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Abstract—The widespread use of Deep Neural Networks (DNNs) has recently resulted in their application to challenging scientific
visualization tasks. While advanced DNNs demonstrate impressive generalization abilities, understanding factors like prediction quality,
confidence, robustness, and uncertainty is crucial. These insights aid application scientists in making informed decisions. However,
DNNSs lack inherent mechanisms to measure prediction uncertainty, prompting the creation of distinct frameworks for constructing
robust uncertainty-aware models tailored to various visualization tasks. In this work, we develop uncertainty-aware implicit neural
representations to model steady-state vector fields effectively. We comprehensively evaluate the efficacy of two principled deep
uncertainty estimation techniques: (1) Deep Ensemble and (2) Monte Carlo Dropout, aimed at enabling uncertainty-informed visual
analysis of features within steady vector field data. Our detailed exploration using several vector data sets indicate that uncertainty-
aware models generate informative visualization results of vector field features. Furthermore, incorporating prediction uncertainty
improves the resilience and interpretability of our DNN model, rendering it applicable for the analysis of non-trivial vector field data sets.

Index Terms—Implicit Neural Network, Uncertainty, Monte Carlo Dropout, Deep Ensemble, Vector Field, Visualization, Deep Learning.

1 INTRODUCTION

The indisputable success of deep neural networks (DNNs) [44] has
resulted in numerous applications of it in the scientific visualization
domain [73]. Analysis of intricate vector fields using DNNs has shown
promising results with applications such as generating super-resolution
flow fields [26,31], reconstructing flow fields from streamlines [23, 28],
flow map reconstruction [63], and predicting flow lines [33]. While
these DNN-based approaches produce state-of-the-art results, learning
a direct neural representation of the vector data is yet to be explored.
Furthermore, the existing models do not quantify what it does not
know or how confidently the predictions are generated. Such missing
knowledge, if estimated and conveyed to the experts, can significantly
help them to make informed decisions about their data [9, 19]. Con-
sequently, DNN-based flow data visual analytics will become more
trustworthy when they can assess their prediction uncertainty. However,
the literature survey reveals that a direct vector data modeling approach
augmented with uncertainty estimation capability using DNNss is still
missing — a gap that this work attempts to bridge.

Among various neural architectures used to analyze flow data, we
study the efficacy of implicit neural representations (INRs) for directly
learning vector fields, i.e., a INR will predict the vector components
at any queried location in the spatial domain. The choice of INR
over other neural architectures is motivated by the recent success of
INRs in producing state-of-the-art results for scientific data [32,48,63,
69]. Since DNNs inherently do not provide prediction uncertainty, we
employ deep uncertainty quantification techniques to obtain uncertainty
estimates along with the predicted vectors from our INR model so
that the downstream flow field analysis tasks can effectively leverage
such information. Hence, we further focus on designing uncertainty-
informed flow data visualization techniques to intuitively and effectively
communicate the prediction uncertainty to domain experts.

Various factors specific can influence the choice of deep uncertainty
estimation methods. While the deep learning community has developed
several uncertainty quantification methods, our focus is on selecting
methods that can be easily integrated into visualization models with
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minimal architecture modifications, facilitating smooth adoption of
such methods for uncertainty-aware visual analysis. Literature survey
indicates that Deep Ensembles often excel in producing accurate pre-
dictions and estimating uncertainty by leveraging the variation among
ensemble member predictions [5,27,39]. However, Deep Ensembles
demand prohibitively excessive training time and resource utilization
since multiple ensemble members need to be trained. In contrast, single-
model-based uncertainty estimation methods are computationally cheap
and are gaining importance in the research community [1, 19, 70].
Among these methods, Monte Carlo Dropout (MCDropout) stands out
as a suitable choice for our purposes since it only requires the addition
of dropout layers to an existing model and theoretically equivalent to ap-
proximate inferencing in deep Gaussian processes [14, 19]. Therefore,
in this work, we compare and contrast the characteristics of uncertainty
estimates generated by Deep Ensemble and MCDropout methods for
enabling uncertainty-aware visual analytics of steady-state flow fields.

We analyze the effectiveness and advantages of uncertainty-aware
implicit neural representations (INRs) of steady-state flow fields cou-
pled with two deep uncertainty estimation techniques: (1) Deep En-
semble and (2) MCDropout method. We conduct a comprehensive
assessment of the predictive accuracy of such uncertainty-aware INRs
by (a) evaluating the quality of reconstructed vector fields when the INR
learns the vector representation directly and (b) assessing the effective-
ness in analyzing and visualizing flow features through streamline and
critical point visualizations. For each task, we devise uncertainty visu-
alization methods to convey uncertainty information to the experts. We
compare and contrast the characteristics of uncertainties derived from
these methods and illustrate how such information can assist domain
scientists in making informed decisions and developing confidence in
the model outputs. We validate our techniques using several 2D and 3D
vector field data sets to showcase the efficacy of our approach in flow
field analysis and visualization. Hence, our contributions are twofold:

1. We propose developing uncertainty-aware INRs for vector field
data to enhance the robust analysis of intricate flow features,
emphasizing the significance of visualizing prediction uncertainty
to improve how domain scientists interpret model predictions.

2. We extensively compare and contrast between two principled
deep uncertainty estimation techniques: (1) Deep Ensemble, and
(2) MCDropout, demonstrating their suitability for conducting
uncertainty-informed flow feature analysis and visualization.



2 RESEARCH BACKGROUND AND UNCERTAINTY ESTIMATION
IN DEEP NEURAL NETWORKS

2.1 Deep Learning in Scientific Data Visualization

Deep learning has found diverse applications in scientific visualization.
Lu et al. [48] and Weiss et al. [76] have introduced methods aimed
at generating concise neural representations of scientific data. Hong
et al. [38], He et al. [36], and Berger et al. [7] have investigated the
visualization of scalar field data, while Weiss et al. have explored isosur-
face visualization [75] and volume visualization [77]. Spatiotemporal
super-resolution volume generation has emerged as another research
focus [20, 29, 30, 79]. Novel models for domain knowledge-aware
latent space generation have been proposed [65]. Moreover, DNNs
have been employed as substitutes for generating visualizations and
exploring parameter spaces in ensemble data [36,66,67]. Analysis of
flow field features using CNNs was proposed in [80]. Reconstruction
of vector data from 3D streamlines was developed by Han et al. [28].
More recently, Berenjkoub et al. highlighted how vortex boundaries
could be extracted using CNNs [6]. In a recent work, Dutta et al. [15]
demonstrated how visualizing prediction uncertainty can provide in-
sights about the model’s robustness for view synthesizing tasks. For a
comprehensive overview of flow data visualization using deep learning
methods, please refer to [46] and for a broader set of applications of
deep learning applications in scientific visualization please refer to [73].

2.2 Uncertainty Visualization

Pang et al. provide one of the earliest summaries of uncertainty vi-
sualization techniques [53]. Potter et al. focus on visualizing spatial
probability distributions, preceded by a taxonomy of uncertainty visu-
alization methods [59, 60]. Brodlie et al. [10] introduce visualization
techniques enhanced with tools for uncertainty estimation. Liu et al.
employ flickering as a method to depict uncertainty in volume data [47],
while Athawale et al. delve deeper into uncertainty visualization in
volume rendering using non-parametric models [2]. Uncertainty visu-
alization techniques tailored for isocontouring methods have received
significant attention in research. Pothkow et al. devise a method to
compute the level crossing probability between adjacent points, which
is further refined to calculate the probability for each cell [57, 58].
Whitaker et al. [78] explore uncertainty visualization in ensembles of
contours. Streamline uncertainty in ensemble field [17] and pathline
uncertainty in time-varying field [11] is also explored. Otto et al. [51]
study uncertainty in 2D vector fields. Bonneau et al. conduct a com-
prehensive survey of various uncertainty visualization techniques [9].
Recently, Gillmann et al. provide a summary of uncertainty visualiza-
tion methods geared towards image processing [21].

