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Abstract—Feature grid Scene Representation Networks (SRNs) have been applied to scientific data as compact functional surrogates
for analysis and visualization. As SRNs are black-box lossy data representations, assessing the prediction quality is critical for scientific
visualization applications to ensure that scientists can trust the information being visualized. Currently, existing architectures do not
support inference time reconstruction quality assessment, as coordinate-level errors cannot be evaluated in the absence of ground truth
data. By employing the uncertain neural network architecture in feature grid SRNs, we obtain prediction variances during inference
time to facilitate confidence-aware data reconstruction. Specifically, we propose a parameter-efficient multi-decoder SRN (MDSRN)
architecture consisting of a shared feature grid with multiple lightweight multi-layer perceptron decoders. MDSRN can generate a set of
plausible predictions for a given input coordinate to compute the mean as the prediction of the multi-decoder ensemble and the variance
as a confidence score. The coordinate-level variance can be rendered along with the data to inform the reconstruction quality, or be
integrated into uncertainty-aware volume visualization algorithms. To prevent the misalignment between the quantified variance and the
prediction quality, we propose a novel variance regularization loss for ensemble learning that promotes the Regularized multi-decoder
SRN (RMDSRN) to obtain a more reliable variance that correlates closely to the true model error. We comprehensively evaluate the
quality of variance quantification and data reconstruction of Monte Carlo Dropout (MCD), Mean Field Variational Inference (MFVI),
Deep Ensemble (DE), and Predicting Variance (PV) in comparison with our proposed MDSRN and RMDSRN applied to state-of-the-art
feature grid SRNs across diverse scalar field datasets. We demonstrate that RMDSRN attains the most accurate data reconstruction
and competitive variance-error correlation among uncertain SRNs under the same neural network parameter budgets. Furthermore,
we present an adaptation of uncertainty-aware volume rendering and shed light on the potential of incorporating uncertain predictions
in improving the quality of volume rendering for uncertain SRNs. Through ablation studies on the regularization strength and decoder
count, we show that MDSRN and RMDSRN are expected to perform sufficiently well with a default configuration without requiring
customized hyperparameter settings for different datasets.

Index Terms—Scene representation network, deep learning, scientific visualization, ensemble learning

1 INTRODUCTION

Continuous functional representations of scientific datasets have gained
attention as proxies for visualization and analysis thanks to their advan-
tages in compactness, competitive modeling accuracy, and the ability
to evaluate values and gradients at random locations without decod-
ing the full volume. A Scene Representation Network (SRN) is a
neural functional representation trained with volume data to learn a
coordinate-value mapping to attain the aforementioned benefits. For
the past several years, the scientific visualization (SciVis) community
has improved SRN for volumetric data modeling in its compressive-
ness [12,16,23,43], computational efficiency [43,48,52], and adaptivity
to data [53].

Despite the remarkable advancements in these areas, as a lossy
approximation of the data, SRN lacks the ability to depict its prediction
quality. Since each value prediction made by SRN exhibits a certain
level of error compared to the ground truth, and the most inaccurate
predictions are often present in regions with scientific features that
involve complex spatial patterns, it is desirable to aid the process with
a quantifiable metric that reflects how accurately the SRN reconstructs
the data. However, it is non-trivial to obtain such a measurement of the
coordinate-wise prediction quality at inference time because evaluating
coordinate-wise prediction errors requires the ground truth data, which
are often discarded after training. Alternatively, precomputing the error
field and writing it to the disk would incur considerable storage costs
equivalent to the data size and hence defeats the purpose of using an
SRN as a compact surrogate.

In this paper, we propose a method to indicate the prediction quality
for SRNs at inference time, which is storage-free and can be evaluated
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at arbitrary locations. We explore the application of uncertain neural net-
work architectures for computing prediction variances or uncertainties
to indicate the confidence level of the model for its predictions. These
architectures, including Bayesian and ensemble methods [3, 9, 20], can
be used to make multiple plausible predictions for an input such that the
variance and mean prediction amounts to a more accurate prediction
with the error quantified. In addition to meeting the desired attributes
for a proper prediction quality metric, the computed coordinate-level
variance along with the mean can be conveniently granted a probabilis-
tic interpretation and integrated into uncertainty-aware visualizations
such as probabilistic marching cubes [32] and uncertain volume render-
ing [33], such that the uncertain predictions can be directly integrated
to visualizations as an alternative to visualizing the mean predictions.

To empower SRNs with variance estimation for confidence-aware
predictions, we introduce a feature grid SRN architecture with an en-
semble of decoders, dubbed multi-decoder SRN (MDSRN), that can
seamlessly extend existing feature grid SRNs to produce different plau-
sible predictions for any given input coordinate. Common ensemble
methods for variance quantification such as Deep Ensemble (DE) [20]
require independent neural networks trained as members, thus result-
ing in a linear scaling of parameter counts to the number of members.
This might not be best suited for volumetric representations in SciVis
where the compactness of the model is of great significance. To better
adapt ensembling to feature grid SRNs with improved parameter effi-
ciency than DE, we propose a multi-decoder approach, and adapting
our MDSRN to an existing feature grid SRN architecture simply re-
quires training multiple MLP decoders along with a shared feature grid
encoder. Feature grid SRNs usually have the majority of parameters
concentrated on the grid encoder, hence training additional lightweight
MLPs only brings a negligible increase in the model size. Comparable
approaches that can be applied to SRNs to generate uncertain predic-
tions include the Bayesian neural network [3, 9] or directly predicting a
variance. However, they can suffer from inferior data reconstruction
accuracy, and we show the proposed MDSRN architecture achieves
higher reconstruction accuracy with equivalent network size in Sec. 5.1.

Provided that the variance of predictions for each voxel serves as a
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Fig. 1: RMDSRN for volumetric data representation with prediction vari-
ance quantification for confidence assessment. A feature grid SRN can
be adapted to RMDSRN by training multiple decoders with the recon-
struction loss introduced in Sec. 4.1 combing the weighted variance
regularization loss detailed in Sec. 4.2 and Sec. 4.3.

metric for assessing the prediction quality, it is imperative for the vari-
ance to reflect the accuracy of the mean prediction, where voxels with
high prediction errors should also possess high variances. To ensure
that the variance from MDSRN is a faithful representation of the predic-
tion quality, we propose a variance regularization loss that synergizes
with MDSRN to minimize the distribution discrepancy between the
variance and error. The network trained with the regularization, namely
the Regularized MDSRN (RMDSRN), exhibits a superior quality of the
acquired variance more similar to how error distributes across space.
With proper regularization strength, RMDSRN delivers the best data
reconstruction and competitive variance quality as an uncertain SRN
architecture for error-aware reconstruction and visualization.

