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Fig. 1: Cell2Cell is a web-based visual analytics system to analyze interactions of cells in 3D biological tissue imaging data. a)
Multi-volume viewer using pseudo-colors. The embedded interaction graph displays cells (nodes) and their interactions (edges). b) Cell
interaction profiles show the spatial intensity distribution of protein markers between cells. c) Multiple interactions can be compared
channel by channel. d) Heatmaps (overview) and line charts (details) can be toggled on demand. e) Radial polarization charts enable
cell-centric analysis. f) The side panel allows users to customize color settings and (de)activate channels.

Abstract— We present Cell2Cell , a novel visual analytics approach for quantifying and visualizing networks of cell-cell interactions in
three-dimensional (3D) multi-channel cancerous tissue data. By analyzing cellular interactions, biomedical experts can gain a more
accurate understanding of the intricate relationships between cancer and immune cells. Recent methods have focused on inferring
interaction based on the proximity of cells in low-resolution 2D multi-channel imaging data. By contrast, we analyze cell interactions by
quantifying the presence and levels of specific proteins within a tissue sample (protein expressions) extracted from high-resolution
3D multi-channel volume data. Such analyses have a strong exploratory nature and require a tight integration of domain experts in
the analysis loop to leverage their deep knowledge. We propose two complementary semi-automated approaches to cope with the
increasing size and complexity of the data interactively: On the one hand, we interpret cell-to-cell interactions as edges in a cell graph
and analyze the image signal (protein expressions) along those edges, using spatial as well as abstract visualizations. Complementary,
we propose a cell-centered approach, enabling scientists to visually analyze polarized distributions of proteins in three dimensions,
which also captures neighboring cells with biochemical and cell biological consequences. We evaluate our application in three case
studies, where biologists and medical experts use Cell2Cell to investigate tumor micro-environments to identify and quantify T-cell
activation in human tissue data. We confirmed that our tool can fully solve the use cases and enables a streamlined and detailed
analysis of cell-cell interactions.

Index Terms—Biomedical visualization, 3D multi-channel tissue data, Direct volume rendering, Quantitative analysis
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"Cells are the building blocks of life, from single-celled microbes
through to multi-cellular organisms" [39]. A better understanding
of how cells interact with each other is essential to explain a multi-
tude of biological processes, including disease mechanisms. Studying
such interaction patterns has garnered significant interest in cancer
research due to its potential to advance our understanding of immune
response and identify drug development and therapy opportunities. Im-
munotherapy focuses on targeting immune checkpoint proteins that
inhibit immune cells from identifying and killing cancer cells (see
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Fig. 2: Immune checkpoint proteins (illustration based on Marin-Acevedo
et al. [33]) can stimulate or inhibit immune cells from killing cancer
cells. Understanding these interactions and when they occur enables the
design of immunotherapies that block inhibitory checkpoints.

Fig. 2). Yet, therapy success highly depends on the patient’s immune
response and type of cancer, and more research is needed to find and
understand the role of checkpoint proteins in order to better target these
interactions and improve therapies.

To capture cellular interactions, biological tissues are first imaged
and digitized using high-throughput imaging technology. Highly multi-
plexed immunofluorescence (IF) imaging methods such as CyCIF [30]
successively apply multiple fluorescent antibodies (also called markers)
to the tissue. This makes protein expression visible, revealing infor-
mation about the cells’ functional state and organization. Interaction
between cells can then be statistically inferred based on the spatial po-
sition and proximity of cells [47]. To this date, most IF imaging data is
two-dimensional, and while covering a large tissue area, the resolution
per cell is low (a few pixels). Recent advances in IF microscopy [35],
however, have now enabled the imaging of three-dimensional datasets
with much higher (sub-cellular) resolution. Compared to a lower res-
olution and two-dimensional image, high-resolution 3D imaging can
capture the spatial distribution of proteins, i.e., their location and inten-
sity, around and between cells. Instead of inferring interaction based on
spatial proximity, interactions become directly measurable by tracing
protein expression values in 3D space, from cell-to-cell [35].

However, the lack of scalable and interpretable solutions renders
interaction analysis in such 3D data infeasible. This is due to two
challenges. Firstly, the analysis is exploratory, with many questions
being ill-defined. Much of the knowledge needed to interpret protein
distribution around and in between cells is exclusively internalized by
pathologists and cell biologists. They have developed a deep visual
understanding of human tissue and are skilled in identifying and verify-
ing disease hallmarks by eye [24]. Leveraging this knowledge affords
human-in-the-loop interfaces that visualize the data interactively in
real-time. Secondly, there is a scalability challenge: Manual (visual)
analysis is infeasible for larger data and widespread use. Even a small
number of cells can hold hundreds of interactions. For instance, 80
cells are involved in 200 interactions imaged with 32 protein markers.
Going through all of these interactions manually and toggling several
protein markers in an image analysis software is cumbersome and time-
consuming. Thus, there is a pressing need for pathology and oncology
to analyze and quantify cellular interaction more comprehensively and
efficiently. Few software tools currently exist to assist in this task, and
they rarely support combined visual and computational analysis.

