al.’s Optimal
Sankey Diagrams [56] use direct transitivity with mirrored
variables, butterfy reduction, and x-var branch priority.
Jünger et al.’s Polyhedral Approach [29] uses direct transitivity with

polyhedral constraints. Gange et al.’s Optimal k-Level Crossing
Minimization [16] uses direct transitivity with symmetry
breaking, cycle constraints, and leaf node collapse.

Our ensemble method ran six combinations in parallel, taking
the layout from whichever fnished frst. The table below lists these
combinations by their transitivity type (direct transitivity or vertical tran-
sitivity), and the switches combined. These combinations were selected
because they performed strongly in the all-combinations experiment.

1) Direct &
2) Direct &
3) Direct &
4) Direct &
5) Vertical &
6) Vertical &

The case study was run on a desktop computer with an Intel Core
i7-8700K CPU with 6 cores, 32 GB RAM, Windows 10, & Gurobi 10.
The number of processing threads available to the solver was limited to
1 for all ensemble members, and 6 for all other methods. Our ensemble
method found an optimal control fow diagram for the implementation
of the Linux chmod command in an average of 2.34 seconds over fve
repeated trials, see Tab. 4. Part of this optimal layout is pictured in Fig. 1.
This control fow graph has 511 nodes and 581 edges after layering and
inserting dummy nodes and edges—all control fow graphs included
had a large number of layers but reasonable layer widths, allowing for
quick solving even for the relatively huge graph size.

Our recommended method never took longer than 1.5 seconds to
fnd the optimal drawing, which has 16 crossings. The advantage of
the ensemble method is that it leverages our fnding in Sec. 4.3 that
different formulations perform better on different input graphs. For
chmod, the fastest-performing ensemble member was model 2, which
used only symmetry breaking. More complicated models worked
much better than this for echo and cp, on the other hand, which were
solved fastest by models 5 and 4 respectively. Each member solved
at least one of the graphs very quickly, but speed often varied by up
to 5× slower than the fastest member, particularly for cp. As for the
other models evaluated, the access to 6× more processing power did
not seem to improve performance much if at all, likely due to the
relatively quick execution times and the solver not needing to visit
many branch-and-bound nodes [21]. chmod and echo were solved
quickly by OkLCM [16], but cp was solved the quickest by the vertical
transitivity-based formulations such as SL [9].

6 LIMITATIONS

Like all methods that use ILP, the key limitation of our approach is the
upper bound on the size of graphs which can be solved in a reasonable
amount of time. In our experiments, graphs with up to 100 nodes in the
original graph could typically be solved quickly with our techniques.
Graphs with more than 300 nodes could not often be solved within a

5-minute cutoff time for the edge densities studied in our experiments.
It should be noted, however, that the number of edges and nodes

is not fully indicative of the complexity of a problem. For clarity of
presentation, we have categorized graphs throughout this paper by their
total nodes. Although it is more consistent than reporting based on
the number of nodes in the original graph, it is still far from perfect as
a predictor of runtime. We have studied some additional factors (see
appendices at https://osf.io/5vq79), but more work is needed.
There is also little indication in our results of what causes certain tech-
niques to perform much better on some graphs than others, an example
being the differences in performance between direct transitivity and
vertical position transitivity for the control fow graphs studied in Sec. 5.

Furthermore, it is impossible to perfectly predict the runtime of the
ILP solver given only knowledge of the input graph because ILP solvers
contain internal randomization such as for selecting branching variables.
This randomization causes some variability in optimization time with
repeated trials [15, 34]. Sometimes, the solver gets lucky and fnds a so-
lution very quickly, when the solver would take much longer on average.
Conversely, the solver can get unlucky and take much longer than average.
We overcome this variance in the experiments by using a large number
of graphs, and in practice by recommending an ensemble method.

7 CONCLUSION AND FUTURE WORK

Algorithms that arrange node-link graph visualizations with considera-
tion of human factors can assist users in comprehending complex graphs
more quickly. With the aim of scaling optimal layouts to larger graphs,
we present in this paper an adaptable framework that yields empirically
faster layout optimization, and analyzed nine established and innovative
techniques using two different solvers. The result is a comprehensive
benchmark characterizing the degree to which the nine techniques,
two types of transitivity formulation, and two ILP solvers impact the
running time of ILP solutions for layered crossing minimization. Our
recommended approach can quickly generate optimal layouts for most
graphs with up to 150 nodes and works in a reasonable amount of time
for many graphs with even more nodes. Our implementation is available
as open-source code, as are our benchmark results and datasets used
for our empirical study.