To evaluate the efficacy of the proposed MDSRN architecture and
the variance-regularized model RMDSRN in providing reliable predic-
tion quality assessment for feature grid SRNs at inference time, we
compare with Deep Ensemble (DE), Predicting Variance (PV), and pop-
ular Bayesian architectures including Monte Carlo Dropout (MCD) [9]
and Mean Field Variational Inference (MFVI) [3]. We present both
qualitative visualizations and quantitative results evaluating the spatial
similarity of variance and prediction error of all architectures applied to
state-of-the-art feature grid SRNs for SciVis [48, 52, 53] across diverse
datasets in addition to data reconstruction evaluations. Furthermore,
we adapt an uncertainty-aware volume rendering algorithm [33] for
uncertain SRNs and study the effect of incorporating uncertain predic-
tions on the rendering quality. To summarize, our contributions are
threefold:

• A parameter-efficient architecture for feature grid SRN ensemble,
multi-decoder SRN (MDSRN), as a volumetric data representa-
tion, that enables post-training prediction quality assessment with
coordinate-level prediction variance

• A novel variance regularization loss function used to train a Regu-
larized MDSRN (RMDSRN) so that its prediction variance across
space correlates more closely to the actual prediction error

• A comprehensive evaluation of uncertain neural network archi-
tectures applied to feature grid SRNs for SciVis. The evaluation
spans both data reconstruction and variance estimation with qual-
itative and quantitative results. The six compared architectures
include Monte Carlo Dropout (MCD), Mean Field Variational
Inference (MFVI), Deep Ensemble (DE), Predicting Variance
(PV), MDSRN, and RMDSRN.

2 RELATED WORK

Our work targets adding error awareness to the predictions and visual-
izations of scene representation networks (SRNs) with uncertain neural
network architectures, and we first review the fast-paced advancements
of SRNs for scientific visualization, followed by related methods for
uncertainty-aware neural networks.

2.1 Scene Representation Network for Scientific Visualiza-
tion

Originally proposed as continuous representations of 3D shapes or
scenes [24, 28, 39], scene representation networks (SRNs), or equiv-
alently implicit neural representations (INRs), are applied to SciVis
as continuous and compact surrogates that go beyond the discretized
scientific data formats and support decoding the value at any arbi-
trary coordinate without full volume reconstruction. A fully implicit
approach of SRN that comprises multi-layer perceptrons (MLPs) for
scientific data representation was first investigated by Lu et al. [23],
and they proposed neurcomp that extends the MLP with sinusoidal
activation functions known as SIREN [38] with skip connections to
achieve a high compression ratio for scalar field data in combination
with parameter quantization. SIREN-based SRNs were improved in
various aspects following neurcomp. Han and Wang [14] showed the
versatility of SRN in learning diverse tasks at both data and image levels
for spatial-temporal datasets. To increase the computational efficiency
of SIREN SRNs, Tang and Wang [43] introduced ECNR that extends
the lightweight MLPs organized in a Laplacian pyramid proposed in
MINER [34] to work on 4D scientific datasets with deep compres-
sion strategies for a high compression rate. Targeting the compression
of volume visualization images for spatial-temporal datasets, Gu et
al. [12] proposed NeRVI that employs SIREN with skip connections
and a CNN upscaling module for faster inference.

As the computational efficiency of MLP-based SRN can be concern-
ing, a hybrid SRN architecture that connects an explicit feature grid
with a lightweight MLP, namely feature grid SRN, attracted an interest
in SciVis for fast SRNs. Weiss et al. [48] proposed fV-SRN with a
composite encoder concatenating features from a dense feature grid and
Fourier feature encoding [24, 42] followed by an MLP with SnakeAlt
activation, and they further exploited GPU tensor cores for faster in-
ference. Wu et al. [52] achieved interactive training and visualization
of hash grid SRN, known as NGP [26], with an optimized training
and rendering routine with out-of-core sampling and sample streaming
for large-scale datasets. Höhlein et al. [16] explored the effectiveness
of multi-grid and multi-decoder SRN in compressing meteorological
ensembles. We note the motivation for our multi-decoder ensemble
SRN differs from the network by Höhlein et al. as they use the different
decoders to learn different volumes in an ensemble simulation dataset,
whereas our method applies to a single scalar field for variance quan-
tification as a realization of ensemble neural network. Farokhmanesh
et al. [6] modeled bivariate correlations in ensemble datasets with a bi-
partite hash grid SRN dubbed NDF. For better generalization to unseen
inputs, Wu et al. [51] presented HyperINR with a hypernetwork on hash
grids trained with knowledge distillation. As scientific data can exhibit
certain degrees of sparsity, Wurster et al. [53] proposed APMGSRN to
concentrate SRN parameters to regions potentially containing scientific
features with high errors through learned transformations for multiple
feature grids.

2.2 Uncertain Neural Network Architecture for Prediciton
Variance Quantification

The critical necessity of understanding the trustworthiness of neural
network predictions spurred a rich set of research on uncertainty-aware
neural network architectures [10]. These methods can be applied
to neural networks such that an uncertain prediction with variance
quantification can be obtained for regression tasks. Ensemble and
Bayesian Neural Network (BNN) are two prominent methods for this
purpose. Monte Carlo Dropout (MCD) [9] and Mean Field Varia-
tional Inference (MFVI) [3] are two practical realizations of BNN.
As for the ensemble approach, Deep Ensemble (DE) [20] advocated



Fig. 2: Illustration of the undesired overconfident variance problem of
uncertain SRNs. Despite being the most inaccurate in the bottom thin
structure as the error image shows, an uncertain SRN can fail to capture
it with the highest variance elsewhere in the domain.

ensembling neural networks for uncertainty quantification with com-
petitive quality compared to Bayesian methods. Brief summaries of
these uncertain neural network methods are included in Sec. 3 as they
constitute competitive alternatives of variance quantification methods
to be evaluated along with ours in Sec. 5.1. Since independent neu-
ral networks are trained, DE is parameter intensive, and there is a
series of follow-up works focusing on parameter-efficient ensemble
for neural networks [21, 44, 45, 49]. Our work shares a similar idea
to sub-ensemble [45], where efficiency is achieved by sharing param-
eters between members. While sub-ensemble is a generic method of
parameter-sharing, we provide a specific strategy for the decomposition
of the shared and unique parameters targeting feature grid SRNs. In ad-
dition, our training routines also differ in ways that we train the shared
feature grid jointly with all member decoders, whereas sub-ensemble
uses sequential training of members with the shared component frozen
after trained with the first member.

In the context of SRNs, several uncertainty-aware SRNs have been
studied for different applications. For Computed Tomography (CT)
image representation, UncertaINR [46] proposed to use MCD for un-
certain SRN. For neural radiance fields (NeRFs), a variance estimation
technique used by ActiveNeRF [27] and U-NeRF [4] is to predict the
variance as part of the network output in addition to a value prediction,
and we refer to this as the Predicting Variance (PV) method as reviewed
in Sec. 3.2. S-NeRF [37] proposed to learn independent logistic nor-
mal distributions of color and densities with variational inference, and
CF-NeRF [36] improved over S-NeRF with a conditional normalizing
flow to learn a more flexible distribution of radiance field. Sünderhauf
et al. [41] applied DE-based NeRF and formulated a density-aware
uncertainty term to augment the RGB uncertainty. Bayes’ Rays [11]
proposed a Laplacian approximation of the parameter distribution of
NeRF relying on a parametric perturbation field. Despite different un-
certain NeRFs being proposed, their training methods are often tailored
to the NeRF pipeline, posing challenges to applications on other SRN
tasks.

