
HiRegEx: Interactive Visual Query and Exploration of Multivariate
Hierarchical Data

Guozheng Li , Haotian Mi , Chi Harold Liu , Takayuki Itoh , and Guoren Wang

Abstract—When using exploratory visual analysis to examine multivariate hierarchical data, users often need to query data to narrow
down the scope of analysis. However, formulating effective query expressions remains a challenge for multivariate hierarchical data,
particularly when datasets become very large. To address this issue, we develop a declarative grammar, HiRegEx (Hierarchical
data Regular Expression), for querying and exploring multivariate hierarchical data. Rooted in the extended multi-level task topology
framework for tree visualizations (e-MLTT), HiRegEx delineates three query targets (node, path, and subtree) and two aspects for
querying these targets (features and positions), and uses operators developed based on classical regular expressions for query
construction. Based on the HiRegEx grammar, we develop an exploratory framework for querying and exploring multivariate hierarchical
data and integrate it into the TreeQueryER prototype system. The exploratory framework includes three major components: top-down
pattern specification, bottom-up data-driven inquiry, and context-creation data overview. We validate the expressiveness of HiRegEx
with the tasks from the e-MLTT framework and showcase the utility and effectiveness of TreeQueryER system through a case study
involving expert users in the analysis of a citation tree dataset.

Index Terms—Multivariate hierarchical data, declarative grammar, visual query

1 INTRODUCTION

Multivariate hierarchical data are ubiquitous in real-world applications
and can be found in datasets like citation trees of publications [58],
reposting trees in social media [16, 47, 69], and hierarchical tabular
data [33–35]. One technique often used to analyze such hierarchical
data is exploratory visual analysis (EVA), which involves examining
data, extracting patterns, gaining insights, and refining hypotheses [3].
Visual analytics techniques, such as visual encoding and querying, can
facilitate an EVA process by enabling rapid specification of data visual-
izations and transformations [3,55]. While significant progress has been
made in the visual encoding of hierarchical data visualizations [51],
visual querying remains a challenge in the EVA of multivariate hier-
archical datasets. Specifically, the unpredictable characteristic of an
EVA process indicates that users often lack a clear idea of query targets
and must continuously try different queries to reach a goal. However,
the complexity of multivariate hierarchical data, in terms of topologi-
cal structures and node attributes, makes constructing practical query
expressions time-consuming and error-prone.

Take an example of analyzing a citation tree dataset with EVA. Each
node in the citation tree represents a publication with multiple attributes,
such as “topics” and “authors”, while the links among nodes signify
their reference relationships. In this scenario, the tasks of a researcher
include capturing important publications, identifying their various pat-
terns, and comprehending the development of research trends. The
researcher needs to formulate diverse query expressions frequently to
accomplish tasks or validate hypotheses. For instance, the researcher
may query publications within the “graph” topic from the past three
years that have been cited by more than five publications within the
“immersive” research topic to understand the recent intersection of
disciplinary directions. The query expression is related to both node
attributes, like topics, and topological structures, such as the number of
children on specific topics. In particular, the topics and parameters in
the above query might be changed frequently during EVA.

Existing techniques allow users to query multivariate hierarchical

• Guozheng Li, Haotian Mi, Chi Harold Liu, and Guoren Wang are with
Beijing Institute of Technology. Chi Harold Liu is the corresponding author.
E-mail: {guozheng.li, haotian.mi, chiliu, wanggr}@bit.edu.cn

• Takayuki Itoh is with Ochanomizu University. E-mail: itot@is.ocha.ac.jp.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

data by programming and interactive filtering. The programming ap-
proach lets users craft general low-level imperative codes, which can be
easily verified but requires clearly defined goals and query targets, a sig-
nificant burden for non-programming users. Although some declarative
languages for hierarchical data queries [4, 32, 56] are less challenging,
they are usually domain- or task-specific (e.g., the syntax tree in natural
language processing [32], or graph query languages [2, 18, 48, 61]) and
lack adequate support for diverse visual analytics tasks [42]. With the
interactive filtering approach, on the other hand, users can see specific
topology structures and build dynamic queries on multiple node at-
tributes. However, constructing flexible and diverse queries requires
continuous data filtering and checking activities, a very time-consuming
task, especially when the dataset is large. Therefore, we seek an ef-
ficient and expressive query approach that can be integrated into the
EVA process for multivariate hierarchical data.

This work presents HiRegEx (Hierarchical data Regular Expression),
a novel declarative grammar for querying multivariate hierarchical data.
HiRegEx builds upon a tree-specific extension to the multi-level task
topology framework (e-MLTT) [42], a dataset with a collection of 213
tasks from existing studies. We develop a classification of three distinct
targets (node, path, and subtree) from the task abstraction framework
and then define two aspects of target querying, features, and positions.
Specifically, HiRegEx sees a node as the elementary unit that is used to
set constraints on various attributes and borrows operators from regular
expressions to specify parent-child relations [52]. Some new operators
are also introduced to specify sibling relations [36].

Furthermore, we introduce a query-based framework to support the
EVA of multivariate hierarchical data based on the HiRegEx declarative
grammar. The framework is designed to assist users in conducting
exploratory analysis tasks based on the sense-making model [30, 46].
The framework includes top-down pattern specification, bottom-up
data-driven inquiry, and context-creation data overview. We imple-
ment a prototype system, TreeQueryER, to integrate the exploratory
framework. The top-down specification is supported by a visual editor
based on HiRegEx, in which users can construct query expressions
interactively. To conduct bottom-up inquiries, users can test different
query expressions based on a visualized target dataset. The context-
creation overview shows the hierarchical data collection through the
dimension reduction technique and incorporates a graph contrastive
learning model for the computation of similarities among distinct data.

We validate our techniques in two ways. First, we demonstrate the
expressiveness of HiRegEx grammar based on the e-MLTT framework
for hierarchical data. The results indicate that the HiRegEx grammar
effectively supports 174 tasks of the entire task collection, consisting
of 213 tasks. Second, we validate the utility of the TreeQueryER

https://orcid.org/0000-0001-6663-6712
https://orcid.org/0009-0004-0466-4709
https://orcid.org/0000-0002-0252-329X
https://orcid.org/0000-0002-1997-4644
https://orcid.org/0000-0002-0181-8379

prototype system in a case study involving a citation tree dataset. The
results show that users can interactively construct query expressions
for various tasks and confirm the capacity of the underlying framework
to facilitate the EVA process of multivariate hierarchical data.

In summary, the main contributions of this paper are as follows:
• The HiRegEx declarative grammar to facilitate diverse tasks in query-

ing multivariate hierarchical data;

• A query-based exploratory framework for exploring multivariate
hierarchical data, supporting top-down, bottom-up, and context-
creation data query modes;

• The TreeQueryER prototype system that integrates the exploratory
framework for multivariate hierarchical data and is validated through
a case study involving a citation tree dataset. Its source code is
available at https://github.com/bitvis2021/HiRegEx.

2 RELATED WORK

In this section, we review literature in the areas of query languages of
hierarchical data and interactive visual query techniques.

2.1 Query Languages of Hierarchical Data
Hierarchical data query has been extensively studied due to its wide
applications in various domains. A typical application scenario is for
querying syntax trees, which are hierarchical representations of differ-
ent syntactic categories of a sentence, in natural language processing.
Tregex [32] is a query language for syntax trees based on character
matching and supports the specification of relative relationships be-
tween nodes. However, dealing with a large-scale syntax tree with this
approach involves continuously integrative processes, which can be
computationally complex and produce results with poor readability.
In addition, unlike the traditional usage scenarios of hierarchical data
queries, the design of Tregex emphasizes the order between sibling
nodes, imposing some challenges for many users. Moreover, many
databases contain data arranged in a hierarchical structure. Jaql [4] is a
declarative scripting language most commonly used for querying and
processing JSON data, a classic format used for hierarchical data. The
hierarchical query language (HQL) [56] is a language for querying a
hierarchical database. Based on HQL, users can specify transactions
against a database with a hierarchical structure. Both Jaql and HQL are
designed for users to set the attribute value for querying targets, such
as single node attributes or aggregated node attributes. However, these
techniques do not support the specification of the topological structure.

Given a tree as a connected acyclic undirected graph, querying
languages for general graphs can be used in most situations. Cruz et
al. [13] proposed a declarative language called G to support regular
expressions in specifying the path between any two nodes in a graph.
G+ [15] extends G with a summary graph to restructure the results
obtained by a query statement. Furthermore, GraphLog [12] is a query
language for hypertext based on G+, and adds negation and unifies the
concept of a query graph. These graph query languages [12, 13, 15]
use regular expressions to define the path between nodes and allow the
concise specification of relationships between two non-adjacent nodes
within a large-scale graph. In addition to the languages defined over
a simple graph model, industry users also adopt other graph database
query grammars, such as Gremlin [48], Cypher [18], PGQL [61], and
G-CORE [2]. These languages have good expressiveness and support
the specification of topological structures and node attributes. However,
existing graph query languages cannot specify the sibling or same-
level relation expressively, an essential feature of hierarchical data. In
addition, most of these imperative query languages are not intuitive for
users to complete query tasks for multivariate hierarchical data.

