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Fig. 1: Despite their difference in vertical height, PDFs A and B are all statistically identical. 

Abstract— Probability density function (PDF) curves are among the few charts on a Cartesian coordinate system that are commonly 
presented without y-axes. This design decision may be due to the lack of relevance of vertical scaling in normal PDFs. In fact, as long 
as two normal PDFs have the same means and standard deviations (SDs), they can be scaled to occupy different amounts of vertical 
space while still remaining statistically identical. Because unfxed PDF height increases as SD decreases, visualization designers may 
fnd themselves tempted to vertically shrink low-SD PDFs to avoid occlusion or save white space in their fgures. Although irregular 
vertical scaling has been explored in bar and line charts, the visualization community has yet to investigate how this visual manipulation 
may affect reader comparisons of PDFs. In this paper, we present two preregistered experiments (n = 600, n = 401) that systematically 
demonstrate that vertical scaling can lead to misinterpretations of PDFs. We also test visual interventions to mitigate misinterpretation. 
In some contexts, we fnd including a y-axis can help reduce this effect. Overall, we fnd that keeping vertical scaling consistent, and 
therefore maintaining equal pixel areas under PDF curves, results in the highest likelihood of accurate comparisons. Our fndings 
provide insights into the impact of vertical scaling on PDFs, and reveal the complicated nature of proportional area comparisons. 

Index Terms—visualization, probability density function, uncertainty, vertical scaling, perception, area chart 

1 INTRODUCTION 

Area encoding, which represents information through the size and shape 
of geometric regions, plays a pivotal role in many data visualizations 
[33]. In most approaches, areas are visually encoded through the 
proportional allocation of space. For example, bar charts typically 
represent larger amounts with taller bars, and treemaps represent larger 
percentages of a whole with bigger rectangles. This visual metaphor 
that equates a larger area with a larger amount of a plotted concept is 
informed by humans’ learned experiences in the world [50]. Probability 
density functions (PDFs) are mathematical constructs that characterize 
a distribution of relative likelihoods for a range of possible outcomes. 
PDFs are ubiquitous in modern statistical education and employed 
outside of classrooms to communicate scientifc results. Whereas 
some analytical results can also be encoded via other methods, results 
of Bayesian analyses often rely on PDF plots to convey prior and 
posterior beliefs [51]. In the case of communicating Bayesian results, 
misconstruing PDFs could drastically affect interpretation and lead to 
false conclusions that may propagate through research. 

Typically, PDFs are visualized using an area chart, like those shown 
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in Fig. 1. These PDF plots encode possible (continuous) outcomes 
along the x-axis, and probability density along the y-axis, such that 
the area under the curve represents 100% probability [46]. However, 
unlike other area charts, the y-axis of a PDF does not encode readily 
usable information. In Fig. 1, for example, the top and bottom PDFs in 
each column are statistically identical (normal distributions, µ = 125, 
SD= 7), although one occupies much less pixel area than the other. To 
extract PDF plots’ underlying probabilities, readers must estimate the 
proportions of the area under a plot’s curve. Unfortunately, creators 
of PDFs may feel compelled to irregularly scale PDF plots such that 
each plot has the same height but different pixel areas (see Fig. 2, far 
right). The demand for this type of scaling is so common that statistical 
plotting packages, such as bayesplot [14] or ggdist [28], have presets 
to accommodate such a design decision.1 

Vertical compression may be motivated by spatial constraints or 
aesthetic preferences. For example, consider a researcher who needs to 
present the results of their Bayesian analysis in a research paper. The 
researcher has nine different posterior distributions that they want to 
visualize using PDF plots, and a page limit constraint due to journal 
requirements. Initially, when plotting the results, the PDF plots overlap 
and occasionally occlude one another (see Fig. 2, a), making the fgure 
hard to read and visually cluttered. The researcher contemplates spacing 
the plots to avoid overlap, as in Fig. 2 (b), but this design is space-
ineffcient. Ultimately, they decide to vertically compress the Bayesian 
posteriors to have the same height, as in Fig. 2 (c). Although this 
solution may satisfy the researcher, it introduces the risk of misguiding 

1area_method = "equal_height" in mcmc_areas() in bayesplot, 
normalize = "xy" in stat_halfeye() in ggdist 
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Fig. 2: A decision fow that may lead to visualization designers compressing some PDF plots at different rates. Findings from our experiments show 
that this "perfect solution" can lead to imperfect interpretation. Panel A shows equal-area PDFs with occlusion, B shows equal-area PDFs without 
occlusion, and C shows equal-height PDFs that have different areas. 

readers because common visual encodings associate larger areas with 
greater quantities, potentially leading readers to incorrectly infer that 
shorter plots represent lower probabilities. In this paper, we investigate 
the impact of vertical scaling on readers’ comparison of cumulative 
probabilities in PDFs. 

We contribute two preregistered human-subjects experiments (n = 
600, n = 401). Experiment 1 explores the effect of compressing the 
height and resulting area of PDF plots on readers’ comparisons of cumu-
lative probabilities (i.e., the probability of some, but not all, outcomes 
occurring – illustrated in the question text in Fig. 1). Experiment 1 in-
vestigates two levels of compression across statistically equivalent PDF 
plots and two visual interventions. Experiment 1 establishes that verti-
cal compression of otherwise identical PDF plots can mislead readers. 
In practice, statistically identical PDF plots are not likely to be scaled 
differently because these plots already occupy the same height and 
pixel area. Experiment 2 prioritizes ecological validity by testing more 
realistic plot compression. We investigate the comparison of PDF plots 
with different standard deviations, scaled to equal heights—a method 
commonly preset in visualization software [14, 28]. Additionally, this 
experiment employs the same visual interventions as Experiment 1. 

In our Discussion, we distill key design guidelines for practitioners 
who wish to present PDF plots that can be accurately compared to one 
another, particularly emphasizing the importance of avoiding irregular 
vertical compression altogether. Lastly, we discuss open questions 
surrounding PDF plot comprehension and outline potential future work. 

These experiments mark important extensions of prior work. We 
expand past examinations of the risk of y-axis scaling from bar and line 
graphs to a more complex mark type. We also build upon perceptual 
studies that investigate the complicated nature of comparing irregularly-
shaped areas, and provide experimental evidence to illuminate current 
theory and systems contributions within probability communication. 

2 BACKGROUND AND MOTIVATION 

2.1 Area Judgments in Visualization 

Perceptual comprehension of PDF plots has not been extensively stud-
ied; however, there is a strong body of research on human perception of 
other two-dimensional areas. For example, research has examined the 
comparison of rectangular areas [12, 32, 34, 47], irregular polygons [1] 
and ovals [12, 34, 60]. Notably, polygonal area estimation has been 
shown to be signifcantly more accurate when viewed in comparison 
to another equally-scaled, polygon than when viewed one-by-one [1]. 
Recent perceptual work has also distinguished that perceived area of 
shapes can differ from the actual pixel area of those shapes [59, 60], 
and that general dimensions of a set of shapes (i.e., "additive areas") 
may be used by readers as proxies for area judgment [59]. Other vision 
research has led to the hypothesis that perimeter length is used as a 
proxy for visually estimating the area of rectangles [32], and that reader 

judgment of circles’ area and perimeter is signifcantly less accurate 
than their judgment of radius length [44], suggesting that readers might 
be prone to comparing straight-line distances, such as the height of 
PDF plots, over the area of nonrectilinear shapes. 