2.3 Uncertainty Estimation in Deep Neural Networks

The uncertainty [8,43] of a DNN can be categorized into two broad
types — data or aleatoric uncertainty and model or epistemic uncer-
tainty. Data uncertainty is attributed to errors and noise during data
acquisition. Model (epistemic) uncertainty can arise for different rea-
sons. Firstly, the DNNs produce a compressed representation of large-
scale data. Such compression often results in prediction error and
associated uncertainty. Secondly, DNNs are often fine-tuned carefully
using learning rate variation, regularization, etc. Different decisions
for such configurations lead to different learned model representations,
and analysis using such models can lead to uncertainties. The data
uncertainty can be addressed by improving data collection method and
by improving the data quality. In contrast, the epistemic uncertainty is
inherent to the model and needs to be studied in detail.

2.3.1

Deterministic methods. Deterministic models can be equipped with
uncertainty estimation capabilities by explicitly training a network to
quantify uncertainties [64].

Bayesian Methods. Bayesian neural networks [22] employ prior
distributions on the model parameters of DNNs to compute epistemic
uncertainty [43]. Training such networks require stochastic gradient
MCMC [49], and variational inference [34] methods.

Techniques for Modeling Uncertainty in DNNs

Dropout
vector components

d dimensional input
coordinate vector
<
N
ol
v dimensional output

Residual Block

with Dropout
Fig. 1: The schematic of the MCDropout-enabled INR model which uses
a residual block-based MLP architecture. A dropout layer is added at
the last residual block to generate uncertainty estimates during inference
time. The INR architecture for the Ensemble method is identical to this,
except there is no dropout layer.
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Test-time Augmentation. Test time augmentation methods perform
data augmentation during the inference time and then estimate the
uncertainty from the variability in the predicted results [3, 74].

Deep Evidential Regression. In deep evidential regression, the net-
work learns parameters as well as hyperparameters to the corresponding
evidential distributions [1]. Then finally, the evidential distributions are
used to estimate model uncertainty.

Uncertainty via Stochastic Data Centering. Here, the authors
show that when an ensemble of DNNS is trained with data sets that are
shifted by a constant bias, model uncertainty becomes the variability
across such ensemble members’ predictions [70].

2.3.2 Ensemble Method

In ensemble-based methods, several models work harmoniously to pro-
duce predictions that are of superior quality compared to the predictions
from any individual model [62]. By doing this, ensemble methods im-
prove the generalization error, and by estimating the variability among
ensemble member predictions, the model uncertainty can be estimated
robustly. Following this principle, Lakshminarayanan et al. propose
Deep Ensembles [43] for DNNs. Conceptually, Deep Ensemble learn-
ing can be shown as an approximation of Bayesian averaging [61].
In Bayesian averaging, the final model prediction is formulated as:
prediction = [ P,,(x)n(w|Z). Here 2,,(x) is the prediction associ-
ated with sample x and 7m(w|2) represents the posterior probability
distribution with & being the training data. In reality, estimation of this
integral is extremely difficult, and it is also found that to estimate this
integral sufficiently accurately, exploration of all the modes of m(w|2)
is not required. This observation imply that non-weighted averaged
predictions generated by a set of ensemble members can be considered
an approximation of the above expression. Note that shuffling of the
training data and a random parameter initialization during the training
process introduces a good variety in each learned ensemble member to
predict the uncertainty robustly, an approach followed in this work to
generate Deep Ensembles. Subsequent research works on Deep Ensem-
bles [5,27,52,71] show that ensemble methods often outperform other
uncertainty estimation techniques and are more immune to changes in
data distribution.

2.3.3 MCDropout Method

Dropout [19,37] is a regularization technique that prevents models from
overfitting during training and is achieved by randomly masking a sub-
set of the weights during training. However, Gal et al. [19] discovered
that adding dropout in a DNN with arbitrary depth and non-linear acti-
vations makes it theoretically equivalent to an approximate Bayesian
inference in deep Gaussian processes. Then activating dropout at test
time is equivalent to sampling from the Bayesian posterior distribution,
p(W | X)Y), where W denotes the model’s weights, X is the training
data and Y is the target output. Finally, the mean of these sampled pre-
dictions is considered as the expected model output, and by measuring
the variance in these sampled predictions, model uncertainty can be
estimated [19]. Such probabilistic predictions are derived by collecting
Monte Carlo (MC) samples from the dropout-enabled trained model,
known as Monte Carlo Dropout (MCDropout) method, by performing
multiple forward passes during inference.



3 UNCERTAINTY-AWARE NEURAL REPRESENTATION FOR VEC-
TOR FIELD DATA

3.1 Implicit Neural Representation

Implicit neural representations with periodic activation functions have
been identified as a promising solution for learning representations of
coordinate-based data sets, where the mapping from any input coordi-
nate in the data domain to the corresponding output quantity values is
learned. Sitzmann et al. [68] in their work depicted that a feed-forward
neural network with sinusoidal activation function, termed as SIREN
(sinusoidal representation network), can be used to build such INRs [68].
Several variations of this SIREN have recently been used to solve many
challenging problems in the scientific data visualization domain and
obtain state-of-the-art results [32,48, 63,69]. The success of these
recent research efforts has prompted us to build our uncertainty-aware
model using SIRENS as the base architecture. Besides analyzing the
uncertainty estimates produced by the Deep Ensemble and MCDopout
methods using a SIREN-based model, we study the accuracy such a
network can achieve in representing intricate steady vector fields.

3.2 Model Architecture

Using an implicit neural network, we aim to learn the function that
represents the mapping from the input data coordinate domain to the
corresponding vector value space. To achieve this, we build our base
model as a multilayer perceptron consisting of d neurons as inputs, fol-
lowed by / hidden layers and an output layer containing v neurons. To
enrich the model’s learning capability and train a deep network in a sta-
ble fashion, we enhance the base SIREN architecture by incorporating
residual blocks and skip connections [35] as was suggested in [48]. Our
model learns a function that takes a d dimensional coordinate vector as
input and predicts a v dimensional vector output where v is the number
of components in the vector field data. Essentially, the network learns
a function .7 (0) : R? — R”, where 0 represents the parameters of the
neural network. When the size of the flow data is large, then using a
single DNN to learn all the vector components jointly also allows us to
produce a compact neural representation of the flow data set since the
model parameters are shared across the vector components. Hence, the
model size will be sufficiently smaller than the raw flow data set.