Future work. More research can be done to evaluate techniques
for the scalability of aesthetic criteria besides crossing minimization,
such as planarity, edge length, edge bundling, and node groupings. The
experiments described in this paper can be replicated using additional
ILP solvers, ensemble methods such as the one in Sec. 5, and larger
graphs over longer runtimes, to better recommend software to use for the
problem and further investigate the trends observed. Additionally, more
experimentation is in order to better understand the relationship between
the input graph and the solver runtime. Work could be done to integrate
our fast crossing minimization algorithm with Devkota et al.’s CFGConf
for even more understandable, useful control fow graph generation.

https://osf.io/5vq79

SUPPLEMENTAL MATERIALS

All supplemental materials can be found on OSF at
https://osf.io/5vq79. We provide:

1. A copy of our paper, including all appendices and supplemental
fgures.

2. Open-source GitHub repository of our implementation in Python,
including a LayeredOptimizer class which takes as input a
layered graph, and allows the user to choose what switches to use,
then generates the optimal drawing.

3. All result data and datasets used in our experiments, as well as
code used to sample said datasets.

4. All results fgures:

(a) 21 individual switch evaluation fgures, one for each switch
on each transitivity formulation.

(b) 24 total fgures which extend Fig. 6 to all switches.
(c) Full optimal layouts for the three control fow graphs in the

case study (Sec. 5).

REFERENCES

[1] S. D. Bartolomeo, Y. Zhang, F. Sheng, and C. Dunne. Sequence Braiding:
Visual Overviews of Temporal Event Sequences and Attributes. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1353–1363,
2021. doi: 10.1109/TVCG.2020.3030442 2, 6

[2] J. Blythe, C. McGrath, and D. Krackhardt. The effect of graph layout
on inference from social network data. In F. J. Brandenburg, ed., Graph
Drawing, pp. 40–51. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.
doi: 10.1007/BFb0021789 1

[3] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level
graphs. In J. Marks, ed., Graph Drawing, pp. 229–240. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2001. doi: 10.1007/3-540-44541-2_22 8

[4] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and P. Mutzel.
The Open Graph Drawing Framework (OGDF). In R. Tamassia, ed., Hand-
book of Graph Drawing and Visualization, chap. 17. CRC Press, 2014. 1

[5] T. N. Dang, N. Pendar, and A. G. Forbes. Timearcs: Visualizing fuctuations
in dynamic networks. Computer Graphics Forum, 35(3):61–69, 2016. doi:
10.1111/cgf.12882 1

[6] S. Devkota, M. P. LeGendre, A. Kunen, P. Aschwanden, and K. E. Isaacs.
Domain-Centered Support for Layout, Tasks, and Specifcation for Control
Flow Graph Visualization. In 2022 Working Conference on Software
Visualization (VISSOFT), pp. 40–50, 2022. doi: 10.1109/VISSOFT55257
.2022.00013 8

[7] S. Di Bartolomeo, T. Crnovrsanin, D. Saffo, E. Puerta, C. Wilson, and
C. Dunne. Evaluating graph layout algorithms: A systematic review of
methods and best practices. Computer Graphics Forum, n/a(n/a):e15073,
2024. doi: 10.1111/cgf.15073 2

[8] S. Di Bartolomeo, E. Puerta, C. Wilson, T. Crnovrsanin, and
C. Dunne. A collection of benchmark datasets for evaluating graph
layout algorithms. Graph Drawing Posters, 2023. preprint doi:
https://doi.org/10.31219/osf.io/yftju. 6

[9] S. Di Bartolomeo, M. Riedewald, W. Gatterbauer, and C. Dunne. STRAT-
ISFIMAL LAYOUT: A modular optimization model for laying out layered
node-link network visualizations. IEEE Transactions on Visualization
and Computer Graphics, 28(1):324–334, 2021. doi: 10.1109/TVCG.2021
.3114756 1, 2, 3, 4, 9

[10] G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia, E. Tassinari,
F. Vargiu, and L. Vismara. Drawing directed acyclic graphs: An
experimental study. International Journal of Computational Geometry &
Applications, 10(06):623–648, 2000. doi: 10.1142/S0218195900000358 6

[11] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu. An experimental comparison of four graph drawing algo-
rithms. Computational Geometry, 7(5-6):303–325, 1997. doi: 10.
1016/S0925-7721(96)00005-3 6