In light of these fndings, our investigation into the perceptual com-
prehension of PDF plots aims to bridge the gap between existing re-
search on area measurement and the unique characteristics of PDF plot 
comparisons. The established reliance on perimeter length [32] and 
straight-line distances, coupled with the variability in perceived versus 
actual pixel area [59, 60], underscores the complexity of accurate area 
judgment in nonrectilinear shapes such as PDF plots. 

2.2 Vertical Scaling in Visualization 

Representing increasing quantities in graphs via upward vertical space 
refects a universal convention observed across diverse human groups 
and historical periods [50]. A wealth of research supports the cognitive 
association between higher vertical positions and larger values [16, 
31, 57]. This “More Is Up” concept suggests that numerical increases 
and vertical elevation align in intrinsic human perception and that 
representing growth of a quantity through increasing height can enhance 
reader clarity and understanding of graphical data [39, 45, 50]. 

Thus, visualizations commonly use difference in height of two vi-
sual objects to represent which object encodes larger values. Because 
the heights of visual elements can intrinsically represent quantities, 
literature on visualization best practices often advises against varying 
the vertical scaling of individual visual objects [19, 49]. Past research 
has explored how rescaling and truncating y-axes in line and bar charts 
can lead to misperceptions of encoded values and worse reader accu-
racy [6, 9, 37, 48]. Research also suggests that superimposing variables 
in a single graph with multiple y-axes (i.e., dual axis charts) should 
be avoided [21]. This body of work on vertical space in visualizations 
provides the basis for our hypothesis that inconsistent vertical scaling 
may decrease readers’ ability to successfully compare PDF plots. 

2.3 Vertical Stacking In Visualizations 

Vertically stacking individual graphs is a commonly used layout to fa-
cilitate easy comparison of visualizations. However, vertically stacking 
PDF plots can lead to occlusion and signifcant space consumption, 
often prompting irregular compression of these plots, as discussed in 
Sec. 1. This problem is not unique to PDF plots; past research has in-
vestigated the impact of vertically stacking time series (i.e., line or area 
charts that encode a temporal variable along their x-axes [15,17,23,40]), 
and stacking multiple line charts with a wide range of different aspect 
ratios [22]. In particular, research on time series visualizations has 
proposed solutions to enhance the compactness of multiple charts that 
require visual comparison. These solutions include horizon graphs, 
which cut large peaks and align them fush with the x-axis on top 
of their bases. Another option is braided graphs, which interweave 



Fig. 3: Correct visual strategies for comparing cumulative probabilities of two PDFs. Left: Equal-area PDF plots can be compared via a single area 
comparison. Right: Equal-height PDF plots must be compared via a proportional area comparison. 

multiple time series by dynamically ordering their segments, so they 
appear from the largest value at the back to the smallest value at the 
front of the composite graph [17, 23, 40]. These solutions save vertical 
space by truncating and moving lines such that the area between the 
lines and x-axis is minimized, which could make them less ideal for 
area-encoded charts, like PDF plots. 

Vertical stacking of area charts that encode distributions has been ex-
plored in the form of ridgeline (a.k.a "joy" [30]) plots, which stack area 
charts such that their contours resemble the ridges of mountains [55]. 
Individually, ridgeline plots overlap with one another to save vertical 
space and facilitate comparison of “relative heights across groups" [55]. 
Thus, accurate comprehension of these plots is contingent on equal 
vertical scaling across all ridgelines; unlike PDF plots, irregular vertical 
scaling of ridgeline plots is canonically (and mathematically) incor-
rect. Ridgeline plots’ overlapping can lead to occlusion in cases where 
distributions with a wide range of heights occupy similar horizontal 
positions. Although we explore only the impact of scaling PDF plots 
in this paper, further work comparing PDF plots and ridgeline plots 
may shed more light on best practices for communicating probability 
densities. 

2.4 Probability Distribution Visualizations 

Communicating probability distributions is commonly required to ade-
quately relay experimental results [36]. There are several methods for 
doing so, each of which has different implications (for review, see [38]). 

Confdence intervals (with and without indication of a distributional 
mean), box plots, and standard deviation intervals show only summa-
rizing statistical moments of distributions to reduce visual complexity 
and facilitate easier comparisons. These methods are still used after 
many decades, taught in statistics curricula (e.g., [46]), and popular in 
scientifc communication to experts and the general public [52]. These 
visualizations, however, do not depict distribution shape and reduce 
the statistical resolution of the information they communicate [10]. 
Confdence intervals and box plots also have been shown to fall prey to 
the deterministic construal error, in which readers disproportionately 
attribute more probability to values that lie inside delineated visual en-
codings than to those that lie right outside those encodings, essentially 
discounting the desired conveyance of uncertainty [10, 24]. 

PDF plots are another classic method for visualizing probability 
distributions by using area to encode distributional data. This method 
is part of a broader array of techniques that employ area to articulate 
distributional characteristics, including violin [18], ridgeline [56], and 
raincloud plots [3]. These plots maintain high statistical resolution and 
are less known to incur deterministic construal errors because of their 
continuous visual nature [10]. However, as we exhibit in this paper, 
many readers, especially those without strong levels of graph literacy, 
may not intuitively grasp important properties of PDF plots. 

For scientists interested in making probability densities more ac-
cessible to an audience without strong statistical training, frequency 
framing may be of interest. Natural frequency framing (i.e., presenting 
probabilities as "6 times out of 100" instead of "6%") has been shown 
to be a more intuitive method for conveying uncertainty in textual con-
texts [11]. In recent years, visualization researchers have used this 

theory to inspire new visual encodings in which probability is con-
veyed discretely, such as quantile dot plots (QDPs) and hypothetical 
outcome plots (HOPs) [20, 29]. Both of these solutions are more likely 
to be correctly interpreted by members of the general public in some 
contexts [13, 20, 25, 26, 29]. At the same time, HOPs is an animated 
solution, making it incompatible with nondigital formats and requiring 
a larger amount of viewing time for more precise readings [29]. QDPs 
do not suffer from these drawbacks but sacrifce statistical detail in 
favor of discrete dots. These drawbacks are especially relevant for low 
(20)-quantile QDPs, which past evaluations have found to be more 
effective than higher (100)-quantile versions [29]. 

Although each of the aforementioned methods has its own advan-
tages and disadvantages, PDF plots remain widely used for presenting 
experimental outcomes, particularly in Bayesian analysis, which yields 
posterior distributions as its statistical result. Moreover, past work de-
tails how individuals, including statistical experts, can struggle to read 
skewed PDF plots correctly [41]. We contribute to this research by in-
vestigating an unstudied, yet common, method of visually manipulating 
PDF plots and offering subsequent design recommendations. 