Despite the availability of many query languages for filtering hierar-
chies across various scenarios, they often lack the flexibility to support
users in querying multivariate hierarchical data for EVA.

2.2 Interactive Visual Query Approach
In visualization research, efforts on interactive visual queries involve
nearly all data types, such as tabular data, time-series data, event se-
quences, and graphs. The following discussions emphasized the closely

relevant data types with hierarchies: graph, time series, and event
sequence. More specifically, hierarchy is a special graph data with hier-
archical relationships and no circles. In addition, both time series and
event sequences have a linear structure, similar to the decomposition
paths of hierarchies, linked from the root node to the leaf nodes.

Graph data query. Many techniques have been developed for
visual query of graph data. Methods like Graphite [11], VOGUE [5],
and Visage [45], for example, allow users to construct query patterns
for graph data intuitively and present the matching subgraphs of a large
property graph. With Vertigo [14], users can build and recommend
graph queries and delve into their findings within multi-layer networks.
In comparison, VIGOR [44] emphasizes the efficient summarization of
subgraph queries by grouping results according to node characteristics
and structural similarity. VIMO [59] improves the intuitiveness and
flexibility of graph queries by allowing users to sketch the targets
in the query interface and enable users to define structural similarity
constraints directly. Furthermore, to reduce the difficulty in querying
graphs, researchers have paid more attention to data-driven graph query
approaches and developed methods like selecting high-quality patterns
(small subgraphs) automatically from the underlying graph database [6,
23, 67]. All these methods focus on how to specify the graph topology
accurately by constructing subgraph patterns. However, different from
graph data, hierarchical data consists of both parent-child and sibling
relations. Because of the lack of the capability to distinguish these two
types of relations, existing graph query methods fall short on tasks of
multivariate hierarchical data.

Time series query. The most straightforward approach for the visual
query of time series is to interactively select a partial time series as
the query. Users can brush the partial time series of interest through
timeboxes [8, 9, 21, 22] on a two-dimensional space. The extent of the
timebox on the time axis (x-axis) specifies the time of interest, while
the extent on the value axis (y-axis) specifies a constraint on the range
of values of interest within the time. These methods allow users to
draw multiple timeboxes interactively to query a significant amount of
time series data simultaneously. Querying time series using timeboxes
requires users to understand the data clearly. To solve this problem,
QuerySketch [62], QueryLines [49], and Qetch [41] query time series
data using sketching. Users can directly draw on the visualized time
series to find similar instances, and Qetch [41] combines freehand
drawing and regular expressions to query time series data. In addition
to sketching patterns, COQUITO [27] provides a visual interface to
define cohorts with temporal constraints through intuitive drag-and-
drop operations, enabling the exploration and analysis of time series
data with specific temporal patterns.

Data-driven approaches play an essential role in data query when
users cannot precisely articulate targets. Peax [31] is the first deep-
learning-based approach for an interactive visual pattern search in
sequential data. It uses a convolutional autoencoder to capture more
visual details of complex patterns. Zenvisage++ [30], which finds that
sketch-based methods are not always efficient, develops a taxonomy of
visual query system capabilities, including a top-down pattern search
(translating a pattern “in-the-head” into a visual query), bottom-up
data-driven inquiries (querying or recommending based on data), and
context-creation (navigating across different collections of visualiza-
tions). Our effort to develop an exploratory framework for multivariate
hierarchical data is partially inspired by this taxonomy.

Event sequence query. For the interactive visual query of event
sequence data, (s|qu)eries [68] is a multi-attribute event sequence data
query method based on regular expressions. Users can interactively con-
struct their query pattern by adding various constraints on a node-link
diagram. EventPad [10] also uses regular expressions to query event
sequence data. The difference between these two techniques is that
EventPad defines query results as abstract behavior rather than for data
extraction, and supports the aggregation, alignment, and combination of
event sequence data. VESPa 2.0 [28] facilitates the discovery and vali-
dation of movement sequence patterns through interactive exploration
and querying, supporting a bottom-up and data-driven exploration ap-
proach. Beyond the query task, MAQUI [29] offers a novel approach for
recursive event sequence exploration, combining querying and pattern

https://github.com/bitvis2021/HiRegEx

Tree:= Node(Branch,…)
Target:= (Tree | Path | Node) - EC

EC:= (ECa|ECe) EC

EPT:= empty

V“ ”: for all

“ | ”: or

“!”: not
“0..*”: repetition

“·”: wildcard

“$”: leaf
“^”: root“ ”: there existsE

“EC”: Element Composition

Node:= CustomNode | $ | ^ | ·

Branch:= [<Path> Branch,…] | EPT{0, }*
1 | EPTECe:= E(Node){0, }*

VECa:= (Node) | EPTPath:= (Node|!Node) Path{0, }*

1

2

3

4

5

Fig. 1: The formal specification of the HiRegEx declarative grammar.
The first row introduces the overall structure of the HiRegEx specification.
Rows 2 to 5 below present various query targets on the left, grounded in
the e-MLTT framework, while the right side details element compositions
that enable users to specify how these query targets are structured.

mining to help users analyze and understand complex event sequence
data more effectively. Similar to event sequence data, orders exist
between data items in the hierarchical data because of the parent-child
relationships. Therefore, hierarchical data can be decomposed into a
collection of multiple sequences, and the specification of hierarchical
data can borrow ideas from regular expressions.

Visual queries play a crucial role in enabling EVA and offer flexible
filtering capabilities. While visual query techniques for data types with
relational and linear structures have been extensively studied, there
remains a gap in addressing visual query for hierarchical data.

3 HIERARCHICAL DATA QUERY TASK SPACE

In this section, we define the task space related to querying multivariate
hierarchical data. Pandey et al. comprehensively summarized analytical
tasks for tree visualizations and introduced the e-MLTT framework [42],
which enhances the specificity of task abstraction definitions tailored
to tree visualizations. The e-MLTT framework decomposes tree visu-
alization tasks along two dimensions: targets and actions (see Fig. 4
in Pandey’s study [42]). The target is defined as the object related to
the tree visualization tasks, while the action is the operation users per-
formed to accomplish the tasks. Our task space definition is also based
on these two dimensions of the e-MLTT framework, but only keeps
the query-related analytical tasks in the framework. In this section, we
detail the targets and actions in our task space, using the citation tree as
an example to explain relevant concepts and techniques.

3.1 Query Targets
A query target is defined as the object that the query expression aims to
match. The traditional multi-level task typology (MLTT) framework
proposed by Brehmer and Munzner [7] categorizes the target of tasks
into “topology” and “attributes”. The e-MLTT framework [42] further
extends MLTT to include more specificity to support tree-specific tasks.
It divides the specific targets of “topology” for tree visualization tasks
into four categories: tree, subtree, path, and node, and the “attributes”
into two categories: node attributes and link attributes. The query
targets of the HiRegEx grammar fully consider the targets defined in
the e-MLTT framework, except for link attributes. This is because links
in hierarchical data are typically used to represent parent-child relation-
ships, and the e-MLTT framework [42] also indicates that links are less
frequently used for encoding data attributes in tree visualizations, and
tasks related to links are rare in tree visualizations.

3.2 Query Actions
A query action is an operation users perform to accomplish a task. The
e-MLTT framework classifies query actions into three levels (high, mid,
and low). Our focus here is on the mid-level actions—“search”, a
type of operations a user must perform to find targets. Under e-MLTT,
the “search” action is further divided into four subtypes —“lookup”,
“locate”, “browse”, and “explore”—based on whether the knowledge
of targets and locations is available. In particular, search in the “target

known” subtype refers to tasks with explicit knowledge of a target’s
identity. For example, when users want to find some popular papers in
certain directions that have attracted much attention, they can define
a query expression to find publications with more than five iterative
citations within a short period. Conversely, the “location known” search
concerns tasks that clearly describe a target’s position within the tree.
For instance, to understand the ongoing development of a technique,
users can look for the inaugural paper that introduced the technique
and then trace a subsequent path in the citation tree. As a result, all
papers along this path are likely to be related to this technique.

4 QUERY GRAMMAR DESIGN

In this section, we first analyze the design requirements for query
grammar based on the task space for querying multivariate hierarchical
data and then present the detailed grammar specifications of HiRegEx.

4.1 Design Requirements
Existing studies [20,26,43,50] have significantly influenced and shaped
the following two requirements for a declarative grammar designed for
querying multivariate hierarchical data.

R1: Expressiveness. A visualization grammar should have the
capability to articulate the entire design space [17,43]. Hierarchical data
is a generic data type with broad applications in areas such as finance,
biology, and computer science [38, 39]. This implies that the grammar
should support versatile data query functions applicable to various
scenarios involving hierarchical data. The e-MLTT framework [42]
has summarized 213 analysis tasks related to the hierarchical data from
the literature. As mentioned in Sec. 3, query targets in the task space
consist of topology and attribute, while query actions are divided into
four types according to whether “target” and “location” are known.
Consequently, the declarative query grammar should empower users to
obtain different kinds of query targets based on various query actions,
aligning with the requirements of most tree visualization tasks defined
by the task abstraction model.