[12] P. Eades, X. Lin, and W. Smyth. A fast and effective heuristic for the
feedback arc set problem. Information Processing Letters, 47(6):319–323,
1993. doi: 10.1016/0020-0190(93)90079-O 6

[13] P. Eades, X. Lin, and R. Tamassia. An algorithm for drawing a hierarchical
graph. International Journal of Computational Geometry & Applications,
06(02):145–155, 1996. doi: 10.1142/S0218195996000101 2, 5

[14] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi: 10.1007/BF01187020 2, 6

[15] M. Fischetti and M. Monaci. Exploiting erraticism in search. Operations
Research, 62(1):114–122, 2014. 9

[16] G. Gange, P. J. Stuckey, and K. Marriott. Optimal k-Level Planarization and
Crossing Minimization. In U. Brandes and S. Cornelsen, eds., Graph Draw-
ing, vol. 6502 of Lecture Notes in Computer Science, pp. 238–249. Springer
Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-18469-7_22 2, 3, 4, 5, 9

[17] E. Gansner, E. Koutsofos, S. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993. doi: 10.1109/32.221135 1, 2

[18] M. R. Garey and D. S. Johnson. Crossing Number is NP-Complete. SIAM
Journal on Algebraic Discrete Methods, 2006. doi: 10.1137/0604033 2

[19] H. Gibson, J. Faith, and P. Vickers. A survey of two-dimensional graph
layout techniques for information visualisation. Information Visualization,
12(3-4):324–357, 2013. doi: 10.1177/1473871612455749 2

[20] M. Gronemann, M. Jünger, F. Liers, and F. Mambelli. Crossing Mini-
mization in Storyline Visualization. In Y. Hu and M. Nöllenburg, eds.,
Graph Drawing and Network Visualization, Lecture Notes in Computer
Science, pp. 367–381. Springer International Publishing, 2016. doi: 10
.1007/978-3-319-50106-2_29 1, 6

[21] Gurobi Optimization LLC. Gurobi Optimizer Reference Manual, 2023.
2, 4, 5, 7, 9

[22] P. Healy and A. Kuusik. The Vertex-Exchange Graph: A New Concept for
Multi-level Crossing Minimisation. In J. Kratochvíyl, ed., Graph Drawing,
vol. 1731 of Lecture Notes in Computer Science, pp. 205–216. Springer
Berlin Heidelberg, 1999. doi: 10.1007/3-540-46648-7_21 3, 5

[23] P. Healy and N. Nikolov. Hierarchical Drawing Algorithms, pp. 409–454.
Handbook on Graph Drawing and Visualization, 08 2013. 2

[24] I. Herman, G. Melancon, and M. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 6(1):24–43, 2000. doi: 10.
1109/2945.841119 2

[25] W. Huang and M. Huang. Exploring the relative importance of crossing
number and crossing angle. In Proceedings of the 3rd International
Symposium on Visual Information Communication, VINCI ’10, article no.
10, 8 pages. Association for Computing Machinery, New York, NY, USA,
2010. doi: 10.1145/1865841.1865854 1

[26] Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method.
Mathematical Programming Computation, 10(1):119–142, 2018. doi: 10
.1007/s12532-017-0130-5 2, 7

[27] igraph Development Team. Visualisation of graphs - igraph stable
documentation, python. 2

[28] M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,
G. Reinelt, G. Rinaldi, and L. A. Wolsey, eds. 50 Years of Integer
Programming 1958-2008. Springer Berlin Heidelberg, Nov. 2009. doi: 10
.1007/978-3-540-68279-0 2

[29] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach
to the multi-layer crossing minimization problem. In G. DiBattista, ed.,
Graph Drawing, vol. 1353 of Lecture Notes in Computer Science, pp.
13–24. Springer Berlin Heidelberg, 1997. doi: 10.1007/3-540-63938-1_46
3, 4, 5, 9

[30] M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer
straightline crossing minimization. In F. J. Brandenburg, ed., Graph
Drawing, vol. 1027 of Lecture Notes in Computer Science, pp. 337–348.
Springer Berlin Heidelberg, 1996. doi: 10.1007/BFb0021817 2

[31] M. Jünger and P. Mutzel. 2-Layer Straightline Crossing Minimization: Per-
formance of Exact and Heuristic Algorithms. Journal of Graph Algorithms
and Applications, 1, 1997. doi: 10.1142/9789812777638_0001 1, 2