To address this gap, we collaborated closely with domain experts
(medical doctors, systems immunologists, and computational biolo-
gists) to design a comprehensive visual and interactive system for
parameterizing, analyzing, and quantifying cell-to-cell interactions in
3D CyCIF image data (see Fig. 1) based on identified domain goals
and analysis tasks. Our work makes three main contributions:

(1) We designed a visual analysis workflow for cell interaction
analysis in multi-channel volume data, which we implemented in
Cell2Cell. (2) We present a novel graph-based method for quantify-
ing cell-to-cell interactions based on protein signal intensities in a
3D setting. Our approach goes beyond the traditional neighborhood-
based analysis, enabling domain experts to more accurately measure
the sub-cellular distribution of molecular signals resulting from cellular
interactions while incorporating expert knowledge to guide the process.
In this graph, cells are conceptualized as nodes and interactions as
edges connecting these nodes. We compute interaction profiles be-
tween two cells by tracing the surrounding protein expression along

the connecting edge. We incorporated comparative views to assess the
similarities and differences in interaction profiles across various sam-
ples, different cell types, or experimental conditions. (3) We propose a
cell-centered polarization analysis method to study the circular distri-
bution of protein markers around a cell. This allows analysts to gauge
how (un)equally protein markers are distributed in the surrounding
proximity, thereby indicating more nuanced behavior such as attractive
and repelling interaction phenomena. This also allows the user to get
an overview of potential interactions in the vicinity.

Finally, we assess our tool in three case studies involving domain
experts: We demonstrate that earlier manual use cases [35] are repro-
ducible in a fraction of the time required previously and show that
Cell2Cell greatly aids analysis scalability and interpretability.

2 RELATED WORK

In addition to dealing with multi-volume visualization aspects, we
review previous work on cell interactions and spatial feature extraction.
Since we are dealing with marker distributions, we also review related
work on comparing and visualizing multivariate and radial distributions.
Multi-Volume Visualization. Multi-volumetric imaging datasets con-
sist of multiple volumes that describe different properties of the same
spatial object. In medical datasets, different 3D imaging modalities [27]
or cyclic staining methods [30] result in different imaging channels
(volumes) that are then registered and combined into a multi-volume
dataset. In the biomedical domain, Agave [1], Napari [12], Voreen [15]
and ViV [32] are among the most recent open-source tools that sup-
port interactive multi-volume rendering of various formats. Yet, the
commercial sector tools like Imaris [2] and Arivis [20] are the most
commonly used. While Cell2Cell contributes a similar multi-volume
visualization implementation, its scientific novelty lies in the interac-
tive analysis and comparison of cellular interaction and polarization
patterns. We extend previous multi-volume visualizations to enable
such analyses by embedding a cell interaction graph into the volume.
Spatial Feature Extraction. Cell2Cell uses spatial features of cells
(i.e., the intensities of markers in and around a cell) to compute and dis-
play interaction profiles. The state-of-the-art approach for quantifying
cellular features in IF data is to compose a single-cell table that com-
prises one row per cell, with mean intensity values for each imaging
channel [41]. This originates from low-resolution 2D imaging where a
cell comprises a few pixels only, so information loss is minimal. For
higher-resolution 2D and 3D data, many approaches use shape descrip-
tors [28] that require a prior cell segmentation step. Ternes et al. [44]
employ variational auto-encoders (VAEs) to extract transform-invariant
biologically meaningful features from two-dimensional imaging data.
Johnson et al. [25] employ VAEs to learn cell and nuclear morphology
shapes and variations from multiplex 3D data. Their approach, how-
ever, requires segmented cells as input and many examples in a curated
training set. They then create a catalog of cell types and states. In
contrast, our approach does not need full cell segmentation and focuses
on interactions between pairs of cells. While auto-encoders effectively
capture features in multi-volume data, they are hard to interpret. In-
stead, our expert’s domain conventions are to compute a 1D spatial
intensity profile [35] that accumulates and aggregates a defined space
between cells, enabling interpretable analysis.
Visual Analysis of Cell Interactions. Histocat [40], Imacyte [43],
and Visinity [47] are visual interfaces to analyze cellular interaction
patterns in tissue imaging data of increasing scale. These approaches
compute interactions based on the distance between segmented cells.
Histocat and Visinity display interaction in image space by colored
cell outline overlays and outside of the image by node-link diagrams
and other plots. Imacyte proposes a glyph-based encoding of cellular
neighborhoods, including frequency, variation, and significance. All
these visualizations focus on inferred interaction networks. By con-
trast, with Cell2Cell, we visually display and analyze the real imaging
signal between cells. Like our approach, Barrio [45] investigates 3D
morphology and interactions between cell organelles in single-channel
electron microscopy data. However, Barrio focuses on visual compari-
son instead of ranking and grouping patterns computationally. Further,
the approach does not propose a solution for multi-channel data.
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Fig. 3: Expression pattern of 3 representative proteins (i.e., channels) out
of 28 channels in a CyCIF dataset. Staining of SOX10 (cyan) labels the
nuclei of tumor cells, and CD8A (magenta) labels the plasma membranes
of cytotoxic T lymphocytes associated with tumor killing. HLAA (yellow)
labels the plasma membranes of all cells. The 3D mult-volume rendering
provides a detailed spatial overview of tumor cell a and a T-cell b.