R2: Conciseness. EVA is a typical usage scenario of query lan-
guages for multivariate hierarchical data. In an EVA process, analysts
often begin with an unclear goal and refine their objectives as they
explore the data [64]. This process necessitates frequent data queries
for effective exploration [19, 54]. To improve the efficiency of EVA,
analysts prefer query expressions that can be easily constructed, such
as higher-level grammar like ggplot2 [63] and grammar-based systems
like Tableau [57]. In addition, analysts need to understand the previous
exploratory analysis process to make informed decisions about further
exploration. Therefore, it is crucial to ensure the conciseness of the
grammar, making it easy for users to understand and construct. The
query expressions should align with users’ cognitive understanding of
analysis tasks to enhance readability and construction efficiency.

4.2 Grammar Specification
Existing research has extensively explored semi-structured data query-
ing [2, 4, 18, 32, 48, 56]. However, these techniques either lack the ex-
pressive power to cover all tree analysis tasks or produce non-intuitive
expressions (R1, R2), making them unsuitable for EVA scenarios.
Since a tree can be viewed as a composition of multiple paths, and reg-
ular expressions provide an intuitive way to represent paths, we extend
regular expressions to support various tasks in multivariate hierarchi-
cal data querying (R1). We present HiRegEx, a declarative grammar
for querying multivariate hierarchical data. Regular expression uses
ordinary characters (“a” to “z”) and special operators to define text se-
quences conforming to a pattern, commonly employed for text querying
and replacement. Similarly, HiRegEx is designed to search multivariate
hierarchical data by specifying patterns through nodes with attribute
constraints and special operators. The operators in HiRegEx are bor-
rowed from the regular expression and further extended according to
the characteristics of the hierarchical data. The simplicity of operators
ensures the conciseness of the query expression (R2).

The specifications of HiRegEx grammar (see Fig. 1) support all
query targets in the e-MLTT framework, node, path, subtree, and tree,
as explained in Sec. 3.1 (R1). Additionally, we also introduce element

compositions to allow users to specify the compositions of various
query targets. Users need to specify different query patterns for various
targets. For node queries, we introduce various constraints for node
attributes. Querying paths necessitates the definition of parent-child
relationships based on node specifications. Moreover, querying sub-
trees and trees entails specifying the complete topological structure,
including parent-child and sibling relationships.

In addition to query targets, our query grammar is also designed to
support different query actions defined in the task space (R1). For “tar-
get known” queries, the grammar assists users in specifying the inherent
features of the target, encompassing topology structures, node attributes,
and element compositions. Furthermore, to facilitate “location known”
queries, the grammar enables users to precisely define the target’s lo-
cation within the entire hierarchical dataset, thereby representing its
positional features.

(1) Node Query. A node is the elementary unit of hierarchical
data and has multiple attributes. The node expression within HiRegEx
enables users to specify patterns for node attributes. We divide the node
attributes into two categories: inherent and additional.
• Inherent attributes, often quantitative data like depth, help users

in specifying target positions (location-known query). In addition,
each node can also be seen as the root of a subtree. Therefore,
HiRegEx allows users to specify the tree-specific attributes in the
node, including size, height, and width. At the same time, the parent-
child relationship defines a strict order between nodes, and each node
is in a unique path starting from the root node. HiRegEx facilitates
users in specifying node attributes according to their related nodes,
with operators “&” and “#” for relative and absolute positions across
levels, respectively. For instance, (degree = &-1) signifies that the
degree of a node is the same as that of its parent, and (degree = #1)
implies equivalence to the degree of the root node.

• Additional attributes are often quantitative and categorical node
features, such as citation number and authors in the citation tree
(target-known query). To articulate the constraints of node attributes,
we introduce several predicate operators in the grammar specifica-
tion, including “>”, “≥”, “<”, “≤”, “=” for quantitative data, and
“∈” for categorical data. Nodes in multivariate hierarchical data are
selected if their attributes satisfy all defined constraints within the
expression. Query results of a node expression consist of individual
nodes within multivariate hierarchical data. We also pre-define three
special nodes: the wildcard node (•), root node (∧), and leaf node
($). The following defines the formal specification of Node:

Node :=CustomNode |$ | ∧ |•

(2) Path Query. Based on the node specifications, we define the
path-related syntax within hierarchical data by detailing the parent-child
relationships. A path in hierarchical data exhibits a linear structure,
wherein node sequence signifies parent-child relationships. Specifically,
the preceding node serves as the parent of the subsequent nodes.

To query paths in hierarchical data, we adopt operators from regular
expressions, including “or” (|), “not” (!), and “repetition” ({min, max}).
The repetition operator empowers users to specify an exact number or a
range. For instance, node2 signifies that the node pattern repeats twice,
and node{2,5} indicates a repetition range from two to five. Users can
specify only the minimum or maximum number of repetitions, such
as node{2,} matching at least two times and node{,5} matching up to
five times. HiRegEx consistently employs a lazy matching strategy
to query paths according to the expression, which means the path
that first satisfies the query expression is the result, concluding the
matching process. An exception arises when the maximum number of
repetitions is unspecified. In this case, the matching process concludes
only if no nodes can be matched. The formal specification of Path is
presented below. For instance, the query expression (authors=“Ben
Shneiderman”){3,} can search for a citation path that indicates Ben
Shneiderman’s continuous iterative studies in a specific research topic.
The formal specification of Path is presented below:

Path := (Node | !Node){min,max}Path

A

B

C

B

C

D D D DD

A[<BC> [<D>]]3+2+

A

B

C

B

C

D D D DD

Nodes in blue indicates
the matched part

Nodes in red indicates
the unmatched part

Fig. 2: The explanations of Branch operator in the HiRegEx. The nodes
in blue indicate the matched part with the HiRegEx expression, while the
nodes in red indicate the unmatched part.

(3) Subtree/Tree Query. The above path query expressions facilitate
users in specifying parent-child relationships between nodes, yet the
topological structures of hierarchical data also require the determination
of sibling relations [36]. This section delves into the specification of
sibling relationships that do not dictate the node sequence.

The relations between nodes’ siblings are implied by relations be-
tween paths. To specify the sibling relation, we introduce the Branch
operator, which merges multiple paths and allows users to specify the
repetition number of paths. Notably, an inner path within a Branch
can be followed by another Branch, aligning with the recursive char-
acteristics of hierarchical data. The formal specification of the Branch
operator is expressed as:

Branch := [Path1
{min,max}Branch, · · · ,

Pathn
{min,max}Branch]

(1)

When a path is connected with a Branch, the query results can
only be determined if the matching process is finished. An illustrative
example in Fig. 2 displays two paths (B-C) beneath node A. However,
the nodes in red do not meet the requirement. More specifically, the
repetition number should exceed three according to the expression.
Only one path under node A satisfies the condition, falling short of
the expression’s demand for more than two paths. Finally, the query
expression cannot be matched with the hierarchical data. Based on the
Branch operator, the formal specification of Subtree is shown below.
For example, the query expression for citation tree (authors=“Ben
Shneiderman”)[⟨citation≥200⟩{3,}] can search for a Shneiderman’s
paper which has inspired more than three highly cited papers.

Subtree := NodeBranch

(4) Element Composition. We find that specific query tasks neces-
sitate consideration of the comprehensive element compositions of the
query target (target-known query). For instance, analysts may seek
to identify influential papers by querying citation trees published in
2019, comprising more than ten highly cited papers. To accommodate
such query tasks, we introduce the Element Composition (EC) oper-
ator in HiRegEx, empowering analysts to specify compositions as an
additional aspect of the query target. The specifications of EC can be
categorized into two types: for all (∀, denoted as ECa) and there exists
(∃, denoted as ECe). The formal specification of EC is presented below.

EC := (ECa | ECe) EC

ECa := ∀⟨Path⟩{min,max} | EPT

ECe := ∃⟨Path⟩{min,max} | EPT

Note that the repetition operator(min,max) in EC refers to the occur-
rence number of Path, distinguishing it from the repetition (min,max)
used with the Node. With the EC, we can articulate the task above
through the following expressions.

(year = 2019)[⟨(•){0,}⟩{0,}]-∃(citation ≥ 200){10,}

Multivariate
Hierarchical Dataset

…

User

t-SNE projection

N
add Node add Branch

1 1

a And b

a b a b((
a Or b

not a

a! a 2

5

a repeat:[2 , 5]

N*

HiRegEx
Expression

�
a

a 2

*
a 2

5

1

2

2 *
a

5 *
a

2 *
a

2 *
a

3

4

1. Modify one node to willcard
2. Modify one node’s repetitions
3. Modify one branch’s repetitions
4. Delete one branch

HiRegEx Aadaption Rules

Recommend Unmatched Tree

Visualize

Highlight

TASK:
Query papers related
to Machine Learning
in the field of Graph.