2.5 Interpreting PDF Plots 

Unlike standard Cartesian-coordinate-system plots, in which value can 
be derived from the y-axis positions of visual objects [53], correctly 
comparing PDF plots does not require referencing the y-axis [46]. In 
fact, attempting to estimate y-axis values along a PDF plot’s curve 
can lead readers to mathematically incorrect conclusions. PDF plots 
convey probability via the area beneath their curves [46]. A distinct 
characteristic of PDF plots is that their total under-curve area must sum 
to one (i.e., unity) [46]. We hypothesize this assumption of unity can 
be de-emphasized, and sometimes not communicated at all, when the 
heights of neighboring PDF plots are rescaled to different degrees. 

We are not the frst to consider how the visual representation of 
density plots can mislead viewers. Pu and Kay defne a “correct" 
probabilistic visualization as one in which the “proportions of visual 
elements (such as counts or areas) and their spatial placement refect the 
underlying probability distribution, including any... part-to-whole rela-
tionships." [42]. Although individual PDF plots meet this requirement 
for correctness regardless of their scaling, multiple PDF plots that are 
scaled incongruently may not accurately refect underlying probability 
distributions in a perceptually relative manner. Pu and Kay illustrate 
several examples where density estimates are plotted in a single frame 
without statistical corrections to account for the part-to-whole percep-
tual relationship that a singular frame with multiple interior pieces 
communicates. Pu and Kay posit that these are incorrect probability 
visualizations because they are likely to cause viewers to misinterpret 
the densities in their true context, and suggest that independently scal-
ing y-axes by sample size is a necessary correction for appropriate 
visual comparison of part-to-whole density plots [42]. We propose 
an extension of Pu and Kay’s notion of correctness to emphasize the 
importance of scaling in comparative probabilistic visualizations. 

We describe two PDF plots that cover an equal amount of physical 
or pixel space beneath their curves as equal-area plots. In equal-area 
plots, the probability of some but not all outcomes occurring (i.e., the 



“cumulative probability" as shown in purple in Fig. 3) can be compared 
by contrasting the portions of areas that lie between outcomes of interest 
under each plot’s curve [46]. For example, on the left side of Fig. 3, 
the probability that Solute A presents at 20 ppm or less versus that of 
Solute B can be measured by visually determining which purple area is 
larger. On the right side of Fig. 3, where PDF plots have equal heights 
but not equal areas, to compare the same probabilities readers must 
visually determine which two-part area proportion is larger. Because of 
the multiple visual calculations it requires, the latter comparison may be 
more cognitively complex. If readers are comparing equal-height PDF 
plots, or other PDF plots without equal area, then comparing height, 
length, or total area can lead to false conclusions. 

Other strategies may exist as well. For example, when comparing 
normal PDF plots, regardless of their area or height, readers familiar 
with the correlation of standard deviations and well-known probabilities 
in normal PDFs (µ± SD covers ≈ 68% of the PDF, µ ± 2 SD covers 
≈ 95%) can use these mathematical concepts to estimate general likeli-
hoods of outcomes [46]. When comparing normal PDF plots, readers 
could also contrast the horizontal position of the plots’ means and SDs 
to comparatively estimate their cumulative probabilities. 

PDF plots convey more information than just cumulative probabili-
ties. The shape of PDFs can be used to convey probability distributions 
(e.g., large area concentrated around plot tails convey skewed proba-
bilities). However, non-normal PDFs are drastically harder for people, 
even statistical experts, to interpret [41]. For this reason, we restrict our 
investigation to the comparison of normal PDF plots. However, in the 
Discussion section we note that future work should exploring accurate 
comparison of non-normal PDFs, so as to shed light on probability 
communication under a wide range of circumstances. 

3 EXPERIMENT 1 

We investigate the effects of vertically compressing PDF plots through 
two preregistered experiments. The frst experiment2 investigates read-
ers’ comparisons of two statistically identical PDF plots that are scaled 
to different heights, and uses re-test conditions to examine potential mis-
interpretation. This experiment also explores two visual interventions 
and their impact in reducing possible misinterpretations. 

3.1 Materials and Methods 

3.1.1 Investigative Questions and Hypotheses 
We hypothesized that participants will be more likely to report that 
taller PDF plots (e.g., Fig. 1, bottom row) show a higher cumulative 
probability than their shorter counterparts and that we can mitigate this 
misconception with design interventions. Specifcally, we hypothesized 
that (H1) adding a y-axis (e.g., Fig. 1, middle) and (H2) adding vertical 
lines to indicate standard deviations from the mean (SD annotations) 
(e.g., Fig. 1, right) will decrease the likelihood of incorrect comparisons. 
Lastly, we hypothesized that (H3) SD annotations will be more likely 
to reduce incorrectness than y-axes, but not to a large extent. 

3.1.2 Stimuli 
We tested a range of paired normal PDF plots. Each pair either had 
both plots with 5, 7, or 9 SDs and the same mean, as shown in Fig. 4’s 
top row. We generated the plots using Python and edited them in Adobe 
Illustrator. We compressed each plot using Illustrator’s transform tool, 
generating versions that are 50% and 75% of the original height (Fig. 4, 
middle row). We explore the effect of two visual interventions: a y-axis 
that scales along with its PDF (Fig. 1, center) and lines demarcating ±1 
and ±2 standard deviations (SDs) from the mean (Fig. 1, right). We 
hypothesized that the y-axis condition would further indicate vertical 
compression, possibly making the compression more salient and allow-
ing readers to notice that the presented plots are statistically identical. 
Because the SD lines do not move as the heights of their plots are 
compressed, we hypothesized that these SD annotations may make it 
easier to notice the x-axis positioning of plots are statistically identical. 
To control for effects related to the visual location of the plots, we 

2https://osf.io/eu2th 

Fig. 4: Within subjects conditions in Experiment 1. Top row: Normal PDF 
plots with SDs of 5, 7, and 9. Middle row: scaling of 100% (equal area 
and height), 75%, and 50%. Bottom row: positions of compressed PDF 
plot on the top and bottom or left and right, depending on stacking. 

counterbalanced the composition (horizontal vs vertical stacking) and 
the position of the scaled plots as shown in Fig. 4’s bottom row. 

3.1.3 Experimental Design 
We utilized a 3 (Scaling: 100% vs 75% vs 50%) x 3 (Visual Inter-
vention: No Intervention vs Y-axis vs SDAnnotations) x 2 (Stacking: 
Horizontal vs Vertical) x 2 (Position of compressed PDF: Top/Left 
vs Bottom/Right) x 3 (SD: 5, 7, 9) mixed-subjects design. This de-
sign results in 15 graph combinations (3 with equally scaled plots and 
12 with differently scaled PDF plots). The between-subject variables 
were Stacking—whether compared plots were horizontally or verti-
cally faceted—and Visual Intervention—whether plots had a scaled 
y-axis, SD annotations, or no visual intervention—making six par-
ticipant groups. The within-subject variable of interest was vertical 
Scaling, which varied the difference in height between compared PDF 
plots, either asking participants to compare two plots with equal scaling 
(100%), one plot that was scaled to 75% of the height of the other, or 
one plot that was scaled to 50% of the height of the other. 