3 BACKGROUND

As we propose to equip feature grid SRNs with prediction variance
quantification to indicate the quality of the prediction, we briefly review
SRNs with feature grid encoders to which our method in Sec. 4 is
applied as well as the related variance quantification approaches for
neural networks that are compared in Sec. 5.1.

3.1 Feature Grid Scene Representation Networks
Extending the general discussion of SRNs for SciVis in Sec. 2.1, we
formally define SRNs and highlight important properties of its feature
grid variants. A scene representation network (SRN) is a neural network
that predicts scalar or vector values from input coordinates, and its

architecture can be conceptually divided into two components, an
encoder E that transforms an input coordinate to a feature and a decoder
D that predicts the value given the feature. Formally, let f be an SRN
and (x,y) be a coordinate-value mapping, the task of an SRN is to
reconstruct y given x: f (x) = D(E(x)) = y.

An initial application of SRNs to scientific data was explored by Lu
et al. [23]. They proposed neurcomp that uses multi-layer perceptrons
(MLPs) for both the encoder and the decoder. Despite the high com-
pressiveness achieved by neurcomp, it is slow to evaluate as it consists
of many wide fully connected layers. To improve the computational
efficiency of SRNs, Weiss et al. [48] proposed fV-SRN that substitutes
the MLP encoder with a feature grid. A feature grid has learnable
features defined on each voxel, and an input coordinate can be encoded
with a trilinear-interpolated feature from neighboring voxels. The grid
encoder can be evaluated more efficiently than an MLP which requires
a chain of matrix multiplications. Furthermore, the decoder can also
be made with fewer layers and neurons. As a result, the feature grid
SRN can achieve considerable inference speedups. Following this
conceptual model of grid encoders with lightweight decoders, more
advanced feature grid SRNs are proposed to further improve the ef-
ficiency and accuracy for large-scale scientific data, such as Neural
Graphics Primitives (NGP) [26, 52] and the Adaptively Placed Multi-
Grid SRN (APGMSRN) [53]. In Sec. 4, we introduce our approach that
can add to feature grid SRNs the ability of reliable prediction variance
quantification with a modification to the given network architecture
along with a novel loss function, and our methods integrate well with
state-of-the-art models like fV-SRN, NGP, and APMPSRN.

3.2 Prediction Variance Quantification for Neural Networks
In addition to our work that proposes a customized strategy to modify
the feature grid SRN architecture for variance quantification, there are
alternative methods that can also be applied to achieve similar goals.
Specifically, we briefly review Monte Carlo Dropout (MCD) [9], Mean
Field Variational Inference (MFVI) [3], Deep Ensemble (DE) [20], and
Predicting Variance (PV) [27] before evaluating them in Sec. 5.1.

Similar to our methods, MCD, MFVI, and DE enable the network to
produce multiple predictions to an input, from which a variance can be
computed. Although dropout is initially proposed to reduce overfitting
by randomly turning off neurons according to some probability [40],
Gal and Ghahramani [9] proposed to keep dropout at inference time
such that different predictions can be acquired with multiple sets of
network weights after dropout trails, and this MCD method bears a
Bayesian neural network interpretation. MFVI [3] is another Bayesian
method, and it requires the network to learn a posterior Gaussian distri-
bution for every weight, such that the network weight distributions can
be sampled. Different samples of the network will in turn predict differ-
ently. DE [20] is a closely related method to ours as both approaches
belong to the ensemble technique for uncertainty quantification. In-
stead of training one network, DE independently trains an ensemble of
networks, such that the variance of the predictions from each member
network can be calculated as uncertainty.

PV has a different realization of variance quantification compared to
the abovementioned methods in that the network directly predicts the
variance, and it was applied to SRNs, specifically neural radiance fields
(NeRFs), by Pan et al. [27]. A PV network outputs both a mean and a
variance prediction, effectively predicting a Gaussian distribution, and
it is optimized with the negative log-likelihood (NLL) loss from the
predicted Gaussian and the ground truth.

4 REGULARIZED ENSEMBLE SCENE REPRESENTATION NET-
WORK

Feature grid scene representation networks (SRNs) have received mul-
titudes of improvements in computational efficiency and accuracy as
surrogates for large-scale scientific data, yet there remains the question
of where in the domain predictions can be trusted to be accurate such
that the volume visualization will be in high quality with respect to the
ground truth.

We explore extending feature grid SRNs with a network architecture
that produces multiple predictions for every input to acquire prediction



variance as a measurement of prediction quality and trustworthiness,
which has been studied in diverse deep learning tasks [5, 13, 17, 25, 35].
Our approach shown in Fig. 1 includes a parameter-efficient architecture
for an ensemble of feature grid SRNs detailed in Sec. 4.1 as well as a
novel variance regularization loss in Sec. 4.2. We then introduce the
regularization strength scheduler that helps a more robust training to
the choice of λ in Sec. 4.3.

4.1 Multi-Decoder Ensemble SRN Architecture
Deep Ensemble (DE) [20] provides high-quality variance quantification
and predictive performance to neural networks by training an ensemble
of member networks to acquire diverse predictions. Despite the attrac-
tive performance of DE, an ensemble of independent member networks
can be parameter-intensive with a linear scaling factor to the number
of members, which can lead to less optimal performance under a con-
strained parameter budget as in SRN tasks. To address the poor scaling
of parameters of DE, we propose a parameter-efficient ensembling
strategy for feature grid SRNs, dubbed multi-decoder SRN (MDSRN),
that shares parameters between member networks. When construct-
ing an ensemble of feature grid SRNs, all members of an MDSRN
model share the feature grid so that none of them learn separate grids.
Consequently, the one shared feature grid can use higher resolutions
and larger feature sizes that all members can benefit from. Apart from
the shared grid encoder, we do not share any layers in the multi-layer
perceptron (MLP) decoder and instead use completely separate MLPs
for different members. This is to prevent an excessive level of similarity
between member networks, which can lead to a spatially homogenous
variance that fails to distinguish regions that are challenging versus
easy to learn.