Data Augumentation GIN-based Encoder

Linear

Linear

ReLU

Linear

Linear

ReLU

Projection Head

hi

hj

θf θg
zi

zj

Contrastive
 Loss Merge

Same
Trees

0

1 1

2 2 2 2

...
0

1 1

2 2 2 2

0

1 1

2 2 2

1

0

1 1

2 2 2

1...

0

11

2 2 2 2

0

11

2 2 2 2

...

... . . .

Treen

0

1 1

2 2 2 2

0

1 1

2 2 2

1

0

11

2 2 2 2

...

Tree2

Tree1

Ti

Tj

0

1 1

2 2 2

1

0

1 1

2 2 2

1

Bottom-up mode

Context-creation mode

b

c

a
Top-down mode

HiRegEx Construction Operations

Node size encodes the
amount of trees

G

L L L

the selected tree

Matched Results

Original Hierarchies Merged Hierarchies Latent Vector

L indicates the
paper related to

“machine learning”

G indicates the paper
related to “Graph”

Red nodes indicates
the selected tree

Yellow nodes indicates
the matched trees

Fig. 3: The exploratory framework for querying multivariate hierarchical data comprises three modes: top-down, bottom-up, and context-creation.
The top-down mode starts from a clear query task. Users construct the corresponding query expression through direct manipulations interactively.
The bottom-up mode recommends related query expressions based on the initial expression and the multivariate hierarchical data collection. The
context-creation mode offers users an overview of the entire hierarchical data collection. Modules associated with the top-down, bottom-up, and
context creation modes in the framework are denoted by red, orange, and blue triangles.

With all the previously defined operators, we can formally specify
the query target, denoted as Target, as follows.

Target := (Subtree|Path|Node)-EC

5 QUERY-BASED EXPLORATION FRAMEWORK

EVA constitutes an iterative process involving data presentation and
interactive queries [3], aligning with the principles outlined in the visual
information-seeking mantra [53]. This holds for multivariate hierar-
chical data as well. This section presents a query-based exploratory
framework tailored for multivariate hierarchical data. The exploratory
framework, rooted in the visual query sense-making model [30], is
designed to explore multivariate hierarchical data comprehensively.
Illustrated in Fig. 3, the framework provides analysts with three dis-
tinct modes tailored to address various requirements: top-down mode,
bottom-up mode, and context-creation mode.

(1) Top-down mode is designed for a goal-oriented query process
where users have a clear understanding of the target pattern and aim to
search for data instances exhibiting the pattern. As explained in Sec. 4,
HiRegEx is designed based on the task space for querying multivariate
hierarchical data. Specifically, users can convert requirements into
query expressions without low-level programming. After executing a
query expression, users can obtain target data. The challenge in the
top-down mode lies in translating the desired patterns by users into ex-
ecutable query expressions because constructing HiRegEx expressions
in a textual format requires a steep learning curve. More specifically,
users need to memorize operators and parameters in the specification,
and text-based expressions lack cognitive consistency with the query

NODE PATH SUBTREE

citation > 100
date > 2020

constraints:

constraints:
topic = “graph”

constraints:
topic = “immersive”

3

5

2 4

3

5

3

5

3

5

Fig. 4: Three visual operators in the query expression, Node, Path, and
Branch, which are the basic components of query expressions.

results of hierarchical data. To address this limitation, we propose a
visual operator for each component in a query expression, including
the Node, Path, and Branch shown in Fig. 4.

(2) Bottom-up mode is a data-driven process enabling users to
identify something of interest from the data collection. In this mode,
analysts are initially unclear about query targets or unable to specify
query patterns accurately. They need to determine the query expression
or specific parameters according to the data collection. The challenge
in this mode lies in generating an appropriate set of stimuli through
recommendations that can prompt further data-driven inquiries.

We devise an expression recommendation algorithm that can derive
several relevant query patterns based on a pre-determined expression
and data collection. The recommendation algorithm checks each item
in the data collection based on the initial HiRegEx expression. For

A

B

C D E F

A

B

C D E F

A

C D E F

delete delete

insert insert

Fig. 5: The delete and insert operations for computing tree edit distance.

each data item that fails to match the initial query expression, the
recommendation algorithm iteratively refines the expression through the
following operations until the matching process is finished (Fig. 3a): (1)
changing a node with several constraints to a wildcard; (2) modifying
the repetition of one node; (3) modifying the repetition of one path; (4)
deleting a path from a branch. These four operations are prioritized in
descending order based on their impact on the matching results. After
traversing all entries, the algorithm merges the adjusted expressions
and provides them as recommendation results to users. Details of the
algorithm can be found in the supplemental material.

(3) Context-creation mode aims to assist users in understanding the
data distribution and offering relevant data as context for each query
result, thereby assisting users in subsequent exploration. The design
challenge of the context-creation mode is constructing an effective
overview to reflect the similarities between hierarchical data. The tree
edit distance is a typical metric to quantify similarities in tree-structured
data. It is defined as the minimum-cost sequence of node operations
(e.g., insert) required to transform one tree into another. However, the
tree edit distance lacks consistency with the query expression matching
algorithm, which traverses hierarchical data from top to bottom, as
explained in Sec. 4.2. While tree edit distance might yield a small
value between two hierarchical data, their topological structures can
vary significantly from top to bottom due to operations that allow
inserting or deleting any nodes. For example, Fig. 5 illustrates the
insertion and deletion operations between two hierarchical datasets.
The edit distance between different hierarchies is small. However, their
topological structures differ significantly; one has only one node at the
second level, while the other has four nodes.

To address the above limitations, we construct a semantic overview
based on the topological structures of hierarchical data using a graph
embedding method. Our goal is to learn a low-dimensional represen-
tation that captures the structural information of the graph, ensuring
that graphs with similar structures are adjacent in a two-dimensional
space. To achieve this goal, we first merge hierarchical data with iden-
tical topological structures and then apply a graph contrastive learning
method (GraphCL) [66] to map the structural information of graphs
into high-dimensional vectors. GraphCL employs a contrastive loss
function to maximize the consistency between positive pairs in com-
parison to negative pairs. Fig. 3c illustrates the detailed architecture of
the framework. GraphCL augments each hierarchy in the dataset by
randomly dropping a node and its subtree to construct positive pairs.
To ensure that the hierarchical structure is not significantly changed,
the height of the dropped node should be less than or equal to two.
Considering the node matching process of HiRegEx is from top to
bottom, we design node attributes as depth because the changes in the
node depth can significantly influence the topological structure. Subse-
quently, we apply the t-SNE dimensionality reduction algorithm [60]
to project the high-dimensional latent vectors of hierarchical data into
a two-dimensional space for an overview. From the overview, analysts
can understand the similarities between any pairs of hierarchical data
and identify the patterns/anomalies.

6 TREEQUERYER PROTOTYPE SYSTEM

We have designed and implemented the TreeQueryER prototype system
to facilitate the exploratory visual analysis for multivariate hierarchical
data based on the HiRegEx grammar.

6.1 Design Consideration
DC1: Reducing the cognitive burden for constructing query expres-
sions based on the HiRegEx specification. Constructing HiRegEx
expressions in a textual format has a steep learning curve. Specifi-
cally, users need to memorize the operators and parameters in HiRegEx
specifications. The prototype system should enable users to analyze
multivariate hierarchical data effectively and efficiently. However, man-
ually writing textual query expressions in textual format contradicts
this goal. More specifically, the manual construction process is time-
consuming and query expressions are not intuitive. Inspired by various
visual query studies for graph data [59], event sequence [10], movement
sequence [28], and temporal pattern [27], which support user interac-
tion for constructing visual query patterns intuitively, TreeQueryER
also aims to allow users to construct query expressions through direct
manipulation and display them in a visual format.

DC2: Enabling users to achieve the comprehensive analysis of
multivariate hierarchical data. Different users conduct data analysis
with varying intentions: some may have explicit goals and tasks, some
may lack specific objectives, and some may possess vague goals with
a few initial tasks [3], leading to different data analysis requirements.
During an analytical process, user interests may refine or evolve as
they observe and discover new insights, ultimately seeking the desired
information [24, 25, 64]. This process is a key aspect of exploratory
analysis. Therefore, it is essential to implement various exploration
modes, such as top-down, bottom-up, and context-creation (introduced
in Sec. 5), to support diverse analysis needs [3]. These modes should
be integrated into the system to realize comprehensive data exploration.

6.2 User Interface and Interaction
The user interface of the TreeQueryER system is shown in Fig. 6, and
it includes a visual editor panel, a data overview panel, an expression
recommendation panel, and a tree visualization panel.