[32] E. Lalla-Ruiz and S. Voß. Improving solver performance through
redundancy. Journal of Systems Science and Systems Engineering,
25(3):303–325, 2016. doi: 10.1007/s11518-016-5301-9 3, 5, 8

[33] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017. doi: 10.1109/TVCG.2016
.2598831 1

[34] A. Lodi and A. Tramontani. Performance Variability in Mixed-Integer
Programming, chap. Chapter 1, pp. 1–12. Theory Driven by Infuential
Applications, 2014. doi: 10.1287/educ.2013.0112 9

[35] A. Mantovani, S. Aonzo, Y. Fratantonio, and D. Balzarotti. RE-Mind: a
frst look inside the mind of a reverse engineer. In 31st USENIX Security
Symposium (USENIX Security 22), pp. 2727–2745. USENIX Association,
Boston, MA, Aug. 2022. 8

https://osf.io/5vq79
https://doi.org/10.1109/TVCG.2020.3030442
https://doi.org/10.1007/BFb0021789
https://doi.org/10.1007/3-540-44541-2_22
https://doi.org/10.1111/cgf.12882
https://doi.org/10.1111/cgf.12882
https://doi.org/10.1109/VISSOFT55257.2022.00013
https://doi.org/10.1109/VISSOFT55257.2022.00013
https://doi.org/10.1111/cgf.15073
https://doi.org/10.31219/osf.io/yftju
https://doi.org/10.1109/TVCG.2021.3114756
https://doi.org/10.1109/TVCG.2021.3114756
https://doi.org/10.1142/S0218195900000358
https://doi.org/10.1016/S0925-7721(96)00005-3
https://doi.org/10.1016/S0925-7721(96)00005-3
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1142/S0218195996000101
https://doi.org/10.1007/BF01187020
https://doi.org/10.1007/978-3-642-18469-7_22
https://doi.org/10.1109/32.221135
https://doi.org/10.1137/0604033
https://doi.org/10.1177/1473871612455749
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/3-540-46648-7_21
https://doi.org/10.1109/2945.841119
https://doi.org/10.1109/2945.841119
https://doi.org/10.1145/1865841.1865854
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/978-3-540-68279-0
https://doi.org/10.1007/978-3-540-68279-0
https://doi.org/10.1007/3-540-63938-1_46
https://doi.org/10.1007/BFb0021817
https://doi.org/10.1142/9789812777638_0001
https://doi.org/10.1007/s11518-016-5301-9
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1287/educ.2013.0112

[36] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer
straightline crossing minimization. In J. Kratochvíyl, ed., Graph Drawing,
pp. 217–224. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. doi:
10.1007/3-540-46648-7_22 2

[37] T. Milea, O. Schrijvers, K. Buchin, and H. Haverkort. Shortest-Paths
Preserving Metro Maps. In M. van Kreveld and B. Speckmann, eds., Graph
Drawing, vol. 7034 of Lecture Notes in Computer Science, pp. 445–446.
Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-25878-7_45 2

[38] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-and-
bound algorithms: A survey of recent advances in searching, branching,
and pruning. Discrete Optimization, 19:79–102, 2016. doi: 10.1016/j.
disopt.2016.01.005 3

[39] P. Mutzel. An alternative method to crossing minimization on hierarchical
graphs. In S. North, ed., Graph Drawing, pp. 318–333. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997. 3, 4, 5

[40] P. Mutzel and R. Weiskircher. Two-Layer Planarization in Graph Drawing.
In K.-Y. Chwa and O. H. Ibarra, eds., Algorithms and Computation, vol.
1533 of Lecture Notes in Computer Science, pp. 72–79. Springer Berlin
Heidelberg, 1998. doi: 10.1007/3-540-49381-6_9 3

[41] M. Nollenburg and A. Wolff. Drawing and Labeling High-Quality Metro
Maps by Mixed-Integer Programming. IEEE Transactions on Visualization
and Computer Graphics, 17(5):626–641, 2011. doi: 10.1109/TVCG.2010
.81 2

[42] H. Purchase. Which aesthetic has the greatest effect on human understand-
ing? In G. DiBattista, ed., Graph Drawing, Lecture Notes in Computer
Science, pp. 248–261. Springer, 1997. doi: 10.1007/3-540-63938-1_67 1, 2

[43] H. C. Purchase. Metrics for Graph Drawing Aesthetics. Journal of Visual
Languages & Computing, 13(5):501–516, 2002. doi: 10.1006/jvlc.2002
.0232 2