Visualization of Spherical and Radial Distributions. Several
works have addressed the visual display of spherical distributions.
Grundy et al. and Wilson et al. propose spherical histograms [21]
and orientation spheres [48], similar to Fritz et al. [16]. Our require-
ments are different because we focus on polarization and repelling of
signals with respect to the interaction space between cells only. This
allows us to use a more abstract visual encoding that displays such
distributions on a simpler and more pre-attentive radial chart instead
of a sphere. Draper et al. [14] survey radial charts. Our approach is
most similar to stacked radial area charts and star plots, as used by
Mörth et al. [34], but we use multiple circles to encode the multivariate
data features to ease comparison. We draw these charts on top of the
nodes in a network. Nobre et al. [36] summarize work on visualizing
such multivariate networks, and Gehlenborg et al. specifically review
interaction encodings in the biology domain [18]. Most network visu-
alizations are, however, non-spatial. More similar to our encoding is
work in the geographical domain [29,51], where temporal or directional
information is encoded in nodes of a geospatial network.

Visual Comparison of Multivariate Distributions. Gleicher et
al. [19] propose a taxonomy for visual comparison with three fundamen-
tal visual designs: juxtaposition, superposition, and explicit encoding.
Our approach leverages superposition and juxtaposition to compare cell
interaction profiles. Both Gleicher [19] and Yi et al. [50] propose inter-
action strategies for such visual comparison techniques, including inter-
active highlighting (Yi’s connect category) and reordering/re-arranging
(reconfiguring) objects. We use both techniques to emphasize similar
marker profiles across pairs of cells (1) and to compare marker profiles
to a selected reference interaction (2). However, Cell2Cell is specific
to comparing multivariate line (marker) profiles. Javed et al. [23] study
graphical perception of multiple time series visualized as line graphs.
They found that visualizations using superposition and explicit encod-
ing are usually better for comparing short-line graphs. On the other
hand, juxtaposition approaches are better suited for comparing long
time series. As we compare within and across pairs of cells, we use
both techniques, following the concept by Yi et al. [50] to combine
multiple visual comparison techniques to solve a specific problem.

In a nutshell, there are a small number of web-based multi-volume
visualization tools, of which even fewer handle single-cell tissue data.
Moreover, most existing cell-cell interaction analysis approaches are
based on proximity assumptions in low-res 2D data. Those that concern
3D data do not offer explorative visual environments and often require
segmented data. By contrast, Cell2Cell supports protein (intensity)-
based interaction analysis for unsegmented high-res 3D data.

3 BACKGROUND - 3D MULTICHANNEL TISSUE DATA

Cyclic Immunofluorescence (CyCIF) [30] microscopy imaging mea-
sures the distribution of proteins in biological tissue. By successively
staining the tissue with multiple fluorescent antibodies (also called
markers), this method outputs a set of 2D images (image channels),
where each channel depicts the intensity of a certain protein marker.

Each channel (see Fig. 3 showing 3 such channels) provides informa-
tion on the cell lineage (tumor or specific functional class of immune

𝑐𝑒𝑙𝑙 𝑎 𝑐𝑒𝑙𝑙 𝑏
𝑐𝑒𝑙𝑙 𝑐

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

Fig. 4: Simplified illustration of goals G2 and G3. Left: Interaction
Analysis (G2) focuses on analyzing protein expressions between a pair
of cells (a and b). Right: Polarization Analysis (G3) focuses on a cell-
centric understanding of the polar distribution of protein expressions
around a cell (c). The inner ring illustrates the nuclei, and the outer
dashed line illustrates the membrane.

cell). Furthermore, the spatial arrangement of markers within the cell
generates testable hypotheses of (1) cell functional state (2) the role of
a marker in tumor biology. In the example of melanoma, high SOX10
levels co-staining with DNA identify tumor cells, whereas CD3D form-
ing a circle around a cell indicates the boundaries of a cell with the
potential for tumor-cell killing.

A CyCIF dataset can consist of up to 60 channels, with each indi-
vidual image having 109 or more pixels per channel and containing
millions of cells. Fig. 3 shows three different channels in a tissue sam-
ple. Recently, confocal immunofluorescence microscopy has been used
to image optical sections in higher resolution and at different depth
levels. These sections can be registered to reconstruct a 3D volume
of the tissue. The novel addition of higher resolution 3D volumetric
data (see Fig. 3, right) has the potential for novel insights, as many
structures that appear disconnected in sections are expected to be part
of a single large structure in 3D [31]. This is expected to benefit spatial
analysis questions, e.g., concerning tissue morphology, cell shapes, and
spatial cell neighborhood and correlations.