3.3 Uncertainty Quantification Using MCDropout Method

The model architecture used for the MCDropout method is shown in
Fig. 1. We observe that a post-activation dropout layer is added at the
last residual block to build a dropout-enabled model that can be used
conveniently during inference to estimate prediction uncertainty. The
addition of the dropout layer also helps in regularization during training.
Theoretically, if one wants to simulate a fully Bayesian network, a
dropout layer must be added at each residual block [41]. However,
such a large number of dropout layers often acts as a strong regularizer
and hinders the learning process, resulting in lower accuracy during
test time [41]. We observe similar behavior when the dropout layer
is added to every residual block. Hence, following Kendall et al.’s.
suggestion [41], we build a model by adding dropout at the deepest
residual block, giving us robust uncertainty estimates and a high-quality
vector field reconstruction. The impact of using different numbers of
dropout layers has been studied and presented later in Table 7.

As outlined in Section 2.3.3, inference involves generating a set of
Monte Carlo samples through multiple forward passes of the trained
model when dropout is enabled. In our approach, we produce m in-
stances of the vector field and subsequently calculate the average vector
field, serving as the predicted vector field. The grid-pointwise standard
deviation, computed using vector components estimated by m forward
passes, denotes the prediction uncertainty. We separately compute
standard deviation for each vector component and then add the standard
deviation values to obtain the final prediction uncertainty.

3.4 Uncertainty Quantification Using Ensemble Method

A schematic of our INR architecture is presented in Fig. 1. To build
a Deep Ensemble [43] of INRs, we use this model architecture with-
out the dropout layer. To produce an ensemble model comprising m

Table 1: Description of data sets used in the experimentation.

Data set Di ionality | Spatial Resolution
Heated Cylinder (T=750) 2D 150 x 450
Heated Cylinder (T=1500) 2D 150 x 450
Fluid (T=750) 2D 512 x 512
Hurricane Isabel (T=25) 3D 250 x 250 x 50
Tornado 3D 128 x 128 x 128
Turbine 3D 151 x 71 x 56
Tangaroa (T=150) 3D 300 x 180 x 120
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Fig. 2: Volume visualization of the magnitude of reconstructed vector
fields using MCDropout and Ensemble methods for Hurricane Isabel
data set. The ground truth is shown in Fig. 2a. We observe that both
methods produce visually comparable results.

members, each member is trained separately, utilizing samples from
the entire vector field data. During every ensemble creation, the train-
ing data is randomly shuffled for each member so that variability is
introduced to each member. After the ensemble members’ training is
finished, each member generates a realization of the entire vector field
by inferring vector values at the grid locations. Then, the averaged vec-
tor field represents the expected vector field, and the standard deviation
computed at each grid point from the predicted vector values indicates
the epistemic uncertainty of the ensemble model. We separately com-
pute standard deviation for each vector component and then add the
values to quantify the final uncertainty.

Loss Function and Hyperparameters. For both MCDropout and
Ensemble methods, we utilize 14 residual blocks for 3D and 10 for 2D
vector field data sets. Each hidden layer comprises 120 neurons for
3D and 100 neurons for 2D data sets. The training uses conventional
mean squared error 1oss (Z,se). In our work, we focus on using a
consistent network architecture and hyperparameter combination for
both uncertainty estimation methods to produce comparable results
across multiple data sets. Hence, by empirical experimentation, we
identify a suitable learning rate and batch size combination that produce
stable, consistent, and high-quality results across all data sets. We
employ a batch size of 2048 with the Adam optimizer [42], setting the
learning rate at Se — 5 and the two Adam optimizer coefficients ; and
B> to their default values at 0.9 and 0.999, respectively. The learning
rate is decayed by a factor of 0.1 if the loss value does not decrease
for 10 consecutive epochs. During MCDropout method, a training
dropout probability of 1 = 0.05 and a testing dropout probability of
n = 0.1 is applied consistently, while no dropout is used for training
ensemble models. Both MCDropout and Ensemble methods undergo
training for 500 epochs. Further discussion on the hyperparameter
selection and impact of network architecture on reconstruction quality
and uncertainty estimates are provided in Section 6.

4 UNCERTAINTY-INFORMED FLOW FIELD VISUALIZATION

We conduct a thorough study of our models using six vector field
data sets. The dimensionality and spatial resolution of these data
sets are reported in Table 1. We use a GPU server with NVIDIA
GeForce GTX 1080Ti GPUs with 12GB GPU memory for all the
experimentation. All the models are implemented in PyTorch [54]. The
Heated Cylinder data set [25] and Fluid data set [40] are generated
using Gerris flow solver [55]. Hurricane Isabel data was produced by
the Weather Research and Forecast model, courtesy of NCAR and NSF.
Turbine data set [12] and Tornado data [13] set are made available by Dr.
Jen-Ping Chen and Dr. Roger Crawfis, respectively, at the Ohio State



University. Tangaroa data set [56] is a simulation of an incompressible
3D flow around a CAD model of the research vessel Tangaroa.
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(a) Ground truth of vector magni-
tude.

(b) MCDropout reconstructed vec-
tor magnitude.

(c) Ensemble reconstructed vector
magnitude.

Fig. 3: Volume visualization of the magnitude of reconstructed vector
fields using MCDropout and Ensemble methods for Tangaroa data set.
The ground truth is shown in Fig. 3a. We observe that both methods
produce visually comparable results.

4.1 Visual Analysis of Reconstructed Field, Prediction Un-

certainty, and Error

We reconstruct the entire vector field to thoroughly assess the model’s
reconstruction quality, prediction uncertainty, and error. Through exper-
imentation, we ascertain that utilizing 100 Monte Carlo (MC) samples
for the MCDropout method and 30 ensemble members for the Ensem-
ble method yields a robust estimation of vectors, error, and uncertainty.
The determination of these numbers of MC samples and ensemble mem-
bers is based on comparing the reconstruction quality across various
quantities of MC samples and ensemble members. Detailed results can
be found in Table 3 and Table 4. Thus, unless specified otherwise, we
consistently employ 100 MC samples for MCDropout and 30 ensemble
members for the Ensemble method in all presented results.

To derive the final vector field, we calculate the average vectors at
each grid point, where the averaging process entails computing the
mean over 100 vectors for the MCDropout method and over 30 vectors
for the Ensemble method. We compute the error at each grid point by
contrasting the predicted value with the ground truth vectors to estimate
fine-grained prediction error. This error computation involves assessing
each vector component individually and then adding the component-
wise errors, i.e., the L1 norm, to obtain the total error at a grid point.
Similarly, we compute the component-wise uncertainty at each grid
point (by computing the component-wise standard deviation) for both
MCDropout and Ensemble methods, subsequently estimating the total
uncertainty by summing the component-wise uncertainty values.

This section focuses on a qualitative comparison, presenting volume
visualizations of the reconstructed vector magnitude fields, estimated
prediction uncertainty, and error values for the Isabel and Tangaroa
data sets. Fig. 2 and Fig. 3 display the volume rendering of ground
truth, MCDropout, and Ensemble predicted vector magnitude fields for
Isabel and Tangaroa data sets, respectively. Both methods accurately
reconstruct the vector components for these data sets. Subsequently,
Fig. 4 and Fig. 5 present volume renderings of predicted error and
uncertainty fields for the Isabel and Tangaroa data sets. It is noted that
error and uncertainty do not exhibit strong spatial correlation. While the
error patterns for MCDropout and Ensemble methods appear visually
similar, spatial uncertainty visualizations differ. In the Isabel data
set, regions with higher prediction uncertainty correspond to vortex
regions in the vector field for both MCDropout and Ensemble methods
(see Fig. 4c and Fig. 4d). However, in the Tangaroa data set, the
relatively higher uncertainty valued regions are confined to smaller
spatial domain for the Ensemble method (Fig. 5d). For MCDropout
method, we see that the moderately uncertain regions are widespread
(Fig. 5¢), compared to the Ensemble method.