We formally introduce the proposed MDSRN architecture that adds
variance quantification to feature grid SRNs. As illustrated in Fig. 1, to
incorporate our multi-decoder strategy to a feature grid SRN, while the
encoder in part (B) requires no modification, an ensemble of decoders
in part (C) needs to be trained to output multiple predictions such
that a mean and a variance can be computed in part (D) for quality-
informed reconstruction and visualization. Following the notations in
Sec. 3.1, for an MDSRN containing M member predictors that share
the same encoder with different decoders, denoted fi(x) = Di(E(x))
where i = 1,2, ..,M, the mean prediction and the variance are computed
as follows:

µ(x) =
∑

M
i=1 fi(x)

M
σ

2(x) =
∑

M
i=1( fi(x)−µ(x))2

M−1
(1)

The design is inspired by the observation that the bottleneck lim-
iting the accuracy of an ensemble of SRNs is usually the capacity of
the member networks. For example, for the same number of total pa-
rameters, an ensemble of 3 large independent SRNs often has a more
accurate mean prediction than an ensemble of 5 smaller independent
SRNs. This reveals a key to increasing the accuracy of an ensemble
in a fixed compression level is to increase the capacity of member
SRNs, and MDSRN achieves this through parameter-sharing. The
multi-decoder method can be applied easily to state-of-the-art feature
grid SRNs for scientific data including APMGSRN [53], NGP [26, 52],
and fV-SRN [48] for post-training prediction confidence evaluation as
MDSRN simply requires an ensemble of decoders of their specified
architectures, such as MLP with ReLU activation for APMGSRN or
SnakeAlt activation [48] for fV-SRN, despite that as a limitation of the
ensemble method, training time can scale with the decoder members as
shown in Sec. 5.1.

To optimize an MDSRN under the ensemble learning scheme simi-
larly to DE networks, each member is supervised with the ground truth
data to ensure they can make sufficiently plausible predictions. Let x
and y be a coordinate-value pair and B denote the number of pairs in a
training batch, the per-member loss function Lmember to train MDSRN
in part (E) of Fig. 1 is defined as a sum of mean squared errors between
each member’s prediction and the ground truth:

LMDSRN = Lmember =
1
B

M

∑
i=1

B

∑
b=1

( fi(xb)− yb)
2 (2)

4.2 Variance Regularization Loss Function

Although MDSRN provides improved parameter efficiency for better
data reconstruction accuracy than the conventional network ensemble
approach at the same compression level, we found the spatial pattern of
variance does not always align with that of error, as illustrated in Fig. 2,
and this can be problematic when the variance is utilized to evaluate the
prediction quality. To mitigate the issue, our idea is to regularize the
model with an additional loss function so that the regularized MDSRN
(RMDSRN) learns to promote higher similarity between the variance
and error. In addition, the adjustments to variance should be ideally
based on its own scale to avoid equating two different quantities with
potentially disparate value ranges.

We propose to minimize the dissimilarity of the variance and error
in the context of probability distributions to achieve scale-invariant
matching. By normalizing the variance and error fields such that both
quantities integrate to one over the spatial domain, we can obtain
valid probability density functions (PDFs) in 3D. Furthermore, since
the density of a value at a location indicates the relative magnitude
of the value compared with others over the domain, locations with
overconfident variance can be naturally identified by those with lower
variance densities than the error densities. Consequently, minimizing
the difference between the two density functions effectively adjusts the
variance in a scale-invariant way.

To acquire proper densities for the variance and error, we can scale
each of the values by their total aggregates in the volume. Formally,
let X denote all coordinates encompassed by the volume extent and
v(x) = y be a function that returns the ground truth value at a location,
the variance density function fσ 2 and the error density function fδ are
defined as:

fσ 2(x) =
σ2(x)∫

X σ2(x j)dx j
fδ (x) =

(µ(x)− v(x))2∫
X (µ(x j)− v(x j))2dx j

(3)

Although Eq. (3) describes the density functions in the continuous
space over the volume for SRNs as continuous representations, only
random voxel samples are available in a training batch from an opti-
mization step. To compute the densities during training, we normalize
the variances and errors of the sampled points in a batch by their respec-
tive sums, which is equivalent to replacing the integrals in Eq. (3) by
a summation over voxels in a batch, such that the densities constitute
discrete approximations of Eq. (3). The batch-wise densities are fast to
compute and can update the model parameters for every optimization
step to work with the member reconstruction loss, and results in Tab. 1
show this approach can effectively align the variance of RMDSRN
with the error across the volume without increasing the training time
significantly compared to MDSRN.

After density functions are defined, we minimize their difference
with Kullback–Leibler (KL) divergence as a measure of dissimilarity
between probability distributions, and Eq. (4) shows the variance reg-
ularization Lvar used during training. KL divergence especially helps
RMDSRN prioritize matching the variance for high-error regions that
can greatly affect the accuracy of visualizations, and it is accomplished
by weighing the log-space density difference by the error density, hence
points with high errors contribute more to the loss. We note that gra-
dients incurred in the computation of error densities are not recorded,
because we would like member models to minimize KL divergence
solely by steering the variance of their predictions toward similar pat-
terns to error, so gradients should only flow from the loss function to
the variance densities.

Lvar =
1
B

B

∑
j=1

fδ (x j)log(
fδ (x j)

fσ 2(x j)
) (4)

By adapting our multi-decoder design and the variance-regularized
training as Fig. 1 presents, feature grid SRN can achieve reliable vari-
ance quantification. The loss function of the final Regularized MDSRN
(RMDSRN) becomes a weighted sum of the member loss and the
variance regularization : LRMDSRN = Lmember +λLvar.
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Fig. 3: Visualization of the combined variance regularization strength,
which is the learning rate decayed with cosine annealing multiplied by λ (t)
from Eq. (5), at each step of training with varying λmax for the scheduler.

4.3 Training Regularized MDSRN with Exponential Growth
Weight Scheduler

Compound loss functions usually benefit from appropriate weights on
each term for the best results, such as in image generation networks like
InSituNet [15] and FoVolNet [2]. The quality of a trained RMDSRN
model is also dependent on a proper regularization strength λ . We use
a λ scheduler to provide more robust training without requiring a hyper-
parameter search as the detailed ablation study in Sec. 5.3 demonstrates.
The RMDSRN trained with the scheduler exhibits improved overall
performance than the unregularized MDSRN for a wide λ range as
well as the default recommendation.

The scheduler defined in Eq. (5) gradually increases λ from a min-
imal value to a maximum at an exponential rate during training. The
principle behind our λ scheduling is to silence the regularization in
early iterations and scale it up as the model approaches convergence
in the member loss. The motivation is that since model predictions
and hence errors will change after each optimization step, distribution
matching becomes a moving target. On the other hand, the true targets
that the variance should learn to correlate are the errors in later training
iterations, as they do not vary significantly and are more consistent
representations of the final RMDSRN error at inference time. With this
principle, our scheduler starts λ with a small value ideally close to zero
and keeps it small in the early iterations of training to allow a faster
progression of the model accuracy. Following exponential growth rates,
in later stages of training, the scheduler can quickly raise λ to allow a
satisfactory fit to the final error pattern. The weight on training step t is
defined as:

λ (t) = λmin +(λmax −λmin)
r

t−1
tmax−1 −1

r−1
(5)

At step 1, the weight is the minimum value λmin and it increases at
an exponential rate to λmax at the last training step tmax. Here λmax is a
hyperparameter to be tuned for the best result of variance regularization,
while for λmin a default of zero works generally. The parameter r ∈
(1,∞] controls the growth rate of the scheduler. Rates close to 1 result
in linear-like growths and the higher the rate, the steeper the growth
will be in later iterations and the less weight for early iterations.