4 GOALS AND TASKS

Following the design study methodology by Sedlmair et al. [42], we
have identified the following domain goals and analysis tasks for cell-
cell interaction analysis. We defined the goals with two domain sci-
entists, one holding a Ph.D. in Biophysics and currently studying the
immune responses to cancer in a real-world context. The second expert
is an Associate Professor of Pathology who practices neuro-pathology
focusing on the molecular pathology of brain tumors. The goals were
extracted and refined through regular monthly meetings and communi-
cation with the domain experts in an iterative process over 17 months.
We reconstructed previously conducted analyses and explored potential
new analysis methods for current and upcoming CyCIF datasets. This
collaborative and iterative approach allowed us to effectively identify
and refine the domain goals and tasks that Cell2Cell aims to address.

4.1 Domain Goals
Our collaborator’s objective is to analyze and parameterize interactions
between neighboring cells in 3D images. They want to analyze interac-
tions between cells at a higher resolution than previous phenotyping
approaches that used spatial statistics of single-cell neighborhoods but
ignored the detailed sub-cellular distribution of proteins [35, 47]. Our
collaborators are interested in a) discovering novel functionally sig-
nificant cell-cell interactions and b) screening for instances of known
interactions in the data. Specifically, their goals are:
G1 - Data Quality Assurance. The domain scientists are greatly
interested in assessing the quality of their data. Every step in the
processing pipeline can lead to potential errors in the downstream
analysis. Analyzing cellular interactions aims to ensure that the data
loaded into the analysis tool (i.e., imaging volumes and labeled cell
center positions) is correct.
G2 - Understanding Interactions between Cells. Our domain experts
want to screen for cell-cell interaction patterns consistent with cancer
progression and response to drug therapy. Therefore, they need to
rapidly quantify and parameterize the distribution of proteins at cell-
cell boundaries. Of specific interest are so-called immune checkpoint
proteins that can inhibit or stimulate immune cells from detecting
and killing cancer cells. Currently, the process of quantifying cell
interactions in multi-channel and high-res 3D data is labor-intensive,
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Fig. 5: Cell2Cell ’s workflow starts with visual exploration (2) of the multi-volumetric imaging data (1) and embedded interaction graph. Users can
then perform interaction-centered analysis (3) by looking at single interactions or comparing multiple interactions. Alternatively, users can perform a
cell-centric analysis (4), focusing on polarization patterns of protein markers around a cell. Both interaction and polarization can be analyzed in
linked heatmaps (overview) and line and polarization charts (detail).

requiring experts to manually examine the data and overlay simple
geometric shapes on portions of the images to generate histograms [35].
By addressing the limitations of this manual approach, their goal is
to more efficiently and accurately study and understand the intricate
relationships between cells in a 3D context, ultimately contributing to
advancements in cancer and immunology research.
G3 - Understanding Protein Polarization in Cells. In addition to cell-
to-cell interactions, our domain scientists also want to examine how
protein markers are distributed within a cell (cell-intrinsic polarization
profiles). This has several reasons. Firstly, cells might have multiple
interactions, so looking at them from a cell-centric perspective, with the
spatially proximate tissue context available, gives a more holistic view.
Secondly, immune reactions in an early stage usually express proteins
within the cell before breaking through the membrane. Thus, they may
not be present at the cell boundaries yet. Thirdly, it can aid verification.
A protein that is evenly present in all directions instead of exclusively
targeting a specific neighboring cell may falsify an interaction hy-
pothesis. An example derived through previous manual computation
involved productive (killing) recognition of tumors by immune cells: A
tumor-killing marker (CD8A) was directed to the tumor-immune cell
interaction (immune synapse). In contrast, inhibitory proteins (LAG3
and TIM3) are directed away from this structure [35].

4.2 Taxonomy

The data characteristics and domain goal descriptions lead to the fol-
lowing taxonomy: An Image Channel is one of up to 60 volumes in a
tissue dataset. Each image channel holds the intensity distribution of a
protein across the tissue. A Cell is a three-dimensional region in the tis-
sue volume with protein expressions across channels. The Cell-Graph
is an abstract concept of tissue organization to aid cell-cell interac-
tion analysis. Cells are reflected as nodes (with center point [x,y,z]),
and edges represent the shortest paths between cells. An Interaction
Profile captures and quantifies the protein distribution between two
cells in a given distance around their connecting edge (shortest path).
A Polarization Profile captures and quantifies the spherical protein
distributions in a given distance around a cell center (cell-centric).

4.3 Analysis Tasks

Given the goals and taxonomy, we derived the following analysis tasks.
T1 - Explore Multivolume Data. Before the analysis, domain scien-
tists need to gain a visual overview of the spatial organization of cells
and their protein expressions in the imaging data (G1-3). The experts
want to be able to inspect 3-4 channels at most together but in flexible
combinations. A focus is exploring protein signals in and around cells
from adjustable viewing directions.
T2 - Proofread Cell Centers and Interaction. To analyze the inter-
action between cells, the position of cells needs to be computationally
captured (labeled). This is typically done in a preprocessing step. Sci-