4.2 Visual Analysis of Flow Features Using Uncertainty-
Aware Streamlines

Streamlines serve as valuable tools for visualizing flow patterns, identi-
fying recirculation regions, and pinpointing stagnation points, aiding
in understanding fluid behavior across engineering and scientific do-
mains. To enhance the effectiveness of flow feature visualization, we
employ both MCDropout and Ensemble methods with our model’s pre-
dictions. These methods not only generate streamlines but also allow

us to quantify uncertainty in predicted vector values at each step of the
integration process. To generate streamlines, we use RK-4 integration
and trace the streamline in both forward and backward direction. Us-
ing the MCDropout approach, we generate n realizations of the same
streamline from a given seed point (with n=100 in our study) through
MC sampling. To estimate the expected streamline, we compute the
mean streamline by averaging the coordinates at each integration step.
However, due to variability among the MC streamline samples, some
streamlines may go out of bounds. In such instances, we calculate the
mean using only the existing streamlines at those integration steps. Our
analysis method also supports the computation of the median streamline
as an alternative to the mean streamline to mitigate the impact of out-
liers. The uncertainty at each step of the streamline is determined by the
standard deviation computed from the n samples following similar strat-
egy as used to compute the mean streamline. Similarly, employing the
Ensemble method involves generating n realizations of the streamline
(where n = 30 due to our use of 30 ensemble members), considering the
mean streamline as the final result, and computing pointwise standard
deviation as the uncertainty estimate.

Utilizing models sensitive to uncertainty helps measure and commu-
nicate uncertainty associated with streamlines, aiding users in making
informed decisions during flow feature analysis [18]. This uncertainty
information builds user confidence in the model’s predictions and high-
lights segments where predictions may lack confidence. We visualize
uncertainty in streamlines by rendering the mean (averaged) streamline
as a stream-tube, with the stream-tube diameter scaled by uncertainty
estimates and colored by uncertainty values. Fig.6 shows this stream-
tube visualization, where Fig.6a displays the ground truth streamline
without uncertainty, and Fig. 6b shows the uncertainty-aware visualiza-
tion. Higher uncertainty is observed at the streamline’s ends, with the
seed location marked by a green sphere. Next, we qualitatively study
the uncertainty characteristics estimated by MCDropout and Ensemble
methods through several case studies.

Fluid (2D) Data Set. We use 100 uniformly randomly generated
seed points to generate streamlines for the Fluid data set using MC-
Dropout and Ensemble methods. The results are shown in Fig. 7. The
ground truth streamlines are shown in Fig. 7a, and streamlines from
MCDropout and Ensemble methods are provided in Fig. 7b and Fig. 7c
respectively. The streamlines are colored using prediction uncertainty,
and the thickness of the stream tubes also varies according to the pre-
diction uncertainty. It is observed that both MCDropout and Ensemble
methods can generate accurate streamlines when compared against
ground truth streamlines (Fig. 7a). Furthermore, by comparing Fig. 7b
and Fig. 7c, we also learn that both MCDropout and Ensemble methods
estimate comparable uncertainty estimates across the entire data set.

Tornado Data Set. Next, we conduct a similar study using the
Tornado data set to study the generated uncertainty patterns. In this
study, streamlines on 100 uniformly randomly generated seed points
are shown, where the ground truth streamlines are shown in Fig. 8a.
We find that both MCDropout and Ensemble methods produce visually
accurate streamlines. We also notice that while the uncertainty patterns
are generally comparable, several streamlines demonstrate different
uncertainty patterns between MCDropout and Ensemble methods as
seen from Fig. 8b and Fig. 8c respectively.

Hurricane Isabel Data Set. To study the uncertainty-aware stream-
lines in the Hurricane Isabel data set, we generate eight streamlines
by seeding around the vortex core region in the data set. The ground
truth streamlines are shown in Fig. 9a. Fig. 9b and Fig. 9¢ depict the
uncertainty-aware streamlines generated by MCDropout and Ensemble
methods respectively. Again, we observe a comparable uncertainty
pattern for both uncertainty estimation methods.

Turbine Data Set. Finally, uncertainty-aware streamline visual-
ization for the Turbine data set is presented in Fig. 10. We show a
visualization of a selected streamline, generated by the MCDropout
method, in Fig. 10a. Visualization of the same generated by the En-
semble method is given in Fig. 10b. The rotor blades in the Turbine
data set are shown as a context using gray surface rendering, and the
ground truth streamline (in red color) is overlaid for visual comparison.
Similar to the previous case studies, we observe comparable uncertainty
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(a) Spatial MSE visualization for MC-
Dropout.

(b) Spatial MSE visualization for Ensemble.

(c) Spatial Uncertainty visualization for MC-
Dropout.

(d) Spatial Uncertainty visualization for En-
semble.

Fig. 4: Visualization of uncertainty and error fields for Hurricane Isabel data set. The MSE and prediction uncertainty is estimated at each grid point
between the predicted and ground truth vectors for MCDropout and Ensemble methods. Fig. 4a and Fig. 4b show the rendering of MSE fields, and
Fig. 4c and Fig. 4d present the rendering of uncertainty fields. We observe that the locations with higher MSE correspond to similar spatial regions
for both methods. In contrast, the vortex region is detected as a region with higher prediction uncertainty for both methods.
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Fig. 5: Visualization of uncertainty and error fields for Tangaroa data set. The MSE and prediction uncertainty are estimated at each grid point
between the predicted and ground truth vectors for MCDropout and Ensemble methods. Fig. 5a and Fig. 5b show the rendering of MSE fields, and
Fig. 5¢c and Fig. 5d present the rendering of uncertainty fields. Results indicate that regions with higher MSE align spatially for both methods, while
areas with higher prediction uncertainty are more widespread for MCDropout compared to the Ensemble method.

Uncertainty

(a) Ground truth streamline. (b) Uncertainty-aware visualization of

streamline.
Fig. 6: Fig. 6a shows the ground truth. Fig. 6b shows the uncertainty-
aware streamline from the Ensemble method, where the streamline is
visualized as a stream tube, colored with uncertainty, and the diameter
of the tube is varied using prediction uncertainty.

estimates from the MCDropout and Ensemble methods.

4.3 Visual Analysis of Flow Features Using Uncertainty-
Aware Critical Points

Critical points play an important role in studying vector field charac-
teristics as it helps identify points where the flow behavior undergoes
significant changes. These points, including saddles, sources, centers,
and sinks, provide valuable insights into the dynamics of the vector
field. By observing critical points, users determine flow patterns, locate
stagnation points, and comprehend the overall flow behavior. Compre-
hensive understanding of robustness of critical points can lead to the
accurate flow features study [16,24,72] and flow data compression [45].

In this study, we evaluate the accuracy of uncertainty-aware neural
models in predicting critical point locations and quantify the spatial
variability of these predictions using the MCDropout and Ensemble
methods. Initially, we compute the mean vector field using both tech-
niques to ensure the robustness of the estimated critical points. From
this mean-field, we identify the critical point locations. To assess the
spatial variability of each critical point’s location derived from the mean
field, we analyze data from individual vector field realizations: 100
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(a) Ground truth streamlines.

(b) Uncertainty-aware streamline
visualization generated by MC-
Dropout method.