As the strength scheduler is applied jointly with learning rate decay,
the actual weight on the regularization is λ (t) in Eq. (5) multiplied by
the current learning rate. We visualize in Fig. 3 the combined strength
throughout training with a cosine annealing learning rate scheduler [22]
used in Sec. 5.1 with an initial learning rate of 5.0e-3. For all λmax
shown, λmin and r are set to 0 and 500. The combined strength grows
slowly in early training and progresses quickly to a maximum before
3/4 of training, followed by decreasing values until the end of training.
This follows our motivation to scale λ up in later training stages, and
the shrinking λ towards the end helps the regularization converge.

In summary, λmax of the scheduler can be tuned for the best results
from variance regularization. For λmin, setting it to zero should fit
most training scenarios. Regarding the growth rate r, we recommend a
default r of 500 so the weight does not grow significantly until around
1/4 of the total training steps as visualized in Fig. 3. A detailed ablation

Table 1: Quantitative data reconstruction and variance evaluation results.
For each dataset, evaluated methods include the non-uncertain SRN (as
in “SRN”) and uncertain models with a specified base SRN architecture.
All models in the same dataset have the same size as indicated in the
Base SRN column. PSNR evaluates data-level reconstruction accuracy.
Pearson correlation (corr) and our modified Jaccard Index with spatial
tolerance (JI-ST) assess the spatial similarity between the prediction
variance and error. Negative log likelihood (NLL) evaluates the quality of
Gaussian distributions parameterized by prediction means and variances
in representing the data. The top two statistics among uncertain models
in each dataset are bolded with the best one underlined.

Dataset Base SRN Model PSNR (dB) ↑ Corr ↑ JS-ST(1%/5%) ↑ NLL ↓ Training time

Plume
512×1282

32 MB

APMGSRN
0.35 MB

SRN 49.66 N/A N/A N/A 404s
MCD 44.73 0.2928 43.9% / 54.9% 8.28 430s
MFVI 46.00 0.3172 47.0% / 50.1% -0.59 495s

DE 46.07 0.3726 40.8% / 52.9% 5.86 804s
PV 42.53 0.5415 61.9% / 76.9% -5.88 423s

MDSRN 46.66 0.3521 44.6% / 59.5% 759.08 760s
RMDSRN 47.58 0.6154 60.1% / 64.3% -4.27 780s

Nyx
2563

64 MB

fV-SRN
3.21 MB

SRN 39.39 N/A N/A N/A 346s
MCD 37.09 0.1353 25.7% / 34.1% 6.42 386s
MFVI 37.70 0.0963 20.6% / 30.8% 3.46 494s

DE 33.98 0.0702 12.5% / 24.9% -0.85 789s
PV 37.33 0.4536 50.5% / 54.3% -3.06 402s

MDSRN 39.01 0.0215 11.3% / 27.9% 418.96 730s
RMDSRN 39.04 0.2134 27.7% / 41.4% -1.16 746s

Supernova
4323

308 MB

APMGSRN
4.33 MB

SRN 50.36 N/A N/A N/A 346s
MCD 43.52 0.3578 38.9% / 59.4% -3.72 386s
MFVI 46.83 0.2505 32.8% / 55.9% -3.98 313s

DE 46.76 0.4268 47.6% / 60.3% -7.48 789s
PV 46.01 0.5364 64.6% / 74.0% -6.46 390s

MDSRN 49.31 0.2089 32.2% / 49.2% 25.66 730s
RMDSRN 49.35 0.5026 59.3% / 68.8% -7.05 746s

Asteroid
10003

3815 MB

NGP
40.21 MB

SRN 45.71 N/A N/A N/A 188s
MCD 39.64 0.1242 19.6% / 56.7% -3.40 209s
MFVI 40.85 0.1609 31.6% / 44.4% -4.10 417s

DE 36.19 0.4575 66.2% / 91.2% -7.87 405s
PV 38.43 0.6213 79.4% / 87.3% -7.51 192s

MDSRN 45.86 0.2455 65.4 % / 90.8% -4.57 372s
RMDSRN 46.12 0.4618 73.5% / 91.6% -7.59 345s

Isotropic
10243

4096 MB

fV-SRN
40.21 MB

SRN 39.57 N/A N/A N/A 407s
MCD 36.44 0.0738 10.2% / 20.9% 7.82 440s
MFVI 34.31 0.0373 5.4% / 12.6% 4.89 529s

DE 34.99 0.2083 16.4% / 26.9% -0.33 813s
PV 36.99 0.4901 44.2% / 55.0% -3.24 411s

MDSRN 39.48 0.0200 7.6% / 18.1% 1616.72 776s
RMDSRN 39.48 0.2876 29.8% / 41.4% -1.68 790s

study of λmax and the scheduler can be found in Sec. 5.3.

5 EXPERIMENTS

To study the performance of uncertain neural network architectures on
feature grid SRNs for scientific data, we evaluate MDSRN, RMDSRN,
Deep Ensemble (DE) [20], Monte Carlo Dropout (MCD) [9], Mean
Field Variational Inference (MFVI) [3], and Predicting Variance (PV)
in reconstruction accuracy and variance quality with evaluation met-
rics designed for volume visualization along with qualitative results in
Sec. 5.1. Related methods are reviewed in Sec. 3.2. We then study an
adaptation of uncertainty-aware volume rendering [33] for uncertain
SRNs in Sec. 5.2. Finally, we conduct ablation studies of the regular-
ization strength λ on RMDSRN as well as the ensemble member count
for both MDSRN and RMDSRN on Sec. 5.3 and Sec. 5.4.

5.1 Uncertain Neural Network Architecture Evalaution
We quantitatively and qualitatively evaluate our methods, MDSRN and
RMDSRN, against Deep Ensemble (DE), Monte Carlo Dropout (MCD),
Mean Field Variational Inference (MFVI), and Predicting Variance (PV)
reviewed in Sec. 3.2. The uncertain architectures are adapted to three
state-of-the-art feature grid SRNs for five scalar field datasets with
different feature patterns and sparsity. We first detail the experiment
settings, and then introduce the evaluation methods and results for the
data reconstruction and variance quality tests.