entists need to verify the position of labeled cell centers within the
underlying imaging data and adjust center positions if needed (G1).
T3 - Analyze Interactions of Interest. Analyzing the interaction
between cells requires the ability to spatially find an interaction of
interest in the image and select the relevant combination of protein
channels for the task. Subsequently, the scientists want to look at the
selected interaction profile in detail and trace and examine the protein
distributions between the two cells in focus (G2).
T4 - Compare Cell-Cell Interactions. Similar interaction profiles
may indicate a relevant biological phenomenon. To find (dis-)similar
interactions to a given interaction, the domain scientists thus need the
ability to compare interaction profiles (G2). This includes sorting and
ranking interactions based on similarity and being able to organize
(group) them to identify repetitive patterns as well as outliers.
T5 - Analyze Cell Polarization. Complementary to analyzing cell in-
teraction, experts want to explore the spherical distribution and polarity
of one or multiple markers in and around cells from a cell-centric point
of view (G3). A cell’s polarization needs to be explorable in its spatial
context, i.e., how the surrounding contributes to the distribution.
T6 - Export Findings. To continue downstream analysis in other soft-
ware, the domain scientists must export details on identified interactions
and cell polarization data.

5 Cell2Cell DESIGN

We used the identified goals and tasks to inform the design of Cell2Cell.
The main analysis concept is to leverage (scan) directly the protein
signals around and in between cells in the 3D data as opposed to any
purely distance-based inference of interaction.
Graph-Based Cell Interaction Analysis. In the first step, we de-
cided to abstract the representation of our problem domain into a
graph/network context. A graph offers an intuitive and efficient repre-
sentation of a network of interacting cells. In this context, cells can be
conceptualized as nodes, with their intricate protein interactions as the
connecting edges. This abstraction simplifies the complex nature of
cellular interactions and provides a structured framework for analyzing
and visualizing these interactions.

By basing Cell2Cell on the concept of a cell graph (Sec. 6), we
can support an interaction-centric and cell-centric analysis workflow,
focusing on edges and nodes. To further simplify our representation,
we approximate cells as spherical shapes. This assumption holds for
most of the cells in our data, but our representation could be extended
to ellipsoids or more complex shapes in the future. A spherical approx-
imation allows us to rely only on labeled cell center positions for our
workflow, circumventing the need for complex cell segmentation.
Preprocessing. Cell2Cell requires multi-channel volume data of tissue
samples (e.g., CyCIF data) and labeled cell center positions. Full cell
segmentation is still challenging and time-consuming as ground truth
data and pre-trained models are rare, especially for data from novel



imaging technologies. Our approach instead relies on labeled cell
centers (x,y,z positions in the volume). This is quicker since it does
not require the extraction of complete and accurate cell boundaries.
Currently, our collaborators use Ilastik [8] for annotating cell centers,
which takes half an hour for a typical tissue sample (1,024 x 1,024 x 55,
around 80 cells). However, depending on the preference of the domain
scientists, more automatic methods could be used.
Workflow. Fig. 5 depicts the workflow in Cell2Cell. After loading
in multi-channel volume data, users start with a high-level visual ex-
ploration (T1), leveraging multi-volume rendering at interactive rates.
Cell2Cell enables scientists to analyze cellular interactions based on
our concept of a cell graph (Sec. 6). Users can proofread (T2) the cell
graph to verify the positioning of nodes and edges and, if necessary,
add, delete, or adjust them. Next, users can perform two complemen-
tary analysis approaches: interaction-centered analysis (T3), where the
focus is on the edges of our cell graph; and cell-centered polarization
analysis (T5), where the focus is on the nodes of our cell graph. For
both modes, Cell2Cell offers visual tools for exploring and comparing
the computed profiles (T3-5). Finally, findings can be exported for
downstream analysis and presentation purposes (T6).

6 CELL INTERACTION GRAPH

Cell2Cell’s workflow is based on a cell graph representing cells and
their interactions as nodes and edges. We describe the cell graph
computation in Sec. 6.1 and optional graph editing features in Sec. 6.2.

6.1 Graph Computation
Based on a provided cell center annotation, Cell2Cell generates a cell
graph G = (V,E) where each node in V represents a cell center and
edges E represent potential interactions between cells. To construct the
graph, we employ a 3D Delaunay triangulation, as it captures the natural
connectivity of data points in space, making it more representative of
biological cell networks [11, 13, 37]. It also aligns with the biological
assumption of our domain experts: Two cells (nodes) a and b are likely
to interact with one another only if there is no other closer cell c directly
in between. Currently, our volume is thin in the z-dimension, which
leads to almost planar graphs. To further trim the number of initial
interactions (edges), we compute the Gabriel graph [17]. Its disc-area
criterion ensures that no cell c is close to an interaction between two
other cells a and b, i.e., c does not lie within the disk enclosing the
edge {a,b}. We heuristically found this to be a good approximation
for biologically relevant interactions since cells only interact with each
other if there is no other cell between them.

6.2 Interactive Graph Editing
Since the imported cell centers might be inaccurate or incomplete, we
also provide means to edit cell center positions and the resulting cell
graph (T2). Cell2Cell offers a slice view feature that allows domain
experts to precisely place and adjust the position of nodes (i.e., cell cen-
ters). The primary objective of this feature is not to replace specialized
segmentation or annotation tools but to provide a means for correcting
node positions as needed. We communicate each added or removed
node to the backend and automatically recalculate the cell graph to
incorporate the user’s changes. This is done at run time and typically
takes a few seconds. Adding or removing edges is conceptually similar
and can be supported by the slice view.