(c) Uncertainty-aware streamline
visualization generated by Ensem-
ble method.

Fig. 7: Uncertainty-aware streamline visualization for Fluid 2D data.
The streamlines are generated using 100 uniformly randomly generated
seeds. Fig. 7a shows the ground truth streamlines, Fig. 7b and Fig. 7¢c
show streamlines generated by MCDropout and Ensemble method, re-
spectively. The streamlines are colored using uncertainty values and
rendered using stream tube visualization, where the diameter of the tube
is varied using the prediction uncertainty values.

fields for the MCDropout and 30 for the Ensemble method. For each
method, first, we identify critical points in each vector field realization.
Then, we create a new scalar field where the scalar value at each grid
point reflects the cumulative contribution of all critical points from
all the field realizations. Here, we do not distinguish between critical
points detected from different MC samples (or ensemble members).
Each critical point deposits its contribution to all the grid points. The
contribution of a critical point to a grid point is calculated as the inverse
Euclidean distance between the critical point and the grid point. Hence,
the contribution of a critical point to the nearby grid points will be
higher and gradually fall off for far away grid points. Formally, for a
grid point P, we compute its scalar value as follows: vp = ):f-V: 1 1

DG’
where vp denotes the value at grid point P and D(P,C;) is the Euclidean
distance between point P and critical point C; with N being the total
number of critical points detected across all realizations.

Therefore, a grid point with a higher value will indicate a relatively
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(a) Ground truth streamlines. (b) Uncertainty-aware streamline
visualization generated by MC-

Dropout method.

(c) Uncertainty-aware streamline vi-
sualization generated by Ensemble
method.

Fig. 8: Uncertainty-aware streamline visualization for Tornado data.
The streamlines are generated using 100 uniformly randomly generated
seeds. Fig. 8a shows the ground truth streamlines, Fig. 8b and Fig. 8c
show streamlines generated by MCDropout and Ensemble method, re-
spectively. The streamlines are colored using uncertainty values and
rendered using stream tube visualization, where the diameter of the tube
is varied using the prediction uncertainty values.

(a) Ground truth streamlines.

(b) Uncertainty-aware streamline
visualization generated by MC-
Dropout method.

(c) Uncertainty-aware streamline vi-
sualization generated by Ensemble
method.

Fig. 9: Uncertainty-aware streamline visualization for Hurricane Isabel
data. The streamlines are generated using 8 seed points placed around
the vortex region in the data. Fig. 9a shows the ground truth stream-
lines, Fig. 9b and Fig. 9c show streamlines generated by MCDropout
and Ensemble method respectively. The streamlines are colored using
uncertainty values and rendered using stream tube visualization, where
the diameter of the tube is varied using the prediction uncertainty values.

large number of critical points near that grid point generated from all the
realizations. Now, consider a spatial region in this newly constructed
scalar field around a given mean critical point extracted from the mean
field. Suppose we observe relatively high scalar values for the grid
points in this region. In that case, it will indicate that when extracted
from each realization, this critical point’s location is scattered within
that region, resulting in higher scalar values for most grid points. Con-
versely, if the detected critical points across all realizations are almost
identical with minimal variability, they will only contribute heavily
to a few nearby grid points. Thus, by examining the spatial spread
of relatively high-valued regions around each mean critical point in
this scalar field, we can determine whether the detected critical points
across all the field realizations are concentrated (i.e., high certainty) or
spatially scattered (i.e., low certainty).

In Fig. 11 and Fig. 12, we show the results of the critical point
analysis using two time steps (T=750 and T=1500) of the Heated
Cylinder data set. We show the ground truth critical points with the
vector field rendered using surface LIC visualization in Fig. 11a and
Fig. 12a for time step 750 and 1500, respectively. The saddles and
centers are shown using red and blue dots. The results obtained from the
MCDropout and Ensemble methods are shown in Fig. 11b and Fig. 11c
for time step 750. We observe that both methods correctly predict all
the critical points from the reconstructed vector fields. The green shade
in the background highlights the spatial variability that we computed
as a scalar field, as discussed above. We observe that the MCDropout
method produces high prediction variability for a critical point indicated
by the bright green spot around it. However, the Ensemble method
makes highly confident predictions for all the critical points.

Similarly, the visualization of critical points for time step 1500 for
the Heated Cylinder data is depicted in Fig. 12. Here, we observe that
the MCDropout method fails to detect a critical point at the boundary of
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(a) Uncertainty-aware streamline visualization
generated by MCDropout method.

(b) Uncertainty-aware streamline visualization
generated by Ensemble method.

Fig. 10: Uncertainty-aware streamline visualization for Turbine data. We
show an uncertainty-informed streamline of a selected seed point. The
ground truth (colored in red) is overlayed with the uncertain stream-tube
as a reference, and the seed is shown as a green sphere. By comparing
the streamline generated by the MCDropout method (Fig. 10a) and
the Ensemble method (Fig. 10b), it is observed that both the methods
produce visually similar and comparable uncertainty.
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(a) Ground truth critical points with  (b) Critical points detected by the

the vector field visualized as LIC MCDropout method. The posi-

as context. tional variability is shown with the
green shade in the background, in-
dicating prediction uncertainty.

(c) Critical points detected by the
Ensemble method. The positional
variability is shown with the green
shade in the background, indicat-
ing prediction uncertainty.

Fig. 11: Result of critical point analysis for Heated Cylinder data set
(T=750). Critical points detected by MCDropout and Ensemble methods
are shown in Fig. 11b and Fig. 11c, respectively. The green highlighted
regions in the background show the variability in the predicted critical
point’s locations, with brighter green indicating higher variability. The
ground truth is shown in Fig. 11a. We observe that both methods detect
all the critical points, and the MCDropout method produces higher pre-
diction variability than the Ensemble method.

the data set (see red dotted region in Fig. 12b). This shows a potential
limitation of computing the final predicted flow field as the average
over multiple instances of predicted flow fields. Investigating individual
predicted sampled fields and visualizing the median flow field can help
recover such missing critical points. In contrast, the Ensemble method
successfully retains all the critical points (see Fig. 12¢) when compared
against the ground truth (Fig. 12a). Both methods show similar spatial
variability, as indicated by the bright green spots around several critical
points. A quantitative comparison on the accuracy of the predicted
critical points is provided later in Section 5.

5 QUANTITATIVE EVALUATION AND PARAMETER STUDY

Table 2: Comparison of reconstruction quality (PSNR), error (RMSE), and
model storage overhead between MCDropout and Ensemble methods.

Deep Ensemble MCDropout
Data Set (30 Members) (100 MC samples)
Model Size | PSNR Model Size | PSNR

&B) | @)t | RMSEL| kg | apyp | RMSEL

Heated Cylinder (T=750) 24364 57.799 | 0.00209 812 5532 | 0.00278
Heated Cylinder (T=1500) 24364 58.417 | 0.00251 812 54913 | 0.00375
Fluid 24364 76.897 | 0.00019 812 73.953 | 0.00027
Hurricane Isabel 43612 53.602 | 0.51843 1620 52.176 | 0.61607
Tornado 43608 72.832 | 0.00493 1620 69.5 0.00721

Turbine 48604 53.361 | 0.00811 1620 51.545 | 0.01053
Tangaroa 438572 68.665 | 0.00152 1620 65.008 | 0.00232

Reconstruction Quality and Prediction Error. Table 2 shows a
comparison between the Ensemble and MCDropout methods concern-
ing model size, PSNR, and RMSE. The Ensemble method outperforms
MCDropout in terms of both PSNR and RMSE. However, achieving
this superior reconstruction quality with the Ensemble method requires
nearly 30 times more storage space and training time compared to



=
3
o

S o

CEREFE8Y

¥

Spofial Variabilty
3!