We included Position as a within-subject manipulation control for 
where the scaled plot was located. Thus, we ensured that the scaled 
graph occurred in all four locations (top, bottom, left, right). We 
included three standard deviations (SD=5, SD=7, and SD=9) to increase 
the number of trials and ensure test-retest reliability. We did not have 
predictions for Position or SD and considered these covariates in our 
analysis. Prior to this experiment, we ran a series of pilot studies to 
confrm question legibility and inform a power analysis to determine 
sample size. The pilot data inform our preregistration. 

3.1.4 Participants 
In our pilot data, we observed a large effect in which participants 
were more likely to incorrectly compare PDF plots with unequal pixel 
areas. However, we anticipated a more conservative effect size for the 
visualization interventions, falling within the range of small to medium, 
according to Cohen’s guidelines [7]. We utilized the pwr package in 
R to determine the required sample size by specifying six degrees of 
freedom, a signifcance level of 0.05, a desired power of 0.8, and f2 
= 0.135 [5, 43]. This analysis indicated that we need a sample size of 
approximately 100 participants per between-subject group. 

We recruited participants via the online platform Prolifc.com. Par-
ticipants were all above the age of 18, currently residing in the U.S., 
self-reported as fuent in English, had an approval rate ≥ 98% on Pro-
lifc, had not participated in any of our pilot studies, and used desktop 
displays to complete the study. 

We crowdsourced our participants so we could examine whether 
the general public has diffculty interpreting PDF plots with different 
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modifcations. This study primarily involves perceptual judgment, 
which is why we felt it was appropriate to use participants from the 
general public to examine this principle. Further, in our experiment we 
employ a scenario from [20], which crowdsourced its participants. It 
is possible that more educated participants may not exhibit the same 
biases, and future research should examine the relationship between 
statistical knowledge and the results observed in this study. 

3.2 Procedure 

Participants completed Experiment 1 online via Qualtrics [8] on their 
personal machines. After giving IRB-approved consent to participate 
in the study, if participants successfully completed an attention check, 
they were asked to “please make [their] screen window as large as 
possible." Next, participants were shown the defnition of a solute and 
provided with a scenario in which scientists measured the concentration 
of samples of sea water and generated corresponding plots. We adopted 
this scenario from previous research on how a general audience inter-
prets probability distributions through HOPs [20]. Participants were 
then shown an example PDF plot with basic "how-to-read" instructions. 
They then answered 15 multiple-choice questions, one about each pair 
of charts shown, which were presented in a randomized order. Each 
of these multiple choice questions asked participants, "Which solute, 
if either, has a higher probability of being present at X or more ppm 
in the sampled sea water?". The threshold X ppm was in the same 
position across all PDF plots (at 130ppm as shown in Fig. 1) but varied 
in actual number depending on the x-axis labeling of the stimuli. All 
pairs of PDFs were statistically identical, so the correct answer to all 
multiple-choice questions was that Solute A and B have the same 
probability. We selected this task to investigate if a scaling-related bias 
occurs; the task requires readers to consider the peaks of PDF plots, 
which are affected by vertical scaling. This task is not representative of 
all PDF plot use cases, nor is it a quintessential use case. 

Following the experiment, participants completed a short graph 
literacy test [35], and fnally answered demographic questions. The full 
survey is available in our Supplemental Materials. 

3.2.1 Analysis 
Our preregistered analysis3 consists of several binomial Bayesian mod-
els. Two of the preregistered models investigate participants’ strategy– 
whether participants were more likely to report taller or shorter PDF 
plots as showing a higher cumulative probability. Across all conditions, 
these models show that participants were much more likely to indicate 
that taller plots depicted higher cumulative probabilities. Although 
useful for considering perceptual tactics, we focus this paper on the 
more complex results stemming from our model of binary accuracy. 
We include the strategy models in our Supplemental Materials. 

Below, we focus on the analysis for evaluating Experiment 1’s accu-
racy across variables. To do so, we utilize the R packages tidyverse v. 
2.0.0 for data processing [54], brms v. 2.20.4 for Bayesian modeling [4], 
and tidybayes v. 3.0.6 for data processing and visualization [27, 43]. 

We assess the amount of variance in binary correctness explained 
by the interaction between Scaling and Visual Interventions, as well as 
their lower-order terms (levels of each variable described in Sec. 3.1.3). 
Additionally, we account for the variance explained by Stacking, Posi-
tion, Graph Literacy, and SD in the following model: 

BinaryCorrectness ∼ Scaling ×Visual Interventions 
+ Stacking + Position (1) 
+ Graph Literacy + SD +(1|ID). 

We evaluate correctness with a response of "A and B have the same 
probability" coded as 1 and all other responses coded as 0. Our model 
specifed an interaction term between Scaling and Intervention so that 
we could test all of Experiment 1’s hypotheses (H1 - H3). We include 
Stacking, Position, Graph Literacy, and SD as covariates to account for 
their potential meaningful effect on our effects of interest. 

3https://osf.io/eu2th 

Fig. 5: Bayesian posteriors of accuracy as determined by scaling of PDF 
plots (rows) and visual interventions (colors). 

For all models, we include random intercepts for participants. Our 
model specifcations include uninformative priors centered at 0, with a 
standard deviation of 2.5. Our preregistered model originally included 
priors center at .5, which we corrected here. To assess the impact 
of an effect, we utilize 95% credible intervals, considering predictors 
with credible intervals excluding zero as having a reliable effect on 
participants’ judgments. Additionally, for all models, we analyze results 
including and excluding participants who fail to pass the attention 
check. We preregistered a possible exclusion of these participants, if a 
sensitivity analysis indicates they signifcantly skew results. 

3.3 Results 

3.3.1 Participants 
We collected a total of 600 participants (n = 100 per between-subject 
condition). 297 were female, 290 male, 11 nonbinary, and 2 opted 
not to say. The median age was 38.5 years (mean = 40.4, SD = 12.9), 
and the median short graph literacy score was 2 out of 4 (mean = 2.3, 
SD = 1.1). The median survey completion time was 8 minutes and 46 
seconds, making the average compensation $13.58/hr. 

3.3.2 Binary Correctness 
Examining H1. To examine if including a y-axis meaningfully de-
creases the number of participants that incorrectly interpret differently 
scaled PDF plots, we analyzed the accuracy of participant responses 
using Eq. (1). We computed this model with and without participants 
who failed an attention check and found no marked differences between 
the groups. Below we report the results of the entire sample for a more 
conservative statistical analysis. 

Our model for Binary Correctness reveals interactions between all 
of the Scaling and Visual Intervention conditions. See Fig. 5 for a 
visual description of posteriors. Overall, the results reveal that irregular 
vertical scaling drastically decreases binary accuracy, which can be 
mitigated by the y-axis condition. 