[44] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura. Butterfy Counting
in Bipartite Networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp.
2150–2159. ACM, 2018. doi: 10.1145/3219819.3220097 4

[45] K. Sugiyama. Graph Drawing and Applications for Software and
Knowledge Engineers. WORLD SCIENTIFIC, 2002. doi: 10.1142/4902 2

[46] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding
of Hierarchical System Structures. IEEE Transactions on Systems, Man, and
Cybernetics, 11(2):109–125, 1981. doi: 10.1109/TSMC.1981.4308636 1, 2

[47] R. Tamassia, ed. Handbook of Graph Drawing and Visualization. CRC
Press, 2007. 2

[48] A. Tarassov, N. S. Nikolov, and J. Branke. A Heuristic for Minimum-Width
Graph Layering with Consideration of Dummy Nodes. In C. C. Ribeiro
and S. L. Martins, eds., Experimental and Effcient Algorithms, Lecture
Notes in Computer Science, pp. 570–583. Springer, 2004. doi: 10.
1007/978-3-540-24838-5_42 6

[49] L. Tornqvist, P. Vartia, and Y. O. Vartia. How Should Relative Changes
Be Measured? The American Statistician, 39(1):43–46, 1985. doi: 10
.2307/2683905 7

[50] V. Valls, R. Marti, and P. Lino. A branch and bound algorithm for
minimizing the number of crossing arcs in bipartite graphs. European
Journal of Operational Research, 90(2):303–319, April 1996. doi: 10
.1016/0377-2217(95)00356-8 2

[51] J. P. Vielma. Mixed integer linear programming formulation techniques.
SIAM Review, 57(1):3–57, 2015. doi: 10.1137/130915303 6

[52] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek. An
observational investigation of reverse Engineers’ processes. In 29th
USENIX Security Symposium (USENIX Security 20), pp. 1875–1892.
USENIX Association, Aug. 2020. 8

[53] C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive Measurements
of Graph Aesthetics. Information Visualization, 1(2):103–110, 2002. doi:
10.1057/palgrave.ivs.9500013 2

[54] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing datafow graphs
of deep learning models in tensorfow. IEEE Transactions on Visualization
and Computer Graphics, 24(1):1–12, 2018. doi: 10.1109/TVCG.2017.
2744878 1

[55] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. Helping
Johnny to Analyze Malware: A Usability-Optimized Decompiler and
Malware Analysis User Study. In 2016 IEEE Symposium on Security and
Privacy (SP), pp. 158–177. IEEE, 2016. doi: 10.1109/SP.2016.18 8

[56] D. C. Zarate, P. L. Bodic, T. Dwyer, G. Gange, and P. Stuckey. Optimal
Sankey Diagrams Via Integer Programming. In 2018 IEEE Pacifc
Visualization Symposium (PacifcVis), pp. 135–139, 2018. doi: 10.

1109/PacifcVis.2018.00025 3, 4, 5, 9

https://doi.org/10.1007/3-540-46648-7_22
https://doi.org/10.1007/3-540-46648-7_22
https://doi.org/10.1007/978-3-642-25878-7_45
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1007/3-540-49381-6_9
https://doi.org/10.1109/TVCG.2010.81
https://doi.org/10.1109/TVCG.2010.81
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1006/jvlc.2002.0232
https://doi.org/10.1006/jvlc.2002.0232
https://doi.org/10.1145/3219819.3220097
https://doi.org/10.1142/4902
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1007/978-3-540-24838-5_42
https://doi.org/10.1007/978-3-540-24838-5_42
https://doi.org/10.2307/2683905
https://doi.org/10.2307/2683905
https://doi.org/10.1016/0377-2217(95)00356-8
https://doi.org/10.1016/0377-2217(95)00356-8
https://doi.org/10.1137/130915303
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1109/PacificVis.2018.00025
https://doi.org/10.1109/PacificVis.2018.00025

	Introduction
	Background and Related Work
	Layered Graphs
	Optimal Algorithms for Layered Graphs

	Methodology
	ILP Formulation
	Transitivity Constraints
	Direct transitivity constraints
	Vertical position transitivity

	Switches

	Experiment
	Dataset
	Procedure
	Graph pre-processing
	Individual switch evaluation
	Evaluation of all switch combinations
	Evaluation using different solver
	Analysis

	Discussion and Results
	Switch performance
	Transitivity constraint performance

	Case Study: Visualizing Software Control Flow
	Limitations
	Conclusion and Future Work