Y o
]
*5535E8Y

]
Spatial Variabilty

Table 5: Streamline error analysis for MCDropout and Ensemble method
using Chamfer and Hausdorff distance metrics. We generate streamlines
from 100 uniformly randomly selected seed points for each data set and
report their average Chamfer and Hausdorff distances when compared
against ground truth streamlines. We observe that, on average, the
Ensemble method produces more accurate streamlines.
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(a) Ground truth critical points with
the vector field visualized as LIC
as context.

(b) Critical points detected by the
MCDropout method.
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(c) Critical points detected by the
Ensemble method. The positional
variability is shown with the green
shade in the background, indicat-
ing prediction uncertainty.

Fig. 12: Result of critical point analysis for Heated Cylinder data set
(T=1500). Critical points detected by MCDropout and Ensemble methods
are shown in Fig. 12b and Fig. 12c, respectively. The green highlighted
regions in the background show the variability in the predicted critical
point’s locations, with brighter green indicating higher prediction variability.
The ground truth critical points are shown in Fig. 12a. We further observe
that the MCDropout method fails to detect a critical point at the boundary,
as shown by the red dotted circle in Fig. 12b, which is successfully
detected by the Ensemble method.

Table 3: PSNR (dB) values when the varying number of MC samples are
used for computation in the MCDropout method. PSNR increases slowly
as the number of MC samples increases. Here, we use 100 MC samples
to produce stable reconstruction and uncertainty estimates.

PSNR (1) for diff. #M CSamples

Data Set 30 100 150
Heated Cylinder (T=750) | 55.182 | 55.32 55.37
Heated Cylinder (T=1500) | 54.781 | 54.913 54.955
Fluid 73.29 73.953 74.204
Hurricane Isabel 52.175 | 52.176 52.176
Tornado 69.497 69.5 69.501
Turbine 51.519 | 51.545 51.553
Tangaroa 65.003 | 65.008 65.01

MCDropout, as it involves training 30 ensemble members. It is worth
noting that the PSNR of the Ensemble method is computed using
predictions from 30 ensemble members, while for MCDropout, it is
calculated based on 100 Monte Carlo (MC) samples. The rationale
behind the chosen number of samples is elaborated on subsequently.
Impact of Different Number of MC Samples on PSNR Value for
MCDropout Method. Table 3 demonstrates the PSNR value of the

vector field obtained by averaging different numbers of MC samples.

There is a slight gain of PSNR as we increase the number of MC
samples up to 150. After that, the gains in PSNR are not as significant
to justify considering more number of samples. Hence, to find a good
trade-off between computation time and prediction quality, we use 100
MC samples for all experiments involving the MCDropout method.
Impact of Different Number of Ensemble Members on PSNR
Value for Ensemble Method. The effect of different numbers of
ensemble members on PNSR is depicted in Table 4. The number of
ensemble members required to produce robust prediction is much lower
than in the MCDropout method. It can be observed that PSNR gains
are insignificant when increasing the number of ensemble members
beyond 15 up to 30. Hence, at around 15 ensemble members, the
PSNR becomes primarily saturated. However, for consistency, we use

Table 4: PSNR (dB) values when varying numbers of ensemble members
are used for the Ensemble method. We observe that PSNR increase is
almost insignificant beyond 15 members upto 30.

PSNR (1) for diff. #Ensemble members

Data Set 15 20 25 30
Heated Cylinder (T=750) | 57.203 | 57.347 | 57.595 57.799
Heated Cylinder (T=1500) | 58.193 | 58.312 | 58.305 58.417
Fluid 76.795 76.85 76.734 76.897
Hurricane Isabel 53.626 | 53.589 | 53.57 53.602
Tornado 72735 | 72.81 | 72.899 72.832
Turbine 53.366 | 53.433 | 53.301 53.361
Tangaroa 68.443 | 68.536 | 68.556 68.665

Data Set Deep E bl MCDropout
Avg. Chamfer | Avg. Hausdorff | Avg. Chamfer | Avg. Hausdorff
Distance | Distance | Distance | Distance |
Heated Cylinder
(T=750) 0.00104 0.00095 0.00776 0.004
Heated Cylinder
(T=1500) 0.00062 0.00062 0.0037 0.00189
Fluid 0.00453 0.00469 0.01261 0.01314
Hurricane Isabel 1.816 1.95277 2.54561 2.86682
Tornado 0.00261 0.00296 0.0096 0.00938
Turbine 0.00167 0.00127 0.00215 0.00342
Tangaroa 0.00024 0.00036 0.0004 0.00063

Table 6: Average RMSE in predicted critical point locations are reported
for MCDropout and Ensemble methods. We observe that the Ensemble
method produces more accurate critical points.

Avg. RMSE (}) for | Avg. RMSE (|) for
Data Set Deep Ensemble MCDropout
Heated Cylinder (T=750) 0.01866 0.02896
Heated Cylinder (T=1500) 0.03234 0.03481
Fluid 0.22243 0.24127

30 ensemble members for the experiments in the work.

Streamline Error Analysis for MCDropout and Ensemble Meth-
ods. We examine the precision of streamlines generated by both MC-
Dropout and Ensemble methods, utilizing averaged mean streamlines
for comparison. To conduct a thorough quantitative assessment, we
generate mean streamlines from 100 randomly uniformly distributed
seed points for each method. Subsequently, we gauge the streamline er-
ror by measuring Chamfer distance [4] and Hausdorff distance between
the predicted averaged streamlines and the ground truth counterparts.
It’s noteworthy that for the MCDropout method, we aggregate results
over 100 Monte Carlo (MC) samples, while for the Ensemble method,
we utilize streamlines predicted by 30 ensemble members. The average
Chamfer distance and Hausdorff distance values computed over the
100 streamlines for each data set are presented in Table 5. It is evident
that the Ensemble method consistently yields more precise streamlines
compared to the MCDropout method across all data sets, as evidenced
by the lower Chamfer and Hausdorff distance values.

Accuracy Analysis of The Predicted Critical Points for MC-
Dropout and Ensemble Methods. To quantitatively assess the
precision of the identified critical point locations, we calculate the
average root mean squared error (RMSE) between the predicted and
the corresponding ground truth critical points for both MCDropout and
Ensemble methods. The outcomes are documented in Table 6 for the
Heated Cylinder and Fluid data sets. It is apparent that, on average, the
Ensemble method outperforms the MCDropout method in accurately
determining critical points using the reconstructed vector field.

Impact of Varying Number of Dropout Layers on MCDropout
Model Performance. In [19], Gal et al. demonstrate that incorporating
a dropout layer after each hidden layer in a DNN renders the model
theoretically equivalent to conducting inference in a fully Bayesian
neural network. However, Kendall et al. [41] argue that adding such
dropout layers after every layer could hamper the model’s learnability,

Table 7: We report how the reconstruction quality (PSNR) changes
when different numbers of Dropout layers are used for the MCDropout
method. Three configurations are studied: Dropout used (1) only at the
last residual block; (2) at the last half of the residual blocks; (3) at all the
residual blocks. We observe that PSNR decreases with an increasing
number of Dropout layers as it acts as a strong regularizer. Hence,
Dropout only at the last residual block is used.