7 INTERACTION-CENTERED ANALYSIS

Cell2Cell’s interaction analysis (see Task T3) is based on the concept
of interaction profiles. We utilize our cell graph structure to compute
interaction profiles between any two cells. We traverse the volume
along the graph’s edges and automatically compute the change of
marker intensities along an edge, resulting in an interaction profile
for each edge (see Sec. 7.1). To visualize the computed interaction
profiles, Cell2Cell has to handle two separate scalability challenges:
(i) interaction profiles contain data from many data channels, and (ii)
users might want to look at and compare many cell interactions. In
Sec. 7.2, we describe our overview-and-detail approach for analyzing

single interactions with many channels. Sec. 7.3 describes how we
support comparing many cell interactions.

7.1 Cell Interaction Profile Computation

To quantify the interaction between two nodes (cells) N1,N2, we ac-
cumulate marker intensities surrounding the respective edge e in the
graph into an interaction profile (see Fig. 6). More precisely, we in-
tegrate the intensity of each voxel within a specified radius (depicted
as r) orthogonal to the edge e onto the closest point on the edge. We
then calculate the mean intensity for the respective edge position. This
results in a one-dimensional distribution (interaction profile) for each
image channel (see Fig. 6 II). The values are furthermore normalized
between 0 and 1 based on the overall value distribution of the given
interaction profile. We support two different geometric shapes to define
this area: cylinders and bicones. Bicones reflect the idea of capturing
spherical sectors emanating from cell centers along a cell-cell inter-
action vector. With a growing diameter towards the center, bicones
consider the spherical shape of cells and focus on the cell’s surfaces
and area of contact. Cylinders, by contrast, have been used in prior
work for their simplicity [35] and capture the same interaction with a
fixed spatial cross-section. Cell2Cell allows experts to choose between
the two shapes and to interactively set the aforementioned radius based
on domain knowledge and use case.

7.2 Single Interaction Analysis

We visually embed the computed cell graph in the volume rendering
to enable users to explore cellular interaction directly in their spatial
context (see Fig. 1). Users can directly select edges of interest in
the volume view and then follow an overview and detail approach to
analyze the selected interaction.

7.2.1 Overview: Interaction Heatmaps

As a first step, experts want to find the channels of interest for a par-
ticular interaction (e.g., channels that show an interesting pattern in
their interaction profile). Since typical datasets contain 20 or more
channels, we chose a compact heatmap visualization (Fig. 6 III) to give
the domain experts a first glance at the role of different channels in
an interaction. Each row in the heatmap represents an image channel.
The columns represent the interaction length (i.e., voxels along the
corresponding edge of the cell graph). As shown in Fig. 6 III, only
some channels are typically visibly active in a selected interaction. The
expert can then choose the interesting channels for further investigation.

7.2.2 Detail: Interaction Profile Line Charts

Once users have identified channels of interest in an interaction, they
can analyze them in more detail. The interaction profile line chart (see
Fig. 6 IV) depicts each selected channel as a separate line, with the
x-axis representing the interaction edge and the y-axis representing the
channel’s intensity at that position of the interaction edge. The line
chart is connected to the volume view via brushing and linking. As
edges in the cell graph are undirected, users can hover over a position
in the line chart to highlight the corresponding spatial position in the
volume view (see Fig. 6 V). Line charts are a fitting visualization since
we reduce the protein marker distribution from 3D to a one-dimensional
distribution along an edge. Further, they offer several advantages:
Clarity and simplicity. Line charts are easy to understand, allowing
researchers to grasp the trends and changes across the edge quickly.
Comparison of multiple channels. Line charts can visualize multiple
channels within one plot. This enables the user to compare channels
and see patterns and correlations between different channels.
Scalability. Line charts are well-suited for handling a varying number
of channels. Despite the limitations of finite color encodings, the ability
to highlight channels when hovering over them ensures clear perception
and comprehension of the displayed data. Furthermore, line charts are
a good option for a small multiples display when comparing several
interactions, as described in Sec. 7.3.
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Fig. 6: (I) Cell interaction profile calculation around one edge with one channel (yellow). Bicone (blue) or cylinder (red) with a base radius (r) are
positioned at the endpoints of the edge (e), which connects two nodes (a, b). Voxels inside the shapes (e.g., 1) are projected onto the edge (e), and
outside voxels (e.g., 2) are ignored. The mean of the projected values determines the intensity at the corresponding location on the edge, for each
channel individually. (II) The line chart shows the accumulated intensities at each point along e between nodes (a, b). Note the difference between
bicone and cylinder. (III) Heatmap encoding of all markers with expression along the a-b (tumor cell—T-cell) axis. Rows represent channels, the
x-axis represents the position along the interaction edge. Color encodes marker intensity, channels are ordered by similarity. SOX10 is expressed in
a tumor cell (a), and different membrane markers (e.g., DNA7) are localized at the midpoint between cells. (IV and V) Interaction profile between
tumor cell (a) and T-cell (b) showing the distribution of 4 markers. Notably, the maximum intensities of the membrane proteins CD8A (magenta) and
PD1 (red) indicate an immunological response between tumor (SOX10, white) and immune cell (DNA1, cyan, only shown in the interaction profile).