Evaluation datasets and base SRNs. The evaluated datasets include
Plume, Nyx, Supernova, Asteroid, and Isotropic. The dimensions of the



Fig. 4: Volume renderings of reconstructed data for Nyx (left) and Asteroid (Right) as well as the ground truth in blue borders. Both image-level
evaluation metrics and the enlarged views show the renderings from RMDSRN maintain the highest fidelity overall and reproduce feature structures
the most clearly as evidenced by SSIM and the perceptual loss.

dataset can be found in the first column of Tab. 1 containing quantitative
results. We apply uncertain network architectures to state-of-the-art
feature grid SRNs for SciVis, including fast Volumetric SRN (fV-SRN)
[48], Neural Graphics Primitives (NGP) [26,52], and Adaptively Placed
Multi-Grid SRN (APMGSRN) [53]. We pair each dataset with the base
SRN whose architecture fits the data feature well, as presented in Tab. 1.
For Nyx and Isotropic with dense features over the domain, we use
fV-SRN. Plume and Supernova contain features that are uniformly
distributed in a subregion, and these features can be properly learned
with APMGSRN. As for Asteroid with a higher degree of sparsity,
NGP is applied. Please find the exhaustive quantitative results covering
uncertain architectures on all base models for every dataset in the
supplemental material.

Baseline uncertain neural network architectures. Compared
methods are reviewed in Sec. 3.2. For SRNs with MCD and MFVI, the
MLP decoder is adapted to their methods and the feature grid encoder
is unchanged. For DE, independent feature grid SRNs are trained. To
implement PV, a feature grid SRN needs an additional output channel
for the decoder to predict the variance, and the NLL loss is applied.

SRN training and hyperparameters. For each pair of datasets
and base SRNs, the uncertain SRNs have the same size from 1% to
6% of the data size for a sufficient reconstruction quality. For all
uncertain models except for DE, the same encoder configurations are
used, whilst the decoder setup is different to achieve an equivalent size
since increasing the grid resolution and feature size can easily result in
unbalanced parameter counts. MCD and PV each has a 3-layer MLP of
128 neurons, and MFVI has 2 layers of 108 neurons. Both MDSRN and
RMDSRN have 5 decoders with 2 layers and 64 neurons. While the 5
members of DE all have a 2-layer decoder with 64 neurons, the encoder
capacity is less than other methods for equivalent network sizes.

We implement all models and perform training with PyTorch [29]
with an NVIDIA A100 GPU and an AMD EPYC 7643 processor.
Training settings are standardized for most models and datasets. We
train most models with the Adam optimizer [19] and a learning rate of
5.0e-3 which delivers smooth convergences. For PV, we apply 5.0e-4 as
the learning rate following ActiveNeRF [27] as an existing study of PV
SRN, and MFVI also uses 5.0e-4 to avoid unstable training. We also
apply cosine annealing [22] for learning rate decay with the minimum
rate set to 1.0e-7. We randomly select one batch of 217 or 131,072
coordinate-value pairs in every training iteration for 50000 steps.

For uncertain architectures with hyperparameters, 3 trials of training
with different settings are performed. For MCD, we test the dropout
probability p ∈ {0.1,0.15,0.3}, and for MFVI, the initial value for the
learnable parameter variances has the most influence, and we test values
∈ {0.01815, 0.006715, 0.002476}. During inference time, 5 stochastic
forward passes are used for MCD and MFVI to obtain prediction
mean and variance. For RMDSRN to be trained with the exponential
scheduler defined in Eq. (5) for the variance regularization, we test
λmax ∈ {10, 30, 100} with λmin = 0 and r = 500. In the following
evaluation, we show results from the best trial among the three runs
considering both reconstruction and variance quality. Please refer to
the supplemental material for the quantitative results of all runs.

Data reconstruction evaluation. To quantify the reconstruction
quality of uncertain SRNs, we compute the peak signal-to-noise ratio
(PSNR) between the ground truth and the mean reconstructions from un-
certain SRNs and present in Tab. 1. Results for non-uncertain SRNs are
also included with the “SRN” model label. MDSRN demonstrates lead-
ing PSNR compared to Bayesian methods, DE, and PV in all datasets
thanks to the feature-grid-sharing scheme that effectively scales up
the member capacity. Tab. 1 shows MDSRN can outperform MCD,
MFVI, and PV by up to +5 dB in Asteroid with NGP. Furthermore, the
best RMDSRN among 3 training trials of different λmax can further
increase the PSNR slightly, making RMDSRN the most accurate uncer-
tain SRN in the perspective of data-level PSNR. When comparing the
accuracy of RMDSRN with the SRN without variance quantification,
RMDSRN demonstrates competitive predictive performance close to
the non-uncertain base SRN in all datasets except Plume. This indicates
the potential of RMDSRN in providing quality reconstruction similar to
the conventional non-uncertain models while being able to quantify its
prediction confidence. A noteworthy observation for PV is that despite
the close performance to RMDSRN in Nyx, Supernova, and Isotropic,
it has the lowest PSNR for Plume and Asteroid. We observe that PV
with NLL training can have a more noisy descent trajectory for the loss
compared to other approaches, resulting in a more varying performance
between experiments.

For visualization quality comparison, we provide volume rendering
images of uncertain-SRN-reconstructed Asteroid and Plume in Fig. 4,
and each image from SRNs is labeled with image-level metric results
comparing against the ground truth including PSNR, structural similar-
ity index measure (SSIM) [47], and Learned Perceptual Image Patch



Fig. 5: Volume renderings of the highest error (top) versus variance (bottom) obtained from uncertain SRNs of Plume on the left and Supernova on
the right. RMDSRN more precisely recovers fine-grained error patterns. While PV attains a high variance-error correlation as a strong competitor,
the variance can be oversmooth, potentially overlooking detailed error structures.

Similarity (LPIPS) [54]. We omit MDSRN in the visual comparison
since RMDSRN can represent the best quality of our methods, and
the visual quality difference between their renderings is not signifi-
cant. RMDSRN scores the best quantitative results with the lowest
perceptual distance plus the highest image PSNR and SSIM, except
for Asteroid where PV outperforms RMDSRN in PSNR. Nevertheless,
with a scrutinization of the enlarged views in Asteroid, RMDSRN
recovers the most detailed feature patterns compared to PV, which is
consistent with the SSIM and LPIPS results. Similarly for Nyx, we
can observe that RMDSRN preserves the shapes and colors of data
features highlighted by the transfer function to the greatest extent, and
its images look sharper with higher visual fidelity compared to the other
renderings that appear fuzzier.

Variance quantification evaluation. To quantitatively evaluate the
spatial similarity between the variance and error, we propose to use
Pearson correlation (corr) and a modified Jaccard index with spatial
tolerance (JI-ST) as the metrics. Given a variance field and an error field
sampled with the same resolution as the data, a higher correlation value
suggests high variances and errors are more likely to coincide in the
same voxels and vice versa. Jaccard index [18] is computed as the ratio
of intersection over union (IoU) between two sets of voxels with one
having the highest variances and the other containing the highest errors.
We propose a modified Jaccard index with spatial tolerance (JI-ST)
to measure the overlap between the two voxel sets with top variances
and errors. When calculating the intersection between the two sets,
JI-ST expands the top-error voxel set with one-voxel neighbors of the
original members. This relaxed intersection calculation considers that
although the highest variances and errors do not always coincide in the
same voxels, if the voxels in the variance set are sufficiently adjacent
to those in the error set, the variances are still informative in exposing
the weakness of the model in visualization. For JI-ST, we evaluate the
voxel sets with top 1%- and 5%-ranked variances and errors. As the
results in Tab. 1 show, PV and RMDSRN dominate the top one and two
variance evaluation metrics. Although MDSRN does not demonstrate a
clear advantage in the correlation and JI-ST, RMDSRN improves the
similarity of variance to its error considerably and achieves competitive
statistics for both metrics compared with PV, surpassing DE and BNNs
by a great margin. Since the non-uncertain SRN does not provide
variance quantification, the non-applicable metrics are shown as N/A.