To investigate the model’s interactions, we change its referents to 
each of the Scaling and Visual Intervention conditions, as is recom-
mended to examine interaction effects [2]. These analyses reveal that 
the interactions are driven by two distinctly different relationships be-
tween Visual Interventions and Scaling. The model outputs for these 
comparisons at each level of Scaling are shown in Tab. 1. Firstly, as 
depicted in the top row of Fig. 5, each visualization condition has a high 
level of accuracy when comparing two distributions of equal area (100% 
scaling). Further, there is no evidence for a difference between the no 
intervention condition and the y-axis scale (see Tab. 1 frst row). How-
ever, there is a meaningful difference between the SD annotation and 
y-axis, and SD annotation and no intervention conditions (second and 
third rows of Tab. 1). Fig. 5 is annotated with these results. In contrast, 
the response patterns when the distributions were not equally scaled 
(75% and 50%) are drastically different. For both the 75% and 50% 
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Scaling 
Intervention 
Comparison Est. l-95% CI u-95% CI 

100% Y-axis x None 0.02 -0.53 0.56 
100% Y-axis x SD Annot. 1.34 0.75 1.92 
100% SD Annot. x None -1.19 -1.76 -0.61 
75% Y-axis x None 
75% Y-axis x SD Annot. -2.81 -3.33 -2.31 
75% SD Annot. x None -0.13 -0.66 0.40 

-2.89 -3.40 -2.40 

50% Y-axis x None -3.67 -4.23 -3.12 
50% Y-axis x SD Annot. -3.34 -3.89 -2.80 
50% SD Annot. x None -0.42 -1.03 0.16 

Table 1: Breakdown of interaction effects in Model 1 (Binary Correctness) 
across scaling levels. Rows compare visual intervention conditions at 
three scaling levels and show 95% credible intervals in log odds. Darker 
cell backgrounds indicate stronger effects. 

Scaling conditions, the y-axis intervention’s accuracy was substantially 
higher than that of the other two visual interventions. Moreover, no 
evidence for differences was detected between the SD annotations and 
the no intervention conditions within the 75% or 50% scaling contexts. 
We detail the direct comparisons in Tab. 1 and annotate them in Fig. 5. 
The improvement in accuracy among participants reviewing PDF plots 
with a y-axis in the 75% and 50% conditions provides evidence for 
H1. This enhancement in performance validates the utility of y-axes in 
PDF plots under specifc scaling conditions. 

Examining H2. To examine if adding vertical lines to indicate 
standard deviations would improve comparison of differently scaled 
PDF plots, we can look at the direct comparisons in Tab. 1 (rows 6 
and 9). For both 75% and 50% conditions, we fnd no meaningful 
difference between the SD annotation condition and no intervention. 
Interestingly, for the 100% condition, accuracy is higher for the SD 
annotation than the other two conditions. However, overall, we do not 
fnd suffcient evidence for H2, fnding that SD annotations do not 
consistently improve accuracy. It is worth reiterating SD annotation’s 
positive impact on correctness (top-right corner of Fig. 5), indicating a 
potential use for SD annotations when PDF plots are visually similar. 

Examining H3. To investigate whether SD annotations improve 
accuracy more than y-axes when comparing differently scaled plots, we 
can look to the direct comparisons in Tab. 1 (rows 5 and 8), which shows 
evidence for the effect that y-axes meaningfully improve accuracy over 
SD annotations for the relevant 75% and 50% scaling conditions. 
Therefore, we document no support for H3. 

Covariates. We observe no evidence for effects of the covariates 
Stacking or SD on participant accuracy in this model. We note the 
covariates Position and Graph Literacy account for a meaningful pro-
portion of variance in the model’s outcomes. All the effects we report 
control for the effect of these covariates. We describe some of the ef-
fects of Graph Literacy in Sec. 5.1, and the full model output detailing 
all the effects is in the supplemental materials. 

4 EXPERIMENT 2 

4.1 Methods 

The results from Experiment 1 reveal that, at a minimum, roughly 
50% of participants incorrectly deduced that vertically compressing 
PDF plots decreases the probability shown. Experiment 1 varies only 
vertical height, which in turn varies area; thus, its experimental design 
confounds pixel area and height. Additionally, Experiment 1 tests 
identical PDFs, which are unlikely to be irregularly scaled in practice. 
To explore the effects of compressing PDF plots in a more realistic 
layout, we preregistered Experiment 24. 

In this experiment, we asked participants to compare the cumulative 
probabilities of PDF plots with different SDs, but which have been 
scaled to occupy the same pixel height (i.e., equal-height PDF plots, 
as shown in Fig. 6). We also test this comparison against a control in 
which participants compare uncompressed, "equal-area" PDF plots with 
different SDs, and, thus, different heights. Experiment 2’s comparison 
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investigates a design decision that may occur when chart creators are 
keen to save space and do not want to allocate a great deal of vertical 
white space to charts with small SDs, as illustrated in Fig. 2 (c). 

4.1.1 Investigative Questions & Hypotheses 
Motivated by our results from Experiment 1, we investigated if partici-
pants may be confating pixel area with probability. To do so, we varied 
the SDs of compared PDFs (1 SD & 5 SD, 2 SD & 5 SD, 3SD & 5 
SD, 4 SD & 5 SD, 5 SD & 5 SD – see Fig. 6) and hypothesized that 
(H4) participants would be more likely to incorrectly compare cumula-
tive probabilities of two PDFs when their plots had a large difference 
in SDs. We reasoned that PDF plots with larger differences in SDs 
would have larger differences in pixel area, potentially misleading more 
participants to incorrectly choose the visually larger plots. 

We tested the same visual interventions as in Experiment 1, which 
we again hypothesized (H5) would mitigate some of the inaccuracy 
from vertically compressing PDF plots to have equal-heights (Fig. 6, 
right columns). Although we saw only the y-axis intervention increase 
accuracy in Experiment 1, we reasoned that perhaps the SD annotations 
would prove more useful when comparing PDF plots of varying SDs. 

Lastly, we included a control equal-area condition in which we 
asked participants to compare PDF plots with different SDs that were 
proportionally scaled to occupy the same pixel area, as is traditional 
practice when visualizing PDFs (Fig. 6, equal area). We hypothesized 
that (H6) participants would be more likely to accurately compare 
cumulative probabilities when PDF plots occupied equal areas. 

4.1.2 Stimuli 
Experiment 2 compares PDF plots with varying SDs. We created all 
plots using similar methods and tools to Experiment 1. We detail the 
reasoning for each stimulus in Sec. 4.1.1. 