7.3 Cell Interaction Comparison
Building on well-established principles from the field of visual compar-
ison [19], our tool incorporates several views to analyze and compare
(T4) several interactions simultaneously. To keep the user experience
consistent, we use the same visual encodings as in the single interac-
tion analysis (i.e., line charts and heatmaps). However, we use small
multiples and the concepts of juxtaposition and superposition to com-
pare interactions efficiently. We further automatically compute an edge
similarity score to group similar edges together. We focus on two main
aspects: comparing interactions edge-by-edge and channel-by-channel.

7.3.1 Similarity Computation
Cell2Cell eases comparing interaction profiles by automatically order-
ing them by similarity. Integrated into heatmaps and line charts, this
feature allows users to sort profiles based on a selected reference profile.
To account for differences in the lengths of interaction profiles, we first
normalize their length based on the length of the selected (primary)
edge using linear interpolation. Interactions are then compared using
the Wasserstein distance [26] (Eq. 1). The metric aligns with our design
requirements that two interaction profiles are most similar if one can
be transformed into the other with minimal costs [38]. The Wasser-
stein distance finds similarity even in phase-shifted signals. It also has
advantages over sequence distance measures such as Dynamic Time
Warping [9] because it satisfies the triangle inequality.

Wp(P,Q) =

(
1
n

n

∑
i=1

∥Xi −Yi∥p

) 1
p

(1)

P is an edge of length n with values X1, ...Xn and Q depicts a second
edge of length n with values Y1, ...Yn. Our moment p is 1, matching the
1D distribution. The distance between each channel is calculated, with
the total distance being the sum of these individual distances.

7.3.2 Small Multiples Display
Cell2Cell supports two types of small multiple displays for edge-by-
edge and channel-by-channel comparisons, respectively. Both types
work conceptually similarly for heatmaps and line charts alike.
Edge-by-edge Comparison. Once users select several edges of interest,
we display them as small multiples in a vertically arranged list, either
as heatmaps or line charts. The visualizations are identical to the single-
edge analysis case, where each individual visualization represents one
interaction (see Fig. 1, vertical line chart panel). Following the overview
and detail metaphor, heatmaps can quickly identify interesting channels,
which can be analyzed in more detail in the line charts. Juxtaposing the
individual views limits complexity and avoids overplotting.

Channel-by-channel Comparison. To compare the channels of multi-
ple cell-to-cell interactions in more detail, we arrange small multiples
in a horizontal list, where each visualization focuses on one channel
(see Fig. 1, horizontal line chart panel). That means we show one
heatmap per channel, where each row represents an interaction and the
intensity of that single channel along the edge of the interaction. For
line charts, each chart represents one channel, with interactions being
superimposed as individual lines. As before, heatmaps are used for an
overview of many interactions, while line charts are used to examine
selected interactions in detail. All views allow brushing and linking to
highlight positions and features in the volume view for spatial context.

8 CELL-CENTERED POLARIZATION ANALYSIS

In addition to the interaction-focused analysis, Cell2Cell also enables
scientists to perform a cell-centric analysis (T5). A spherical model of
a cell-centered on the nucleus permits either spherical (3-D) or polar
(2-D) parameterization of marker distribution. In general, markers in
the cell’s center are labeled nuclear. In contrast, markers at the plasma
membrane (i.e., at cell-cell contacts) can be evenly distributed around a
cell or concentrated (polarized) towards or away from a neighboring
cell. For example, in Figure 7 I, CD8A is highly polarized toward
tumor cell a with TIM3 being polarized to the top left of cell b.

8.1 Cell Polarization Computation
To compute the polarization of cells, we analyze the marker distribution
within a certain distance around the cell core. We approximate the
cell’s shape as a sphere, which allows us to analyze all voxels within a
radius r around the cell’s center. Next, we project marker intensities
inside the sphere onto a 2D plane centered at the cells’ center and
accumulate marker intensities for every pixel on that plane (see Fig. 7
II and III). We then perform an orthogonal projection onto the 2D
viewing plane of the volume view. This projection approximates the
actual 3D spherical distribution of a marker. However, it allows us to
use a visually simpler 2D encoding to display the polarization data (see
Sec. 8.2) that is always aligned with the current view direction in the
volume view. Whenever the view direction changes, we recompute the
polarization based on the new viewing plane orientation.