PSNR (1) with different Dropout Layer Location

Data Set Last Res. block | Last half Res. blocks | All Res. blocks
Hurricane Isabel 52.176 51.686 49.595
Turbine 51545 30.16 39.074




Table 8: PSNR (dB) of 100 MC samples with different Dropout probabili-
ties during inference.

Table 10: Evaluating reconstruction quality under different hyperparame-
ter combinations for MCDropout method.

Table 9: Training time (Hours) for MCDropout and Ensemble (30 ensem-
ble members) for 500 epochs with a batch size of 2048 and inference
time (seconds) for generating final vector field using MCDropout (100
MC samples) and Ensemble (30 ensemble members) methods.

PSNR (1) for different test-time Dropout probabilities Learni Turbine PSNR (100 MC samples) | Tornado PSNR (100 MC samples) | Isabel PSNR (100 MC samples)
Data Set (100 MC les) Rate = Batch Size Baich Size Baich Size
005 01 02 03 04 05 ate 1024 | 2048 3096 1024 | 2048 4096 1024 | 2048 4096
- - - - - ° - 0.0001 | 20.791 | 51.854 50.9 21.094 | 21.103 67.757 271 | 27.364 27.604
Heated Cylinder (T=750) [ 55391 [ 55.32 | 55.171 | 54.935 | 54.678 | 54.369 [ 00005 | 19.498 [ 19957 | 20074 | 19.076 | 19716 19414 [ 25.598 | 25.726 | _25.881
Heated Cylinder (T=1500) | 54.983 | 54.913 | 54.758 | 54.564 | 54.306 | 53.984 Te 5 | 46.338 | 41.776 13.662 67.893 | 67.135 65879 52.286 | 51973 | 51446
Fluid 74352 | 73.953 | 73.139 | 72.282 | 71.328 | 70.283 Se—5 | 51.934 | 51545 50.43 71036 | 695 69.703 30.888 | 52.176 | 52195
Hurricane Isabel 52.176 | 52.176 | 52.175 | 52.173 | 52.172 | 52.169
Tornado 69.501 69.5 69.497 | 69.493 | 69.487 | 69.479 . .
Turbine 51.556 | 51.545 | 51514 | 51472 | 51.424 | 51.347 MCDropout method reconstructed streamline with 100 MC samples
Tangaroa 65.011 | 65.008 | 65.002 | 64.994 | 64.983 | 64.968

#ResBlock=10 #ResBlock=12 #ResBlock=14 #ResBlock=16

as numerous dropout layers act as potent regularizers. This aligns with
our observations of decreased reconstruction quality when applying
dropout at each residual block in the MCDropout model. Kendall et
al. [41] further propose to use fewer dropout layers, approximating
a partial Bayesian network, to achieve robust uncertainty estimation.
They suggest that a dropout layer after the final layer is sufficient to
produce high prediction accuracy and robust uncertainty estimates.
Consequently, we use dropout layer at the last residual block to ensure
high-quality predictions and robust uncertainty estimates. In Fig. 13,
we show results of uncertainty estimates for a streamline selected from
Isabel data set. We present uncertainty visualization using model with
dropout added at the (1) last residual block, (2) last half of the blocks,
and (3) all residual blocks. We observe that all of these configurations
produce similar uncertainty estimates. To assess the detailed impact of
varying the number of dropout layers, we conduct experiments on the
Isabel and Turbine data sets. The results, detailed in Table 7, indicate a
decrease in PSNR with increasing number of dropout layers.

Impact of Varying Dropout Probabilities on MCDropout Model
Performance. Table 8 depicts a study examining the quality of vector
field reconstruction (measured by PSNR) averaged over 100 MC sam-
ples across various test-time dropout probabilities. The MCDropout
model is trained with a dropout rate of 0.05. Notably, it is observed
that PSNR remains largely consistent up to a dropout probability of 0.2,
consistent with findings by Gal et al. [19]. They posit that once a model
has reached convergence, minimal variations in dropout probability do
not significantly impact the predicted quality. However, as dropout is
increased to as high as 0.5, the prediction quality gradually diminishes,
as evidenced by lower PSNR values.

Consistent Hyperparameter Selection. In this work, we seek to
identify a hyperparameter combination that ensures stable training of
implicit neural models using both MCDropout and Ensemble methods
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Fig. 13: Comparing uncertainty patterns when dropout is added at the
last (Fig. 13a), last half (Fig. 13b), and all residual blocks (Fig. 13c). The
uncertainty pattern remains identical for these configurations. Ground
truth streamline is overlaid in red as reference.

Training time Inference time
Data set (Hours) (Seconds)
Ensemble MCDropout Ensemble
MCDropout | 3’ embers) | (100 MC samples) | (30 members)
Heated Cylinder (T=750) 0.27 7.12 2.84 1.83
Heated Cylinder (T=1500) 0.27 7.12 2.85 1.83 _ _ _ _
Fluid 0.64 18.06 233 3.99 #ResBlock=10 #ResBlock=12 #ResBlock=14 #ResBlock=16
Hurricane Isabel 7.03 218.06 182.14 5448 Ensemble method reconstructed streamline with 15 ensemble members

Tornado i73 151.8 12213 37.99 . ) o ) ; .

Turbine 6 59.46 32.39 131 Fig. 14: Visualization of a representative streamline from Turbine data set

Tangaroa 14.86 462.68 389.89 114.13 under varying numbers of residual blocks for MCDropout and Ensemble

methods. It is observed that the estimated prediction uncertainty is robust
and is not influenced when the number of residual blocks is varied.

across multiple flow data sets. Since both methods share the same
base network architecture, we perform the hyperparameter selection
experiment using the MCDropout method as it is a single-model based
approach and requires less number of model training compared to
the expensive ensemble method. After determining a stable hyper-
parameter combination, we apply these same parameters to train the
ensemble models, aiming for stable, consistent, and comparable results.
Table 10 presents the reconstruction quality, measured by PSNR, for
12 different hyperparameter combinations with varying learning rates
and batch sizes on the Turbine, Isabel, and Tornado data sets. The
combination of a learning rate of 5e — 5 and a batch size of 2048 con-
sistently produces high-quality, stable PSNR values across all three
data sets. Consequently, we adopt this hyperparameter combination for
subsequent training of both MCDropout and Ensemble models. Our
results show that this combination yields consistent and comparable
uncertainty-aware neural representations across all data sets.

Table 11: Reconstruction quality with varying network depth.