The data collection overview panel (Fig. 6a) is tailored to fulfill
the requirements of the context-creation exploration mode. This panel
demonstrates the distributions of multivariate hierarchical data through
a scatter plot. Each node in the scatter plot signifies a sub-collection
with the same topological structure. The scatter plot visualization en-
codes the amount of data in the collection into node size. Distances
between nodes indicate similarities in hierarchical data from the topo-
logical perspective. The scatter plot highlights query results, providing
context for visual query results and aiding users in comprehending
distributions across the entire data collection (DC2). The TreeQueryER
system also enables data filtering by diverse attributes (e.g., size, height,
and width) in the distribution panel (Fig. 6b).

The tree visualization panel displays the results of visualizing
multivariate hierarchical data that match the query expression. We
employ the same color to associate nodes with their matched elements
in query expressions. Users can click on each node within the tree
visualization to inspect detailed node attributes. At the bottom of the
tree visualization panel (Fig. 6c), the TreeQueryER system furnishes
users with thumbnails of the tree visualizations, encompassing the
entire collection matched with the expression.

The visual editor panel (Fig. 6d) facilitates the top-down explo-
ration mode (DC2). It offers users an interface for constructing
HiRegEx expressions through direct manipulations. The design of this
panel adheres to the HiRegEx specification outlined in Sec. 4.2. The
node corresponds to a rectangle, allowing users to define constraints
for multiple attributes. The path corresponds to multiple sequentially
connected rectangles, and users can specify the repetition number of
nodes. Similarly, the branch consists of multiple paths, and users can
specify a repetition number for each path. Components can be dragged
and connected to construct a query expression. Users can connect the
components to denote parent-child relationships. The visual representa-
tion of the expression in the visual editor panel employs the node-link
tree visualization, enhancing consistency with users’ cognitive under-
standing of targets and aiding in identifying matching relationships
between components and query results ((DC1)).

The expression recommendation panel (Fig.6e) is designed to sup-
port bottom-up, data-driven inquiries (DC2). The bottom-up mode is

Fig. 6: The user interface of the TreeQueryER prototype system. (a) data collection overview panel. (b) data distribution panel. (c) tree visualization
panel. (d) visual editor panel. (e) expression recommendation panel.

part of a browsing-oriented process where users lack a clear target or
a specific expression for the target, needing to determine the expres-
sion based on the hierarchical data collection. The query expression
constructed by users in the visual editor panel comprises multiple pa-
rameters that are challenging to determine. For instance, users seeking
important papers may set a criterion that their children in the citation
tree consist of many highly-cited papers, but determining the thresh-
old is challenging. In such cases, the query expressions constructed
by users represent a rough direction rather than a determined pattern
for the targets. After users provide an initial query statement, Tree-
QueryER displays relevant expressions and the quantity of matching
hierarchical data in the entire dataset, thereby accelerating the process
of obtaining the desired expression and query results ((DC1)). Users
can further select the recommended query expression to visualize their
query results in the tree visualization panel (Fig.6c).

In summary, the visual editor panel, expression recommendation
panel, and data collection overview panel can support the top-down,
bottom-up, and context-creation modes, respectively. The tree visual-
ization panel allows users to understand the query results to refine their
query expressions. All the above panels can support users’ analysis for
multivariate hierarchical data.

7 EVALUATION
We validate the above techniques from two aspects. First, we demon-
strate the expressiveness of HiRegEx based on the e-MLTT framework.
Second, we validate the utility of the TreeQueryER system through a
use case on the citation tree dataset in the visualization field.

7.1 Performance Evaluation
Expressiveness of the HiRegEx grammar. We validated the expres-
siveness of the HiRegEx grammar based on the e-MLTT framework.
More specifically, we utilized the HiRegEx grammar to specify the tar-
gets in the 213 tasks underlying the e-MLTT framework. We carefully
recorded the number of tasks that could be supported by the HiRegEx
grammar, with the results detailed in Fig. 7. Out of the 213 tasks,

HiRegEx can support 174 of them. For each category, we selected a
representative task and demonstrated the application of the HiRegEx
grammar to define its target. Among the 39 tasks that are not supported,
7 of them involve no query operations. An example of such tasks is
“comparison of different subtrees”. The remaining 32 tasks primarily
concern computing “extreme” values, such as “find a node having the
maximum attribute value of the second layer”. HiRegEx does not con-
sider aggregation operations for query results. This limitation affects
its effectiveness in these tasks related to extreme values. However, this
shortfall is effectively mitigated by those tools in TreeQueryER that
help users to interactively filtering extreme values within the results set.
Moreover, the experiment results revealed that HiRegEx proficiently
supports tasks related to topology, signifying its capability to represent
the structural attributes of hierarchical data accurately.

7.2 Case Study
We validate the utility of TreeQueryER by collaborating with two ex-
pert users. This section presents a use case on a citation tree dataset
and demonstrates how TreeQueryER can help users achieve a compre-
hensive exploratory visual analysis for the citation tree dataset and get
insights into the development and intersection of research topics.

Dataset. To assemble a thorough and representative dataset for
our study, we crawled a total of 1644 research papers in the field of
visualization, covering the period from 2014 to 2020. This dataset
encompasses a diverse range of publications from IEEE VIS/TVCG,
EuroVis, and PacificVis. The attribute data of each paper include title,
authors, publication date, affiliation, country, and citation list/count.
We then processed the data collection to construct a citation tree for
each paper. In a tree, a paper “b” that cited another paper “a” is a child
node of “a”. This structure enabled us to visualize and analyze the
intricate network of citations within the field of visualization.

Expert Users and Tasks. We invited two experienced visualization
researchers, referred to as E1 and E2, to evaluate the TreeQueryER
system. Both experts have over five years of research experience
in the field. Typically, researchers build citation graphs using tools

Fig. 7: The multi-level task topology of the e-MLTT framework, which consists of three levels, target (high-level), specific target (mid-level), and target
attribute (low-level). Each category provides a representative task and the corresponding query expression using the HiRegEx grammar. The cells
with a yellow background color indicate task categories that HiRegEx cannot fully achieve.

such as Connected Papers [1] to explore papers’ relationships. This
involves manually navigating through citation graphs to understand the
evolution. In our case study, E1 and E2 aimed to explore how research
in graph visualizations, a traditional topic, intersects with deep learning
using TreeQueryER. Before delving into the dataset, they received
an introduction to the TreeQueryER system and the specifications of
the HiRegEx grammar. Then, they used TreeQueryER for exploratory
visual analysis.

Step 1: Querying papers on graph visualizations and deep learn-
ing through the top-down mode. Initially, the experts were given a
brief introduction to the citation tree dataset and various tools provided
by TreeQueryER. Then, they decided to explore papers related to deep
learning techniques and graph visualization. To identify papers related
to graph visualization, they initialized a node in the visual editor, re-
quiring their keyword list to include “graph”. The node, along with the
corresponding constraints of attribute values, was labeled as G (repre-
senting the topic “graph”), as shown in the exp1 of Fig. 8b. Employing
this query expression, the experts retrieved 194 papers.

Step 2: Querying papers cited by deep learning-related papers
using the bottom-up mode. Many publications may not employ deep
learning techniques but still have an impact on this domain. These
papers can provide researchers with valuable inspiration but cannot be
obtained through the above query expression. To retrieve these papers,
the experts constructed another expression to query those cited by more
than five papers related to the “deep learning” topic. They added a
branch with more than five repetitions in the visual editor, comprising
a node labeled DL with a constraint that the keywords included the
term “deep learning”. Connecting this branch with the node G , they
executed the query expression. The resulting query (exp2 in Fig. 8)
had only one paper due to the relatively strict constraint of being cited
by more than five deep learning-related papers. This result hindered a
comprehensive understanding of the dataset. At this point, the bottom-
up recommendations of the HiRegEx expression became pivotal. From
the expression recommendation panel, experts ascertained that the
number of papers cited by one or two deep learning-related papers
was 33 and 10. Based on these recommendations, they adjusted the
parameter of branch repetitions in the query expression to enhance the
diversity of results. Fig. 8c presents the query results. The projection
panel is updated accordingly, highlighting circles that match the query
results in yellow, as depicted in Fig. 8a.

Step 3: Identifying anomalies through the context-creation mode.
The researchers identified distinct clusters by examining the distribu-
tions in the projection panel. From the projection view, they learned
that trees located in the lower right corner exhibited small sizes, in con-
trast to the larger trees represented by circles in the upper left corner, as
shown in Fig. 8a. Based on this observation, they selected a cluster of

interest for in-depth analysis. Upon closer inspection, the researchers
discovered that certain citation trees consisted of only a few levels,
suggesting that the research topics of these papers were outdated and
lacked continued exploration by researchers.

Step 4: Refining the query expression interactively. Furthermore,
they introduced a new branch under the node G , complementing the
constraint that the descendants must comprise more than five papers
after 2019 (denoted as Y). These constraints were implemented to
ensure that the papers in the query results remain within an active
research area. Executing this refined query expression yielded 14
citation trees. Notably, four trees within the results lacked subsequent
citations, indicating a limited impact. To measure a paper’s impact, they
considered its citations and whether highly-cited papers referenced it.
Accordingly, they set a constraint for the “citation” attribute of “node”
to be greater than ten (denoted as C). Next, they introduced a new
branch to restrict papers cited by at least one highly-cited paper (exp6
in Fig. 8). Note that the parameters in the above expression are adjusted
by the recommendation algorithm based on the dataset without users’
manual specifications.