4.1.3 Experimental Design 
We utilized a 4 (Visual Intervention: Equal-area, Equal-height, Y-axis, 
SD Annotations) x 5 (SD Pairs: 1-5 SD, 2-5 SD, 3-5 SD, 4-5 SD, 5-5 
SD ) x 2 (Position of smaller-SD PDF: Top, Bottom) mixed-subjects 
design. Visual Intervention was Experiment 2’s only between-subjects 
condition. SD Pairs and Position were within-subjects conditions. In 
Experiment 1, we found no meaningful effect from stacking plots 
vertically or horizontally, so in Experiment 2, we tested only vertically 
stacked plots. Vertical stacking is more likely to result in occlusion 
from tall, low-SD PDFs overlapping (see Fig. 2), and thus is more likely 
to motivate designers to compress plot heights. This design resulted in 
9 graph combinations (4 SD Pairs with Position = Top, 4 SD Pairs with 
Position = Bottom, and 1 SD Pair = 5-5 SD with Position = N/A). 

4.1.4 Participants 
We used the effect size and power analysis from Experiment 1 to inform 
our preregistered sample size of 100 participants per between-subjects 
group. We recruited participants using the same criteria as in Sec. 3.1.4. 

4.1.5 Procedure 
Experiment 2 mimicked the procedure of Experiment 1. We provided 
all the same instructional information and added additional labeling 
to the SD annotation condition to indicate its statistical implications. 
To accommodate the PDF plots in Experiment 2, we also asked a 
slightly different cumulative probability question. We asked partici-
pants, "Which solute, if either, has a higher probability of being present 
at X or less ppm in the sampled seawater?" As in Experiment 1, the 
threshold X was set at the same position across all plots–at x = 20 in 
Fig. 6 plots–but varied in number depending on x-axis labeling. 

Participants were again instructed to select one of three possible 
multiple choices: "Solute A has a higher probability", "Solute B has 
a higher probability", or "Solute A and B have the same probability". 
In almost all pairs of plots, the PDF with the lower SD was the correct 
answer. This distribution had more probability concentrated around its 
mode. For the stimulus with the SD Pair 5-5 SD, the correct answer 
was that the plots show the same probability. Experiment 2 participants 
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Fig. 6: Visual Intervention conditions shown between subjects. SDs vary from 1 at the top of each column to 5 at the bottom, and each pair of SDs is 
compared within subjects. 

Interaction Est l-CI u-CI 

5/5 v 4/5 x Equal-area v Equal-height -2.27 -3.20 -1.36 
5/5 v 3/5 x Equal-area v Equal-height -1.65 -2.57 -0.75 
5/5 v 2/5 x Equal-area v Equal-height -1.61 -2.51 -0.70 
5/5 v 1/5 x Equal-area v Equal-height -1.62 -2.51 -0.73 
5/5 v 4/5 x Equal-area v Y-axis -1.17 -2.07 -0.29 
5/5 v 3/5 x Equal-area v Y-axis -0.72 -1.61 0.14 
5/5 v 2/5 x Equal-area v Y-axis -0.75 -1.63 0.11 
5/5 v 1/5 x Equal-area v Y-axis -1.15 -2.06 -0.27 
5/5 v 4/5 x Equal-area v SD Lines -1.97 -2.89 -1.05 
5/5 v 3/5 x Equal-area v SD Lines -1.85 -2.77 -0.95 
5/5 v 2/5 x Equal-area v SD Lines -1.94 -2.86 -1.05 
5/5 v 1/5 x Equal-area v SD Lines -1.75 -2.66 -0.85 

Table 2: Interactions for referents 5-5 SD Pair & Equal Area from Model 2. 
Rows show 95% credible intervals in log odds. Darker cell backgrounds 
indicate stronger effects. 

flled out the same postexperiment information as those in Experiment 1. 
The full survey is available in our Supplemental Materials. 

4.1.6 Analysis 
We preregistered a binomial Bayesian model to test our hypotheses in 
Experiment 25. Using the same packages and logic as in Experiment 1, 
we assess Binary Correctness as follows: 

BinaryCorrectness ∼Visual Interventions × SD Pairs 
+ Position + Graph Literacy +(1|ID). 

(2) 

This model specifes an interaction term between Visual Intervention 
and SD Pairs so that we could test all of Experiment 2’s hypotheses (H4 
- H6). We include Position and Graph Literacy as covariates to control 
for their potential meaningful effect on our effects of interest. We code 
correct answers (as described in Sec. 4.1.5) as 1 and incorrect answers 
as 0. We also include participants as random intercepts and specify 
the same priors and credible intervals as in Experiment 1. We evaluate 
this model with the full sample of participants and with a population 
that excludes participants who failed a simple attention check, again 
preregistering a possible exclusion criteria if participants who fail the 
attention check meaningfully impact results. 
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4.2 Results 

4.2.1 Participants 
We collected a total of 401 participants (n = 101 for SD Annotation 
intervention, n = 100 for each other between-subject conditions). 195 
were female, 197 male, 7 nonbinary, and 2 opted not to say. The 
median age was 37.0 years (mean = 38.8 years, SD = 13.8 years), and 
the median short graph literacy score was 3 out of 4 (mean = 2.4, SD 
= 1.1). The median survey completion time was 8 minutes and 31 
seconds, making the average compensation $10.32/hr. 

4.2.2 Binary Correctness 
We investigate our hypotheses using our Bayesian model, setting equal 
area as the referent for Visual Interventions and 5-5 SD as the referent 
for SD pair. We see very few differences between the model results 
using data from the entire tested population and those using data from 
just participants who pass the attention check. In this paper, we discuss 
only the more statistically conservative results of the entire population, 
but include the second model in our Supplemental Materials. 

Examining H4. To evaluate whether participants’ accuracy declines 
as SD disparity increases between compared plots, we employ Eq. (2). 
This analysis unveils numerous meaningful interactions between visual 
interventions and specifc SD pairs, as detailed in Tab. 2. To decode 
these interactions, we systematically adjusted the model’s referents to 
each visual intervention and SD pair condition combination. These 
adjustments allowed us to examine participants’ accuracy by assessing 
the infuence of varying SD pairs across visual interventions. 

Fig. 7 illustrates a uniform increase in accuracy when transition-
ing from SD pairs 4-5 to 1-5. Our analysis reveals that this trend 
is consistently observed across all visual interventions–specifcally, a 
meaningful difference in accuracy occurs between comparisons sep-
arated by two levels. For instance, the accuracy for SD pairs 4-5 is 
smaller than that of 2-5 and 1-5. Similarly, the accuracy of 1-5 was 
meaningfully larger than that of 3-5, with the sole exception of com-
parisons with y-axes. The comparisons between the SD pairs for each 
visual intervention are documented in Tab. 3, and those with credible 
intervals that do not include zero are annotated at the bottom of Fig. 7. 

These empirical fndings substantiated a meaningful effect, albeit in 
a direction opposite to that which we originally hypothesized, thereby 
providing no evidence for H4. Interestingly, we consistently fnd 
that participants’ accuracy improves when there are larger differences 
between the standard deviations of the two PDF plots they are compar-
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ing. Future work stands to beneft from investigating the relationship 
between PDF’s SDs and their accurate comparison. 