MCDropout Ensemble
(PSNR (1) for 100 MC les) | (PSNR (1) for 15 bl bers)
#Res
Blocks 10 12 14 16 10 12 14 16
Tornado | 67.21 | 68.79 | 69.50 | 72.21 | 71.58 | 73.05 | 72.70 37.08
Turbine | 50.89 | 50.68 | 51.55 | 49.97 | 53.84 | 54.96 | 53.80 55.43
Isabel 51.66 | 51.74 | 52.18 | 28.39 | 52.87 | 52.68 | 53.69 35.24

Impact of Varying Model Architecture on Accuracy and Uncer-
tainty Estimates. We vary the network depth by adjusting the number
of residual blocks, while keeping the number of neurons per layer fixed.
The learning rate and batch size are maintained at Se — 5 and 2048,
respectively, to ensure comparability of the results. From Table 11, we
observe that PSNR values exhibit minimal variation across different
numbers of residual blocks. However, an exception occurs with 16
residual blocks: the PSNR drops for the Tornado data set using the En-
semble method and for the Isabel data set using the MCDropout method.
This drop is due to unstable training, which would require further hy-
perparameter tuning. Additionally, we examine the impact of varying
the number of residual blocks on the estimated prediction uncertainty.
We find that prediction uncertainty remain unaffected by changes in the
model architecture. In Fig. 14, we present a representative streamline
from the Turbine data under different numbers of residual blocks for
both methods. It is evident that the prediction uncertainty is robust
and remains consistent regardless of the number of residual blocks.
However, for a much shallower network, we anticipate that the quality
of reconstruction and uncertainty estimates will gradually degrade as
the network will have less learning ability.
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(a) Ground truth (red) and predicted streamline from  (b) Ground truth (red) and predicted streamline from
MCDropout method. Ensemble method.
Fig. 15: The importance of error and uncertainty information for vector
field feature analysis using streamlines generated by a DNN model.

Training and Inference Time for MCDropout and Ensemble
Methods. Table 9 shows training and inference times for the two
methods. The Ensemble approach has faster inference time since it uses
predictions from only 30 members, whereas MCDropout generates 100
MC samples, resulting in longer inference times. However, Ensemble
training is significantly more time and resource consuming because it
requires training multiple models (30 in this study), unlike MCDropout,
which needs to train a single model. This significant difference in
training time often makes MCDropout preferable for timely results
with robust uncertainty estimates.

6 DiscussION

Uncertainty-agnostic vs. Uncertainty-aware DNNs. We advocate
the use of DNNs equipped to quantify uncertainty when analyzing
vector fields. We find that uncertainty-informed neural networks offer
valuable insights into the reliability of their predictions. By effectively
conveying such uncertainty to experts, they can make well-informed
decisions about the data features. This integration of uncertainty is
crucial in fostering trust in the use of DNN-predicted results for sci-
entific research. Particularly when dealing with large vector fields,
scientists often have to rely on the model’s outputs due to the imprac-
ticality of handling full-resolution data. In such cases, where ground
truth data may be unavailable, estimating errors becomes challenging.
However, uncertainty-aware DNNs can still provide reliable uncertainty
estimates, offering experts greater confidence in interpreting predicted
results. Next, we discuss the domain expert feedback to highlight the
implications of our proposed techniques.

Domain Expert Feedback. We interviewed a computational fluid
dynamics scientist to collect expert feedback. The expert immediately
liked the idea of using uncertainty-aware neural models and agreed that
visualizing prediction uncertainty on predicted flow features is critical
and can provide meaningful insights about the prediction’s quality and
help build trust in using deep learning techniques for scientific research.
The expert found our uncertainty-informed streamline visualization
intuitive and easy to comprehend. The expert was also intrigued to
see that these neural models can be both under-confident and over-
confident, as highlighted in Fig. 15, and agreed that access to such
results is critical for verifying and validating hypotheses from flow
data. Next, the expert suggested that developing such uncertainty-
aware models for time-varying flow data would be very useful. Finally,
the expert observed that complex and turbulent regions tend to incur
higher prediction uncertainty, which was expected since predicting
intricate flow features is a more complicated task than predicting less
turbulent flow. This is because of the highly nonlinear and multiscale
nature of turbulent flows. However, the expert further noted that large-
scale ocean and upper atmospheric flows tend to be non-turbulent, and
hence the proposed method can serve as an effective uncertainty-aware
compression method for such large-scale flow data.

Mean vs. Median Streamline. Formally, both MCDropout and
Ensemble methods consider the expected model output to be the mean
and so we visualize the mean streamlines. However, to mitigate outlier
sensitivity, our method also allows visualization of the median stream-
line, which is less affected by outliers. Experiments show that mean
and median streamlines are nearly identical, with minor differences. In
Fig. 16, results from the Isabel data show that for both methods, mean
(green) and median (blue) streamlines generally overlap, though the
zoomed inset reveals slight differences for the Ensemble method.
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(a) Mean vs. Median streamline for MCDropout.

(b) Mean vs. Median streamline for Ensemble.

Fig. 16: We show representative mean and median streamlines for
MCDropout and Ensemble method. We observe that mean and median
streamlines are almost identical while the zoomed view on the right
shows minor differences between them for the Ensemble method.

Error vs. Uncertainty. Our experiments also reveal instances where
the models may exhibit high confidence (low uncertainty) in predicting
a segment of a streamline, yet this segment can have high errors. This
poses a potential limitation for uncertainty-aware methods, as users
might trust predictions guided by high model confidence, only to find
the results partially erroneous. This observation is illustrated in Fig.15a
and Fig.15b, where we present a streamline from the Isabel data set.
Both MCDropout and Ensemble methods predict a segment of the
streamline (marked by blue dotted region) with low uncertainty, but
when compared against the ground truth streamline (depicted in red),
we discover high prediction errors. Conversely, we identify another
segment of the streamline (highlighted by the red dotted region), where
the MCDropout method exhibits high uncertainty, and the segment also
shows high error. However, for the Ensemble method, this segment
demonstrates low error despite the method yielding high uncertainty.
These findings suggest that while uncertainty can aid in communicating
the confidence of predicted results, it may also lead to situations where
the model is confident but the result is erroneous. Therefore, additional
methods of model explainability will be necessary for such cases.

MCDropout vs. Ensemble Method. This work investigates two
approaches for estimating uncertainty using an INR to analyze steady-
state vector fields. We use Deep Ensemble, a widely accepted stan-
dard [39, 50] despite its extensive training time, and explore single-
model-based MCDropout method to mitigate computational challenges.
MCDropout method is chosen for its theoretical elegance and ease of
integration into existing DNN models with minimal adjustments [19].
Our findings show that both MCDropout and Ensemble methods pro-
duce comparable uncertainty patterns, but the Ensemble method offers
slightly more accurate predictions at the cost of significantly longer
training times (Table 9). Therefore, in scenarios where resources are
limited and immediate uncertainty estimation is crucial, MCDropout
proves to be a dependable alternative to the Ensemble method.

Extension to Time-varying Data. A natural extension of this work
is to perform uncertainty-aware flow analysis on time-varying data.
Time-varying data sets will be significantly larger and more challenging
to model. Instead of directly modeling the time-varying vector fields,
a computationally viable alternative could be to use flowmap-based
representations [63] or directly learning particle tracing reults [33].
Additionally, due to the high computational cost, training an Ensemble
for uncertainty estimation may not be feasible and MCDropout and,
other single-model methods will be preferable.

7 CONCLUSIONS AND FUTURE WORK

This paper emphasizes the importance of understanding uncertainty by
applying two uncertainty estimation methods. While in this work, we
study the impact of uncertainty on tasks such as vector data prediction,
streamline generation, and critical point detection, in the future, we
plan to conduct a comprehensive topological analysis and thoroughly
study flow map characteristics to evaluate reconstruction quality fur-
ther using the proposed methods. Other future research endeavors
include exploring alternative deep uncertainty estimation techniques
and expanding our method to handle time-varying data. Insights from
uncertainty estimates help identify areas needing explicit training and
recognize model limitations in specific data regions. In critical scenar-
ios, a model’s confidence in its predictions is crucial, fostering greater
trust when the model acknowledges its uncertainties.
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