From the expression recommendation panel, experts identified an
expression (exp7 in Fig. 8) corresponding to a specific query result
(ViDX [65]), which emerged as the most relevant result for the given
expression. This result pertained to “graph” and was cited by influential
papers on “deep learning”. After retrieving the paper, they explored
the projection view and found that many nearby trees contain another
influential paper, “Analyzing the Training Process of Deep Generative
Model” [40]. They learned that the outlier detection capability of visual
analytics, such as the methods based on Marey’s Graph in the smart
factories usage scenario, can be used to help users identify the outlier
causing a failed training process.

Expert Feedback. We conducted one-on-one 30-minute interviews
with the two experts to gather their feedback on our techniques after
they finished their hand-on explorations. We encouraged them to freely
share their thoughts on our methods as well as their impressions of the
overall experience. Both experts expressed positive attitudes towards
our method and agreed that the system could improve the efficiency
of the paper-searching process. More specifically, they appreciated
the design of HiRegEx. “HiRegEx allows me to flexibly define various
conditions, such as citation counts and papers’ relations. While each
condition alone may not be complex, combining them can be quite
intricate. HiRegEx provides an intuitive and user-friendly way to
describe these queries (E1)”. HiRegEx extends the basic usage of
regular expressions, making it easy for them to understand the rules
and use the grammar conveniently. Furthermore, they appreciated
the ability to construct their query expressions effectively using the
visual editor panel of TreeQueryER. “The visual representation of

Fig. 8: The use case on the citation tree dataset. (a) The data collection overview panel offers the exploration context and highlights user query
results. (b) The process of constructing query expressions comprises seven statements indicating the respective number of query results. The
links between statements reveal the attributes and corresponding constraints. In particular, exp4 and exp7 are suggested by the recommendation
algorithm; (c) The query results of the exp1 statement; (d) The query results of the exp6 statement; (e) The query results of the exp7 statement.

HiRegEx expressions is intuitive, allowing me to quickly turn an idea
into an expression. Through interactive manipulation, I can easily
construct the query expressions I need (E1, E2)”. The visual cues
enabled them to recognize the characteristics of their query statements.
In addition, they found the visual query expression recommendation
approach beneficial for refining their queries and selecting appropriate
parameters. “The recommendation mechanism always provides me with
effective suggestions for the next-step exploration (E2)”. The semantic
overview in the projection view can present the context of query results
and facilitate the identification of patterns for further investigation.

8 DISCUSSION AND FUTURE WORK
Comparison with Existing Query Grammars. The techniques com-
peting with HiRegEx for hierarchical data query include Tregex [32],
Jaql [4], and HQL [56]. For graph data, our competitors are Grem-
lin [48], Cypher [18], PGQL [61], and G-CORE [2]. These existing
techniques differ from our approach in motivation, expressiveness,
available tutorials, and prototype systems. Hence, we did not conduct
a quantitative study to evaluate the efficiency of HiRegEx grammar.
Most existing studies predominantly focus on node attributes, and often
overlooked tree-specific attributes such as size, height, and depth. This
limitation hampers their capability to effectively describe large trees, as
their query languages necessitate detailed node specifications to define
a tree structure accurately. For instance, Tregex [32], tailored for syntax
trees, adeptly specifies topological structures and node attributes but
cannot define constraints from the perspective of tree compositions.
In contrast, Jaql [4] and HQL [56], designed for semi-structured hi-
erarchical database queries, exhibit predetermined topology in their
query targets, restricting users from defining query patterns flexibly.
Gremlin [48], Cypher [18], PGQL [61], and G-CORE [2] are graph
query languages. However, these techniques only partially consider
tree-specific characteristics. PGQL [61] and G-CORE [2] can support
the specification of the sibling relationships of hierarchical data. How-
ever, they do not support queries for a large tree because they need to
specify the query targets in a fine-grained manner.

Expressiveness of the HiRegEx Grammar. The e-MLTT frame-
work, dedicated to tree visualizations, encompasses 213 analysis tasks.
HiRegEx can support 174 of them, as shown in Fig. 7. We have cate-
gorized the unsupported analysis tasks into two distinct groups. Tasks
falling within the first category necessitate user interactions, aggre-
gation, and computation after querying. These tasks involve actions

related to finding the extreme value or aggregating data, exemplified by
queries like “What is the maximum depth of the hierarchy” or “How
many files are there in the directory”. Another common example entails
determining the least common ancestor of two nodes. In contrast, tasks
in the second category are incompatible with query tasks. An illustra-
tive example includes tasks centered around assessing the balance of
trees or subtrees in hierarchical data.

Further Improvements of the Construction Efficiency. Given
the various operators and constraints for the node attributes, the query
expression of HiRegEx cannot be completely expressed or constructed
in the textual format like the traditional regular expressions. Therefore,
we plan to develop a library to integrate the HiRegEx expression with
popular programming languages, like Python, to improve the utility
of the HiRegEx in textual format. Another future work is to improve
user construction efficiency for query expressions by natural language
processing techniques. We will explore natural language processing
techniques to generate the corresponding query expression and expres-
sion description based on Large language models (LLMs) [37] in the
future. To improve readability, we will also explore providing a short
natural language description of the expressions constructed by users.

9 CONCLUSION

To support effective visual query on large, multivariate hierarchical
datasets, we proposed HiRegEx, a declarative grammar designed for
querying multivariate hierarchical data. HiRegEx borrows the operators
from the classical regular expressions and further extends their expres-
siveness according to the characteristics of multivariate hierarchical
data. Based on HiRegEx, we developed a query-based exploratory
framework, which consists of top-down pattern specification, bottom-
up data-driven inquiry, and context-creation data overview. We imple-
mented a prototype system, TreeQueryER, to integrate our exploratory
framework. We validate the expressiveness of HiRegEx based on the
e-MLTT framework. We also demonstrate the effectiveness and utility
of the exploratory framework and the TreeQueryER system through a
case study involving a citation tree dataset.

ACKNOWLEDGMENTS

This work is supported by National Key R&D Program of China
(2021YFB3301500), NSFC (62302038, U2268205), Young Elite Sci-
entists Sponsorship Program by CAST (2023QNRC001), and Tencent
Rhino-Bird Focused Research Program.

REFERENCES

[1] Connected papers. https://www.connectedpapers.com. 8
[2] R. Angles, M. Arenas, P. Barceló, P. Boncz, G. Fletcher, C. Gutierrez,

T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, et al. G-CORE: A
core for future graph query languages. In Proc. Int. Conf. Management of
Data, pp. 1421–1432, 2018. doi: 10.1145/3183713.3190654 1, 2, 3, 9

[3] L. Battle and J. Heer. Characterizing exploratory visual analysis: A litera-
ture review and evaluation of analytic provenance in tableau. Computer
Graphics Forum, 38(3):145–159, 2019. doi: 10.1111/CGF.13678 1, 5, 6

[4] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-
C. Kanne, F. Ozcan, and E. J. Shekita. Jaql: A scripting language for
large scale semistructured data analysis. Proc. the VLDB Endowment,
4(12):1272–1283, 2011. doi: 10.14778/3402755.3402761 1, 2, 3, 9

[5] S. S. Bhowmick, B. Choi, and S. Zhou. VOGUE: Towards a visual
interaction-aware graph query processing framework. In Proc. Conf.
Innovative Data Systems Research. Citeseer, 2013. 2

[6] S. S. Bhowmick, K. Huang, H. E. Chua, Z. Yuan, B. Choi, and S. Zhou.
AURORA: Data-driven construction of visual graph query interfaces for
graph databases. In Proc. Int. ACM Conf. Management of Data (SIGMOD),
pp. 2689–2692, 2020. doi: 10.1145/3318464.3384681 2

[7] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. IEEE Transactions on Visualization and Computer Graphics,
19(12):2376–2385, 2013. doi: 10.1109/TVCG.2013.124 3

[8] P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman. Interactive
pattern search in time series. Visualization and Data Analysis, 5669:175–
186, 2005. doi: 10.1117/12.587537 2

[9] P. Buono and A. L. Simeone. Interactive shape specification for pattern
search in time series. In Proc. Conf. Advanced Visual Interfaces, pp.
480–481, 2008. doi: 10.1145/1385569.1385666 2

[10] B. C. Cappers and J. J. van Wijk. Exploring multivariate event sequences
using rules, aggregations, and selections. IEEE Transactions on Visualiza-
tion and Computer Graphics, 24(1):532–541, 2018. doi: 10.1109/TVCG.
2017.2745278 2, 6