Another uncertain SRN evaluation metric is NLL. The mean predic-
tion and variance from the uncertain models are used to parameterize a
Gaussian distribution of the prediction, and NLL evaluates how likely
the ground truth data are generated from the predicted distributions with
smaller values indicating more probable distributions. PV attains the
best NLL in most datasets as expected, since NLL is directly minimized
during training. After PV, we observe ensemble methods including
RMDSRN and DE attain the highest quality distributions representing
the data, despite MDSRN tending to produce less desirable Gaussians.
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Fig. 6: Data reconstruction and variance-error correlation are evaluated
for SRNs across six compression levels. MDSRN and RMDSRN lead the
reconstruction PSNR in all model sizes, while PV demonstrates more
advantageous Pearson correlations between variance and error.

To visually evaluate if the variance and error fields correlate well,
we compare volume renderings of both fields for Plume (left) and
Supernova (right) in Fig. 5. For each dataset, we visualize a percentage
of voxels with the highest-ranked variances versus errors to study the
effectiveness of variance in revealing regions with the most error-prone
predictions. The data-space correlation is also included between each
pair of the error and variance renderings. For Plume, qualitatively the
variance of RMDSRN captures most precisely the high error regions
shown in the cropped view. Although PV achieves a high variance-error
correlation, the variance rendering demonstrates an excessive level of
fuzziness that fails to reproduce the detailed error structures for Plume.
As for Supernova, the fuzzy characteristic of the variance from PV is
still present, but relatively more spatial structures are revealed than
in Plume. The variance from RMDSRN displays an overall similar
feature structure to the error with more fine-grained patterns captured
than other methods.

Cross-compression-level evaluation. In addition to the above eval-
uations comparing uncertain SRNs under a constant size within each
dataset and base SRN, we present quantitative results evaluating their
performance under six compression ratios from 1/10000 to 1/20 for
Isotropic with fV-SRN in Fig. 6. Similar to the setup for previous
evaluations, we train 3 runs of MCD, MFVI, and RMDSRN with the
mentioned hyperparameter sets and choose the best model with rela-
tively better reconstruction and correlation. We plot the compression
ratio versus reconstruction PSNR and variance-error correlation for ap-
plicable models. For the per-compression-level PSNR, we can observe
RMDSRN and MDSRN in gray and yellow achieve leading PSNRs
in every compression level, comparable to the SRN without variance



Fig. 7: Mean prediction volume rendering versus uncertainty-aware volume rendering with our adaptation of statistical DVR [33] for uncertain SRNs.
All uncertain SRNs produce more accurate volume renderings with the uncertainty-aware algorithm than rendering the mean, revealing the potential
advantage of uncertainty-aware visualization methods for uncertain SRNs.

estimation, and the accuracy gap for other uncertain SRNs increases
with larger model sizes. Despite a potentially oversmooth variance as
shown in the renderings from the variance evaluation, PV consistently
outperforms other uncertain models with considerably higher variance-
error correlations in the correlation chart. RMDSRN follows PV with
the next best correlation scores. Notably, despite having inferior re-
construction accuracy, DE also exhibits high-quality variance across
compression levels over Bayesian methods.

5.2 Uncertainty-Aware Volume Rendering with Uncertain
SRNs

With uncertain SRNs outputting multiple predictions for any coordi-
nate input, in addition to visualizing the variance as one presented
approach for quality-informed visualization, the architectures open the
opportunity for the application of probabilistic volume visualization
algorithms that work on uncertain data to produce uncertainty-aware
visualization [1, 8, 30–33].

We present our adaptations and results of the uncertainty-aware vol-
ume rendering technique proposed by Sakhaee et al. [33] for uncertain
SRNs to directly incorporate the multiple predictions for every sampled
location into the final rendered image, beyond rendering only the mean
field. In the statistical direct volume rendering (DVR) framework from
Sakhaee et al. [33], the uncertainty in the data values is integrated into
transfer function (TF) classification. For uncertain data with the value
in each spatial location conforming to some probability distribution,
they propose to compute the expected color in a sampled location by
applying the TF to all possible values and accumulating the colors as
well as opacities weighted by the probabilities of the values. To adapt
the statistical DVR framework for uncertain SRNs, we compute the
expected color by the sum of colors of each predicted value weighted
by the probability of the prediction under the Gaussian distribution
parameterized by the mean value and variance. The weights need to
be normalized by the total probabilities of all samples to ensure they
sum to one before multiplying by the color and opacity. With this
formulation, predictions closer to the mean are given higher weights
than others. This behavior can be justified by the observation that
the mean prediction is often more accurate than the samples for both
ensemble and BNN methods evaluated, hence samples more similar to
the mean are also expected to be higher-quality predictions, and they
should contribute more to the expected color and opacity.

We render fV-SRN-based uncertain SRNs for Isotropic with the
described adaptation of the uncertainty-aware TF classification method
in comparison with the mean prediction renderings in Fig. 7. The
models are from the experiments for Sec. 5.1. We observe the uncer-
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Fig. 8: Effect of varying variance regularization strength λmax on
RMDSRN with scheduler tested on Supernova, Nyx, and Asteroid. Re-
sults for RMDSRN with constant λ are shown with suffix “const λ ”.
RMDSRN performs well under wide ranges of λmax with the proposed
scheduler compared to with a constant λ .

tain rendering approach improves the image accuracy considerably for
all uncertain SRNs with RMDSRN showing the most accurate visu-
alization for both mean prediction and uncertainty-aware rendering.
By aggregating the post-classification colors instead of classifying the
mean prediction with the TF, the features in red displayed in the en-
larged views exhibit clearer visibility of the feature structure, and all
uncertain SRNs attain higher image accuracy from the quantitative
results reported besides the images.

5.3 Ablation Study: Regularization Strength and Scheduler
The variance regularization endows RMDSRN with a reliable vari-
ance closely correlated to the error down to detailed spatial patterns
compared to other approaches, and this performance is tightly coupled
with an appropriate regularization strength. We study the behavior of
RMDSRN under different λmax in Fig. 8 with λmin = 0 and r = 500 as
the settings of the λ scheduler, compared with an MDSRN baseline.
We test on Supernova, Nyx, and Asteroid with network configurations
for each dataset the same as in Sec. 5.1. In addition, we test RMDSRN
with constant λ throughout training without the proposed scheduler,
and the results are labeled with a suffix of “const λ”.