Examining H5. To examine if the visual interventions we tested 
improve accuracy, we look at the comparisons in our model between 
the visualization types that we revealed in the previous interaction 
examination. Firstly, we observe no evidence for a main effect between 
visual interventions at the level of our referent SD Pair (5-5 SD). As 
the top row of Fig. 7 shows, accuracy is relatively high for this SD pair 
condition, with only marginal differences between visual interventions. 

Secondly, we observed a noteworthy pattern in our analysis of SD 
pairings that are not equivalent (4-5 SD through 1-5 SD): the equal-
area plots consistently outperformed most other visual interventions. 
Specifcally, for the SD pairs (1-5 SD) and (4-5 SD), the equal-area 
plots yielded superior accuracy compared to all other visual interven-
tions. However, for SD pairs 2-5 SD and 3-5 SD, only negligible 
differences between the equal-area visualization and the y-axis inter-
vention were detected. We annotate these effects in Fig. 7 and show the 
meaningful comparisons in Tab. 4. 

Further examination of Fig. 7 reveals a consistent ranking among 
the visualizations for SD pairs ranging from 1-5 SD to 4-5 SD. Here, 
the equal-height plots typically underperformed or were comparable 
to SD annotations, followed by the y-axis condition, and fnally the 
equal-area visualizations. Focusing on the equal-height PDF plots, 
we fnd that at the level of 4-5 SD, it performs meaningfully worse 
than the y-axis and equal-area interventions. For 3-5 SD, 2-5 SD, 
and 1-5 SD, the equal-height plots perform only markedly worse than 
the equal-area plots. Consequently, we fnd some support for H5, 
only within the context of y-axis performance outperforming the equal-
height plot in some cases. In other cases, the y-axis condition performs 
as well as the equal-area plot. We also do not fnd suffcient evidence 
for H5 in the context of SD annotations, which did not show sizable 
improvement from equal-height plots. 

Examining H6. We can use the previously described analysis to 
also examine if equal-area PDF plots increase accuracy over equal-
height PDF plots when the SD pairs are not equal (i.e., not 5-5 SD). We 
fnd that the equal-area visual intervention meaningfully improves the 
likelihood of accuracy compared to all of the other visual interventions 
for SD pairs 1-5 SD and 4-5 SD. Further, we fnd that equal-area plots 
meaningfully improve the likelihood of accuracy over equal-height and 
SD annotations for 2-5 SD and 3-5 SD. These conclusions provide 
evidence for H6, fnding that equal-area versions of PDF plots produce 
the best performance out of the visual interventions we tested. 

Covariates. We observe no evidence for effects of the covariates 
Position or Graph Literacy in Model 2. 

5 DISCUSSION 

In this paper, we provide empirical evidence of the impact of irregu-
lar vertical compression on PDF comparisons. Although nonuniform 
vertical scaling of visualizations is generally thought to mislead read-
ers, previous work on vertical scaling has examined only line and bar 
charts [6, 9, 37, 48]. Similarly, previous work on area comparisons is 
largely reserved to ovals and polygons [1,12,32,34,47,60]. We explore 
a manipulation that is not uncommon in PDF visualizations–as can be 
seen by its implementation into presets in popular statistical plotting 
packages [14, 28]–and highlight its potential to mislead readers, along 
with some mitigating tactics. 

The two experiments we present in this paper vary the width and 
height of PDF plots, not only providing general design guidance, but 
also generating insight about the implications of mapping probability 
to area. Our fndings, although specifc to compressing PDF plots, can 
shed light on the mental strategies that lay audiences use to make sense 
of area-encoded probability visualizations. For example, we present 
strong evidence from both experiments that PDF plots with equal areas 
are more consistently correctly interpreted than PDF plots with equal 
heights or other vertical compression. These patterns could indicate 
that, even when informed of the unity of each PDF plot, individuals 
rely on single area comparisons to make judgments about probabili-
ties instead of the mathematically correct strategy of proportional area 
judgments, as depicted in Fig. 3, right. Future research should investi-

Fig. 7: Bayesian posteriors of accuracy as determined by SD Pairs, and 
Visual Interventions (colors). Rectangular connectors indicate compar-
isons where the credible interval do not include zero within and across 
SD Pairs and Visual Interventions. 

gate whether this fnding is attributable to readers’ failure to recognize 
PDF plots as continuous part-to-whole visualizations, to the increased 
diffculty of single area judgments compared to two-part proportional 
area judgments, or to a combination of both factors. Regardless of 
underlying reasons, this work provides key evidence of the complicated 
nature of interpreting and comparing PDF plots. 

5.1 Implications for Visualization Design 

In practice, probability densities that need to be visualized will most 
likely not share identical means and standard deviations. Experiment 2 
demonstrates how equal-height PDF plots are susceptible to incor-
rect comparison and to what degree y-axes and SD annotations can 
improve comparison. We fnd that, regardless of visual intervention, 
equal-area PDF plots lead to more accurate probability compar-
isons than equal-height PDF plots. Frustratingly, this recommendation 
can require large amounts of dedicated space, or can result in visual 
occlusion from PDF plot overlap. In some cases, the overlap may not 
seem inhibiting, although the range of effects from slight to extreme 
PDF plot overlap, like that in ridgeline plots, is yet to be explored. 

If visualization designers are compelled to compress PDF plot 
heights, which our experiments indicate is inadvisable, adding a y-axis 
could mitigate some miscomprehension. This signal was especially 
strong in Experiment 1, in which we found an effect of graph literacy. 
To understand the impact of graph literacy on visual interventions, we 
conducted an exploratory analysis by adding an interaction term be-
tween visual intervention and graph literacy in Experiment 1. This 
analysis revealed that the infuence of graph literacy becomes espe-



SD Pair Comparison Intervention Est. l-95%CI u-95%CI 

1-5 v 3-5 Equal-area -0.77 -1.29 -0.28 
1-5 v 4-5 Equal-area -1.14 -1.64 -0.64 
2-5 v 4-5 Equal-area -0.77 -1.27 -0.27 
3-5 v 5-5 Equal-area 1.02 0.39 1.66 
4-5 v 5-5 Equal-area 1.42 0.80 2.06 
1-5 v 3-5 Equal-height -0.87 -1.36 -0.39 
1-5 v 4-5 Equal-height -1.85 -2.35 -1.35 
1-5 v 5-5 Equal-height 2.02 1.34 2.73 
2-5 v 3-5 Equal-height -0.50 -0.98 -0.01 
2-5 v 4-5 Equal-height -1.48 -1.98 -0.98 
2-5 v 5-5 Equal-height 2.38 1.71 3.08 
3-5 v 4-5 Equal-height -1.01 -1.52 -0.49 
3-5 v 5-5 Equal-height 2.85 2.17 3.58 
4-5 v 5-5 Equal-height 3.72 3.02 4.43 
1-5 v 4-5 Y-axis -1.24 -1.72 -0.77 
1-5 v 5-5 Y-axis 1.51 0.86 2.18 
2-5 v 4-5 Y-axis -1.18 -1.67 -0.70 
2-5 v 5-5 Y-axis 1.58 0.93 2.26 
3-5 v 4-5 Y-axis -0.79 -1.26 -0.31 
3-5 v 5-5 Y-axis 1.97 1.31 2.66 
4-5 v 5-5 Y-axis 2.72 2.04 3.41 
1-5 v 2-5 SD Annot. -0.60 -1.08 -0.13 
1-5 v 3-5 SD Annot. -0.94 -1.42 -0.47 
1-5 v 4-5 SD Annot. -1.44 -1.91 -0.95 
1-5 v 5-5 SD Annot. 2.15 1.44 2.86 
2-5 v 4-5 SD Annot. -0.88 -1.37 -0.39 
2-5 v 5-5 SD Annot. 2.68 1.97 3.43 
3-5 v 4-5 SD Annot. -0.53 -1.02 -0.05 
3-5 v 5-5 SD Annot. 3.04 2.34 3.80 
4-5 v 5-5 SD Annot. 3.52 2.80 4.28 