[11] D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-
Rad. Graphite: A visual query system for large graphs. In Proc. IEEE Int.
Conf. Data Mining Workshops, pp. 963–966, 2008. doi: 10.1109/ICDMW.
2008.99 2

[12] M. P. Consens and A. O. Mendelzon. GraphLog: a visual formalism
for real life recursion. In Proc. ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, pp. 404–416, 1990. doi: 10.1145/298514.
298591 2

[13] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query lan-
guage supporting recursion. Proc. Int. ACM Conf. Management of Data
(SIGMOD), 16(3):323–330, 1987. doi: 10.1145/38713.38749 2

[14] E. Cuenca, A. Sallaberry, D. Ienco, and P. Poncelet. VERTIGo: A visual
platform for querying and exploring large multilayer networks. IEEE
Transactions on Visualization and Computer Graphics, 28(3):1634–1647,
2022. doi: 10.1109/TVCG.2021.3067820 2

[15] I. Curz. G+: Recursive queries without recursion. In Proc. Int. Conf.
Expert Database Systems, pp. 355–368, 1988. 2

[16] T. Diefenbach and J. A. Sillince. Formal and informal hierarchy in different
types of organization. Organization studies, 32(11):1515–1537, 2011. doi:
10.1177/0170840611421254 1

[17] M. Fowler. Domain-specific Languages. Pearson Education, 2010. 3
[18] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,

S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving
query language for property graphs. In Proc. Int. Conf. Management of
Data, pp. 1433–1445, 2018. doi: 10.1145/3183713.3190657 1, 2, 3, 9

[19] D. Gotz and M. X. Zhou. Characterizing users’ visual analytic activity
for insight provenance. In Proc. IEEE Symp. Visual Analytics Science
And Technology (VAST), pp. 123–130, 2008. doi: 10.1109/VAST.2008.
4677365 3

[20] P. Hanrahan. VizQL: a language for query, analysis and visualization.
In Proc. Int. ACM Conf. Management of Data (SIGMOD), pp. 721–721,
2006. doi: 10.1145/1142473.1142560 3

[21] H. Hochheiser and B. Shneiderman. Interactive exploration of time se-
ries data. In Proc. The Craft of Information Visualization, pp. 313–315.
Elsevier, 2003. doi: 10.1007/3-540-45650-338 2

[22] H. Hochheiser and B. Shneiderman. Dynamic query tools for time se-
ries data sets: timebox widgets for interactive exploration. Information
Visualization, 3(1):1–18, 2004. doi: 10.1057/PALGRAVE.IVS.9500061 2

[23] K. Huang, H. E. Chua, S. S. Bhowmick, B. Choi, and S. Zhou. MIDAS:

towards efficient and effective maintenance of canned patterns in visual
graph query interfaces. In Proc. Int. Conf. Management of Data, pp.
764–776, 2021. doi: 10.1145/3448016.3457251 2

[24] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data ex-
ploration techniques. In Proc. Int. ACM Conf. Management of Data
(SIGMOD), pp. 277–281, 2015. doi: 10.1145/2723372.2731084 6

[25] D. A. Keim. Visual exploration of large data sets. Communications of the
ACM, 44(8):38–44, 2001. doi: 10.1145/381641.381656 6

[26] Y. Kim and J. Heer. Gemini: A grammar and recommender system
for animated transitions in statistical graphics. IEEE Transactions on
Visualization and Computer Graphics, 27(2):485–494, 2021. doi: 10.
1109/TVCG.2020.3030360 3

[27] J. Krause, A. Perer, and H. Stavropoulos. Supporting iterative cohort con-
struction with visual temporal queries. IEEE Transactions on Visualization
and Computer Graphics, 22(1):91–100, 2016. doi: 10.1109/TVCG.2015.
2467622 2, 6

[28] R. Krueger, T. Tremel, and D. Thom. VESPa 2.0: data-driven behavior
models for visual analytics of movement sequences. In Proc. Int. Symp.
Big Data Visual Analytics (BDVA), pp. 1–8, 2017. doi: 10.1109/BDVA.
2017.8114626 2, 6

[29] P.-M. Law, Z. Liu, S. Malik, and R. C. Basole. MAQUI: Interweaving
queries and pattern mining for recursive event sequence exploration. IEEE
Transactions on Visualization and Computer Graphics, 25(1):396–406,
2019. doi: 10.1109/TVCG.2018.2864886 2

[30] D. J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and
A. Parameswaran. You can’t always sketch what you want: Understanding
sensemaking in visual query systems. IEEE Transactions on Visualization
and Computer Graphics, 26(1):1267–1277, 2020. doi: 10.1109/TVCG.
2019.2934666 1, 2, 5

[31] F. Lekschas, B. Peterson, D. Haehn, E. Ma, N. Gehlenborg, and H. Pfister.
Peax: Interactive visual pattern search in sequential data using unsuper-
vised deep representation learning. Computer Graphics Forum, 39(3):167–
179, 2020. doi: 10.1111/CGF.13971 2

[32] R. Levy and G. Andrew. Tregex and Tsurgeon: Tools for querying and
manipulating tree data structures. In Proc. Int. Conf. Language Resources
and Evaluation (LREC), pp. 2231–2234, 2006. 1, 2, 3, 9

[33] G. Li, P. He, X. Wang, R. Li, C. H. Liu, C. Ou, D. He, and G. Wang.
InsigHTable: Insight-driven hierarchical table visualization with rein-
forcement learning. IEEE Transactions on Visualization and Computer
Graphics, pp. 1–18, 2024. doi: 10.1109/TVCG.2024.3404454 1

[34] G. Li, R. Li, Y. Feng, Y. Zhang, Y. Luo, and C. H. Liu. CoInsight:
Visual storytelling for hierarchical tables with connected insights. IEEE
Transactions on Visualization and Computer Graphics, 30(6):3049–3061,
2024. doi: 10.1109/TVCG.2024.3388553 1

[35] G. Li, R. Li, Z. Wang, C. H. Liu, M. Lu, and G. Wang. HiTailor: Interac-
tive transformation and visualization for hierarchical tabular data. IEEE
Transactions on Visualization and Computer Graphics, 29(1):139–148,
2023. doi: 10.1109/TVCG.2022.3209354 1

[36] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan. GoTree: A grammar
of tree visualizations. In Proc. ACM Conf. Human Factors in Computing
Systems (CHI), pp. 170:1–170:13, 2020. doi: 10.1145/3313831.3376297
1, 4

[37] G. Li, X. Wang, G. Aodeng, S. Zheng, Y. Zhang, C. Ou, S. Wang, and H. C.
Liu. Visualization generation with large language models: An evaluation.
arXiv preprint arXiv:2401.11255, 2024. doi: 10.48550/arXiv.2401.11255
9

[38] G. Li and X. Yuan. GoTreeScape: Navigate and explore the tree visual-
ization design space. IEEE Transactions on Visualization and Computer
Graphics, 29(12):5451–5467, 2023. doi: 10.1109/TVCG.2022.3215070 3

[39] G. Li, Y. Zhang, Y. Dong, J. Liang, J. Zhang, J. Wang, M. J. McGuffin, and
X. Yuan. BarcodeTree: Scalable comparison of multiple hierarchies. IEEE
Transactions on Visualization and Computer Graphics, 26(1):1022–1032,
2020. doi: 10.1109/TVCG.2019.2934535 3

[40] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training pro-
cesses of deep generative models. IEEE Transactions on Visualization
and Computer Graphics, 24(1):77–87, 2017. doi: 10.1109/TVCG.2017.
2744938 8

[41] M. Mannino and A. Abouzied. Qetch: Time series querying with expres-
sive sketches. In Proc. Int. Conf. Management of Data, pp. 1741–1744,
2018. doi: 10.1145/3183713.3193547 2

[42] A. Pandey, U. Syeda, C. Shah, J. Guerra-Gomez, and M. Borkin. A state-
of-the-art survey of tasks for tree design and evaluation with a curated
task dataset. IEEE Transactions on Visualization and Computer Graphics,

https://www.connectedpapers.com
https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1111/CGF.13678
https://doi.org/10.14778/3402755.3402761
https://doi.org/10.1145/3318464.3384681
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1117/12.587537
https://doi.org/10.1145/1385569.1385666
https://doi.org/10.1109/TVCG.2017.2745278
https://doi.org/10.1109/TVCG.2017.2745278
https://doi.org/10.1109/ICDMW.2008.99
https://doi.org/10.1109/ICDMW.2008.99
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/38713.38749
https://doi.org/10.1109/TVCG.2021.3067820
https://doi.org/10.1177/0170840611421254
https://doi.org/10.1177/0170840611421254
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1109/VAST.2008.4677365
https://doi.org/10.1109/VAST.2008.4677365
https://doi.org/10.1145/1142473.1142560
https://doi.org/10.1007/3-540-45650-338
https://doi.org/10.1057/PALGRAVE.IVS.9500061
https://doi.org/10.1145/3448016.3457251
https://doi.org/10.1145/2723372.2731084
https://doi.org/10.1145/381641.381656
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2015.2467622
https://doi.org/10.1109/TVCG.2015.2467622
https://doi.org/10.1109/BDVA.2017.8114626
https://doi.org/10.1109/BDVA.2017.8114626
https://doi.org/10.1109/TVCG.2018.2864886
https://doi.org/10.1109/TVCG.2019.2934666
https://doi.org/10.1109/TVCG.2019.2934666
https://doi.org/10.1111/CGF.13971
https://doi.org/10.1109/TVCG.2024.3404454
https://doi.org/10.1109/TVCG.2024.3388553
https://doi.org/10.1109/TVCG.2022.3209354
https://doi.org/10.1145/3313831.3376297
https://doi.org/10.48550/arXiv.2401.11255
https://doi.org/10.1109/TVCG.2022.3215070
https://doi.org/10.1109/TVCG.2019.2934535
https://doi.org/10.1109/TVCG.2017.2744938
https://doi.org/10.1109/TVCG.2017.2744938
https://doi.org/10.1145/3183713.3193547