Before we compare the performance of RMDSRN with a con-
stant versus scheduled λ , we first focus on discussing the results for
RMDSRN with the scheduler plotted in red, yellow, and purple lines
in Fig. 8. The right subplot shows stronger regularization monotoni-
cally increases the variance-error correlation as shown in all datasets,
whereas the reconstruction accuracy can degrade after some threshold.



Therefore, the ideal λmax for the scheduler ranges from zero up to
the maximum value before observing a significant accuracy drop for
RMDSRN to achieve the best quality variance possible while retain-
ing similar reconstruction accuracy as MDSRN. For Supernova with
MDSRN scoring a PSNR of 49.31 dB, the best λmax for RMDSRN is
between 10 to 30 beyond which the accuracy starts to underperform
MDSRN. This threshold is between 50-100 for Asteroid and beyond
500 for Nyx. Comparing the best λmax between datasets with different
levels of MDSRN accuracy, we can observe the threshold inversely
correlates with model accuracy. In other words, for a given dataset
and a base SRN architecture, RMDSRN with less capacity is expected
to be more amenable to a high regularization strength than a larger
RMDSRN that can learn a more accurate reconstruction.

Although the best-performing λmax value can differ between training
settings, it can be observed that a mild regularization with λmax ∈ [5,10]
works well generally, and there are only slight performance gaps com-
paring to the optimal λmax due to diminishing returns evident in Fig. 8,
hence we recommend this range as a default setting. If it is desired to
maximize the benefit of the regularization, an MDSRN baseline can be
trained to guide the λmax tuning. Though the interpretation of PSNR
values can vary for different datasets, we recommend trying λmax up
to 50 if the baseline MDSRN scores PSNR under 40 dB, or up to 30
for under 45 dB PSNR. As we have observed the inverse relationship
between PSNR and λmax, a more intelligent scheduler that automati-
cally scales λ during training based on the current accuracy might be
possible. We leave this to future work and recommend any RMDSRN
to start with the suggested λmax between 5 to 10.

We now compare the RMDSRNs trained with our scheduler versus
constant strength, after we have established that a proper regularization
should increase the variance quality without degrading the performance
of RMDSRN under the MDSRN baseline. Taking Asteroid as an
example, it is observed in the PSNR chart that RMDSRN with the
scheduler can have λmax set between 0 to 100 without hurting the
predictive performance. However, with a constant λ , the results in
the green line show the accuracy of RMDSRN already drops below
MDSRN for strengths greater and equal to 30. The similar trend is
manifested in other datasets as well. In particular, a constant λ of 5 is
already excessive for Supernova. Concluding from the observations,
our proposed λ scheduling routine is shown to ease the sensitivity of λ

tuning, such that a wider range of strengths can be applied for better
variance quantification over MDSRN without an adverse side effect on
accuracy.

5.4 Ablation Study: Decoder Count
The number of decoder members can affect the performance of en-
semble networks, and we study the performance of our MDSRN and
RMDSRN with different numbers of member decoders while keeping
the total model size constant. We test on Supernova with APGMSRN.

As Fig. 9 reveals, MDSRN does not exhibit an additional advantage
in reconstruction accuracy with more decoders under a constant pa-
rameter budget. This adheres to our empirical observation reported in
Sec. 4.1 that the most important factor affecting the ensemble accuracy
is the capacity of member models. Nevertheless, the variance quality
keeps improving from 3 to 15 decoders. Following the results, a de-
coder of 5 for MDSRN can be a proper choice balancing both accuracy
and variance quality. For RMDSRN, the reconstruction PSNR shows
a monotonic decrease for both λmax of 5 and 10. Although RMDSRN
with λmax = 30 shows increased performance from 3 to 5, the lower
performance of 3 decoders is likely a result of excessive regularization
strength, as the accuracy is substantially lower than MDSRN. As for
their variance quality, decoder count is less impactful as the regular-
ization strength and the correlation change in response to different
numbers of decoders is minimal. Concluding from the observations,
3 to 5 decoders for RMDSRN can provide a balanced performance
considering accuracy and variance-error correlation.

6 LIMITATIONS AND FUTURE WORK

We acknowledge several limitations of our multi-decoder architecture
and regularization with a discussion of possible improvements and
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Fig. 9: Effect of varying number of decoders for MDSRN and RMDSRN
with different variance regularization strengths.

future work. First of all, our MDSRN, as an ensemble method, requires
training multiple member networks for each optimization step. Com-
pared with non-ensemble methods such as BNNs and PV, MDSRN
takes longer to train as shown in Tab. 1.

Secondly, although MDSRN achieves great parameter efficiency for
better accuracy than DE, PV, and BNNs, the variance quality does not
exhibit an advantage as shown in Tab. 1 without the variance regular-
ization. The diversity of networks represented by the uncertain model
is an important factor affecting the performance [7, 50], and improving
the diversity of the decoders can be future work for better variance
quality.

As studied in Sec. 5.3, regularization strength λ has important im-
plications for the accuracy and variance quality of RMDSRN. The
proposed λ scheduler is shown to reduce its sensitivity and provide a
default setting that works for most experiments. However, λmax still
needs to be set, and finding the best λmax can require hyperparameter
searching. On the other hand, as the proper λ appears to inversely
correlate with model accuracy, an automatic λ scheduler that adjusts
the value based on both the training iteration and current prediction
accuracy might be able to be developed as future work.

In this work, our utilization of the prediction variance is to facilitate
error-aware data reconstruction and visualization, but it can be exploited
for more diverse purposes. We plan to explore the potential of active
learning methods with uncertain networks for resource-efficient training
of SRNs for large-scale scientific datasets.

7 CONCLUSION

To equip feature grid SRNs for scientific data with inference time
prediction quality assessment, we propose RMDSRN that provides
prediction variance quantification from multiple plausible predictions
made to any given input coordinate for error-aware reconstruction of
volumetric data. RMDSRN comprises a parameter-efficient multi-
decoder architecture synergized with a novel variance regularization
loss for reliable variance estimation well-correlated with prediction
error. Through both quantitative and qualitative evaluations, RMDSRN
demonstrates superior data reconstruction and visualization accuracy as
well as competitive variance quality under the same model size across
different datasets and compression levels compared to alternative un-
certain neural network architectures shown in Sec. 5.1. Additionally,
we present results of uncertainty-aware volume rendering incorporated
to uncertain SRNs, which reveals the potential advantage of leverag-
ing uncertain predictions for a more accurate volume rendering than
using the mean field with uncertain SRNs. As we examine the effect
of regularization strength and decoder count on the performance of
MDSRN and RMDSRN in the ablation studies, we find our models
can achieve satisfactory reconstruction accuracy and variance quality
with a relatively small number of members under 5, and our RMDSRN
performs well under a wide range of regularization strengths thanks to
the exponential growth scheduler derived for the regularization.

Our work explores an error-aware SRN method realized with uncer-
tain neural network architecture, and we see the potential of continued
research on more diverse error-aware SRN approaches and applications
to improve the trustworthiness and performance of SRN for scientific
visualization in future work.
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