Table 3: SD comparisons with 95% credible intervals that do not include 
zero from testing H4, broken down by Visual Intervention. The frst SD 
condition listed in each row is the referent. Units are in log odds and 
darker cells indicate stronger effects. 

cially impactful for participants when a y-axis is present, as shown in 
Fig. 8. This fnding implies that for audiences with a high level of graph 
literacy, adding y-axes to compressed PDF plots could mitigate misun-
derstandings to some degree. However, considering the more minimal 
impact of the y-axis intervention in Experiment 2, our results about 
its usefulness for a general audience are mixed. Also, a background 
grid may function similarly to y-axes by making visual compression 
more obvious, but the effects of other visual interventions still need to 
be explored. Finally, we fnd little evidence that standard deviation 
annotations are useful. 

Beyond the visual interventions that we discuss in this paper, design-
ers could also encode densities with a different mark type. For example, 
distributions with large SDs may be too short to be visible when uni-
formly scaled along with other PDF plots. In these cases, designers 
may consider visualizations that do not encode probability with height, 
such as gradient plots [10] or dual histogram intervals [58]. Although 
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Fig. 8: Conditional effects for graph literacy in Exp. 1. Darker lines show 
means, color bands show 95% CIs. 

Visual Intervention 
Comparison SD Pair Est. l-95%CI u-95%CI 

Equal-area v Equal-height 1-5 -0.97 -1.68 -0.25 
Equal-area v Equal-height 2-5 -0.99 -1.70 -0.28 
Equal-area v Equal-height 3-5 -1.05 -1.77 -0.36 
Equal-area v Equal-height 4-5 -1.62 -2.33 -0.94 
Equal-area v Y-axis 1-5 -0.76 -1.44 -0.06 
Equal-area v Y-axis 4-5 -0.80 -1.49 -0.13 
Equal-area v SD Annot. 1-5 -0.87 -1.59 -0.17 
Equal-area v SD Annot. 2-5 -1.09 -1.79 -0.41 
Equal-area v SD Annot. 3-5 -1.03 -1.74 -0.34 
Equal-area v SD Annot. 4-5 -1.11 -1.81 -0.44 

Table 4: Breakdown of meaningful interaction effects in Model 2 by SD 
Pair. Rows compare Visual Interventions per SD Pair and show 95% 
credible intervals in log odds. Darker cells indicate stronger effects. 

mark types that do not encode cumulative probability with area are 
likely unaffected by the misconceptions highlighted in this paper, we 
caution readers that they may exhibit other unknown misconceptions. 

5.2 Limitations and Future Work 

We limit the scope of this investigation to normal probability distribu-
tions, which is not the entire set of PDFs that science communicators 
might need to present. We do this in part because non-normal PDFs 
can be challenging to read [41], perhaps because they do not adhere 
to symmetry or well-known percentage-to-SD ratios. In the future, it 
would be worthwhile to investigate reader comparison of non-normal 
and nonsymmetric PDF plots. However, given that these plots are even 
more challenging to read [41], it is possible that additional errors may 
arise. The results we present here act as preliminary motivation for fur-
ther investigating how manipulations of distributional area plots affect 
reader comprehension. The studies we present indicate a difference 
in accuracy dependent on vertical scaling, but do not advise on the 
mental strategies that produce this difference. Future work is needed to 
investigate the mechanisms behind this observed loss of accuracy. 

Additionally, the two experiments we present hold many variables 
constant, leading to cleaner signals but reduced ecological validity. It 
would be useful to evaluate how readers compare more than two PDF 
plots, especially those that are aligned along a single x-axis, like we use 
to communicate our results in the top of Fig. 7. Investigating vertically 
compressed PDFs across multipage reports could also lend interesting, 
ecologically valid fndings to this body of research. 

We also have yet to explore how PDF plots’ height-to-width ratio 
impacts the perception of them individually. Future work could ask, 
‘How does perceived certainty change as the height-to-width ratio of 
a singular PDF plot shifts?’ There may be an optimal height-to-width 
ratio for PDF curves that has yet to be uncovered. Lastly, future work 
could build on our experimental design by evaluating analogous manip-
ulations to raincloud, ridgeline, violin, and quantile dot plots, as well 
as other visualizations that encode probability via area. 

6 CONCLUSION 

In this paper, we contribute evidence of the impact of compressing PDF 
curves on reader comprehension. Specifcally, we fnd that equal-area 
PDF plots consistently result in more accurate comparisons than their 
equal-height counterparts. We also test potential visual interventions 
to improve the accuracy of comparing differently compressed PDF 
plots. In some cases, we fnd adding y-axes can improve the accuracy 
of comparisons of compressed plots. In most cases, we fnd adding 
standard deviation annotations impacts the accuracy of comparisons 
very little. Our experimental data also informs base standards for the 
accuracy of readers’ comparisons of cumulative probabilities in PDF 
plots. We fnd that when two PDF plots are visually and statistically 
identical, a general audience (graph literacy mean = 2.4 of 4, SD = 1.1) 
can accurately compare cumulative probabilities around 80% of the 
time. This number drops when PDF plots have different SDs or verti-
cally scaling. Our fndings inform best practices for visualizing PDFs 
and provide motivation for future work exploring PDF comprehension. 



SUPPLEMENTAL MATERIALS 

All supplemental materials are available on OSF at https://osf.io/7k5un/, 
released under a CC BY 4.0 license. In particular, they include 
(1) Exp1 > Exp_1_Survey: Qualtrics .QSF and .PDF versions of Exper-
iment 1’s survey 
(2) Exp2 > Exp_1_Survey: Qualtrics .QSF and .PDF versions of Exper-
iment 2’s survey 
(3) Exp1 > Exp_1_Analysis:Anonymous data, analysis fles, and mod-
els for Experiment 1 (.pdf, html, and .Rproj fles) 
(4) Exp2 > Exp_2_Analysis: Anonymous data, analysis fles, and mod-
els for Experiment 2 (.pdf, html, and .Rproj fles) 
(5) stimuli.zip: all stimuli 
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