28(10):3563–3584, 2022. doi: 10.1109/tvcg.2021.3064037 1, 3
[43] D. Park, S. M. Drucker, R. Fernandez, and N. Elmqvist. ATOM: A

grammar for unit visualizations. IEEE Transactions on Visualization and
Computer Graphics, 24(12):3032–3043, 2018. doi: 10.1109/TVCG.2017.
2785807 3

[44] R. Pienta, F. Hohman, A. Endert, A. Tamersoy, K. Roundy, C. Gates,
S. Navathe, and D. H. Chau. VIGOR: Interactive visual exploration of
graph query results. IEEE Transactions on Visualization and Computer
Graphics, 24(1):215–225, 2018. doi: 10.1109/TVCG.2017.2744898 2

[45] R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, and D. H. Chau.
Visage: Interactive visual graph querying. In Proc. Int. Conf. Advanced
Visual Interfaces, pp. 272–279, 2016. doi: 10.1145/2909132.2909246 2

[46] P. Pirolli and S. Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proc.
Int. Conf. Intelligence Analysis, vol. 5, pp. 2–4, 2005. 1

[47] D. Ren, X. Zhang, Z. Wang, J. Li, and X. Yuan. WeiboEvents: A crowd
sourcing weibo visual analytic system. In Proc. IEEE Pacific Visualization
Symposium (PacificVis), pp. 330–334, 2014. doi: 10.1109/PACIFICVIS.
2014.38 1

[48] M. A. Rodriguez. The gremlin graph traversal machine and language. In
Proc. Symp. Database Programming Languages, pp. 1–10, 2015. doi: 10.
1145/2815072.2815073 1, 2, 3, 9

[49] K. Ryall, N. Lesh, T. Lanning, D. Leigh, H. Miyashita, and S. Makino.
Querylines: approximate query for visual browsing. In Extended Abstracts
on Human Factors in Computing Systems, pp. 1765–1768, 2005. doi: 10.
1145/1056808.1057017 2

[50] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017. doi: 10.1109/TVCG.2016.
2599030 3

[51] H.-J. Schulz. Treevis. net: A tree visualization reference. IEEE Computer
Graphics and Applications, 31(6):11–15, 2011. doi: 10.1109/MCG.2011.
103 1

[52] H.-J. Schulz, S. Hadlak, and H. Schumann. The design space of implicit
hierarchy visualization: A survey. IEEE Transactions on Visualization
and Computer Graphics, 17(4):393–411, 2011. doi: 10.1109/TVCG.2010.
79 1

[53] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In Proc. IEEE Symp. Visual Languages (VL),
pp. 336–343, 1996. doi: 10.1109/VL.1996.545307 5

[54] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Effort-
less data exploration with zenvisage: an expressive and interactive visual
analytics system. Proc. VLDB Endow., 10(4):457–468, 2016. doi: 10.
14778/3025111.3025126 3

[55] T. Siddiqui, P. Luh, Z. Wang, K. Karahalios, and A. G. Parameswaran.
Expressive querying for accelerating visual analytics. Communications of
the ACM, 65(7):85–94, 10 pages, 2022. doi: 10.1145/3535337 1

[56] A. Slingsby, J. Dykes, and J. Wood. Configuring hierarchical layouts
to address research questions. IEEE Transactions on Visualization and
Computer Graphics, 15(6):977–984, 2009. doi: 10.1109/TVCG.2009.128
1, 2, 3, 9

[57] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query, analysis,
and visualization of multidimensional relational databases. IEEE Transac-
tions on Visualization and Computer Graphics, 8(1):52–65, 2002. doi: 10.
1109/2945.981851 3

[58] M. Tian, G. Li, and X. Yuan. LitVis: a visual analytics approach for
managing and exploring literature. Journal of Visualization, 26(6):1445–
1458, 2023. doi: 10.1007/S12650-023-00941-3 1

[59] J. Troidl, S. Warchol, J. Choi, J. Matelsky, N. Dhanyasi, X. Wang,
B. Wester, D. Wei, J. W. Lichtman, H. Pfister, and J. Beyer. ViMO -
visual analysis of neuronal connectivity motifs. IEEE Transactions on
Visualization and Computer Graphics, 30(1):748–758, 2024. doi: 10.
1109/TVCG.2023.3327388 2, 6

[60] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of machine learning research, 9(86):2579–2605, 2008. 6

[61] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a property
graph query language. In Proc. Int. Conf. Graph Data Management
Experiences and Systems, pp. 1–6, 2016. doi: 10.1145/2960414.2960421
1, 2, 9

[62] M. Wattenberg. Sketching a graph to query a time-series database. In
Extended Abstracts on Human factors in Computing Systems, pp. 381–382,
2001. doi: 10.1145/634067.634292 2

[63] H. Wickham. A layered grammar of graphics. Journal of Computational

and Graphical Statistics, 19(1):3–28, 2010. doi: 10.1198/jcgs.2009.07098
3

[64] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE Transactions on Visualization and Computer
Graphics, 22(1):649–658, 2016. doi: 10.1109/TVCG.2015.2467191 3, 6

[65] P. Xu, H. Mei, L. Ren, and W. Chen. ViDX: Visual diagnostics of assembly
line performance in smart factories. IEEE Transactions on Visualization
and Computer Graphics, 23(1):291–300, 2017. doi: 10.1109/TVCG.2016.
2598664 8

[66] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive
learning with augmentations. In Proc. Advances in Neural Information
Processing Systems, vol. 33, pp. 5812–5823, 2020. doi: 10.48550/arXiv.
2010.13902 6

[67] Z. Yuan, H. E. Chua, S. S. Bhowmick, Z. Ye, W.-S. Han, and B. Choi.
Towards plug-and-play visual graph query interfaces: data-driven se-
lection of canned patterns for large networks. Proc. VLDB Endow.,
14(11):1979–1991, 13 pages, 2021. doi: 10.14778/3476249.3476256
2

[68] E. Zgraggen, S. M. Drucker, D. Fisher, and R. Deline. (s|qu)eries: Visual
regular expressions for querying and exploring event sequences. In Proc.
ACM Conf. Human Factors in Computing Systems (CHI), pp. 2683–2692,
2015. doi: 10.1145/2702123.2702262 2

[69] B. Zheng and F. Sadlo. On the visualization of hierarchical multivariate
data. In Proc. IEEE Pacific Visualization Symposium (PacificVis), pp.
136–145, 2021. doi: 10.1109/pacificvis52677.2021.00026 1

https://doi.org/10.1109/tvcg.2021.3064037
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2744898
https://doi.org/10.1145/2909132.2909246
https://doi.org/10.1109/PACIFICVIS.2014.38
https://doi.org/10.1109/PACIFICVIS.2014.38
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/1056808.1057017
https://doi.org/10.1145/1056808.1057017
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.14778/3025111.3025126
https://doi.org/10.14778/3025111.3025126
https://doi.org/10.1145/3535337
https://doi.org/10.1109/TVCG.2009.128
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://doi.org/10.1007/S12650-023-00941-3
https://doi.org/10.1109/TVCG.2023.3327388
https://doi.org/10.1109/TVCG.2023.3327388
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/634067.634292
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2016.2598664
https://doi.org/10.1109/TVCG.2016.2598664
https://doi.org/10.48550/arXiv.2010.13902
https://doi.org/10.48550/arXiv.2010.13902
https://doi.org/10.14778/3476249.3476256
https://doi.org/10.1145/2702123.2702262
https://doi.org/10.1109/pacificvis52677.2021.00026

	Introduction
	Related Work
	Query Languages of Hierarchical Data
	Interactive Visual Query Approach

	Hierarchical Data Query Task Space
	Query Targets
	Query Actions

	Query Grammar Design
	Design Requirements
	Grammar Specification

	Query-based Exploration Framework
	TreeQueryER Prototype System
	Design Consideration
	User Interface and Interaction

	EVALUATION
	Performance Evaluation
	Case Study

	DISCUSSION AND FUTURE WORK
	Conclusion