8.2 Cell Polarization Visualization
To visualize cell polarization (T5) we again follow an overview-detail
metaphor. We use a heatmap-inspired display to show the polarization
of a cell for all channels, and a circular polarization chart embedded into
the volume to show cell polarization for selected channels of interest.
Circular Polarization Chart. Since cell polarization is directly related
to a cell’s spatial neighborhood (in which direction neighboring cells
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Fig. 7: (I) Cell polarity in a tissue context. Cell interaction network centered on tumor cell (a) and immune cell (b) reveals polarization (arrows) of
CD8A (magenta) to tumor cell (a) but TIM3 (green) away from all recorded cell-cell interactions. (II and III) Calculating marker polarization. (II) We
compute cell polarization in a sphere with the radius (r) surrounding the cell (node) N. Only voxels inside the radius are included in the calculation
of the cell polarization. We orthogonally project marker values onto a 2D plane to create a 2D map of the cell’s polarization. (III) Top-down view
(x,y) of the projected intensities. Our radial visualization displays marker intensities as concentric rings (a,b), divided into smaller circle segments
indicating the direction of the respective marker intensity, encoded by width. (IV) Polarization of two cells on the example of two channels. Channels
are displayed as concentric circles. The direction and strength of protein signals from these channels are encoded by the thickness of the 12 circle
segments. We see a polarization towards each other, a strong indication of Cell2Cell interaction.

are located), we display polarization information directly in the volume
view around the cell. For each node, the radial cell polarization visual-
ization shows a projection of the spatial distribution of protein markers
around that cell onto a 2d disc. If the volume is rotated, we recompute
the projection and update the radial polarization charts. Each polar-
ization chart can show the spatial distribution of a selected number of
channels. Channels are represented as concentric circles. Each circle is
divided into 12 sections, similar to a clock face. The width of each cir-
cle segment encodes the intensity of the corresponding channel in that
area, similar to a radial bar chart (see Fig. 7 III). Thus, each channel’s
polarization is displayed in its own orbit surrounding the cell center
(see Fig. 7 IV). After consulting with the domain scientists, we chose to
accept the drawback of the areal increase towards the outer orbits due
to the more significant advantages of the design: the radial encoding
allows us to intuitively understand a cell’s direction of polarization.
Overview and Detail With the above-described circular charts, sci-
entists can see a cell’s polarization in combination with the spatial
context of a cell to understand the biological underpinning. However,
the circular charts work best for showing 1-4 channels. We propose a
heatmap-inspired encoding to get an overview of a cell’s polarization
for all its channels. Each channel is represented as a different row in the
heatmap. To compute a row, we conceptually unroll the channel’s circle
of the radial chart into a straight line and convert the height of bars to
a color scale. This allows us to represent the polarization information
of all channels around a cell in a compact view. A limitation of this
approach is that we cannot intuitively depict the actual direction of
polarization since the circular chart is unrolled. However, it is easy to
spot polarization patterns (i.e., polarized vs. evenly distributed) and
to identify channels of interest (see Fig. 8, V) that can be explored in
more detail in the circular polarization chart (Fig. 8, IV).

9 IMPLEMENTATION

Cell2Cell is a web-based client-server system with a RESTful interface.
Users can access and interact with the tool in a web browser. We plan an
open-source release upon publication. The backend of our application
is implemented in Python, utilizing the Flask web framework [5] to
handle server-side operations. For data processing and analysis, we use
NumPy [3] and scikit-image [46]. The frontend of our application is
developed using TypeScript. To render the 3D multi-channel volume
data and cell graphs, we use the Three.JS library [4]. For generating
the various plots and charts required in our interaction and polarization
analyses, we use D3.js [10]. Our WebGL-based direct volume renderer
can render up to six channels simultaneously. We limit the number of
channels to prevent visual clutter, overplotting, and interactivity.

10 EVALUATION

We evaluate Cell2Cell in three use cases and interviews with two
domain experts. Expert 1 holds a PhD in biophysics and is interested
in digital pathology to investigate the regulation of the immune system

with cancer, infectious, and auto-immune diseases. Expert 2 is an MD
PhD studying melanoma progression, evaluating prognostic markers,
and seeking to identify novel therapeutic strategies. Only Expert 1 is a
co-author of this paper and was part of the requirement analysis.
Study Setup: We first introduced the experts to Cell2Cell and demon-
strated its features. We conducted one-hour-long interviews with both
experts and encouraged them to analyze a given dataset in Cell2Cell
and explain the biological meaning of their findings. Both case studies
were conducted over Zoom in a pair analytics setting [7]. While the
biomedical experts guided the analysis, we operated the interface. This
approach allowed us to identify limitations and improve features for
applying Cell2Cell to cutting-edge research tasks instead of collecting
feedback on user interface details. In the interview, both users gave us
feedback on Cell2Cell analysis features and data visualization.
Data: For our evaluation, we used an immunofluorescence data set,
described in Nirmal et al. [35], which contains high-resolution images
of cutaneous melanoma samples from 13 patients (11 primary tumors,
one locoregional metastasis, and one distant skin metastasis). 70 tissue
regions with distinctive morphologies or locations were annotated,
averaging 5.5 histological ROIs per specimen. Each image in the data
set features 28 plex CyCIF, providing a comprehensive view of the
spatial distribution of various cell types and their interactions within the
tumor microenvironment. The imaging data, with a lateral resolution of
220 nm, is of considerable size and complexity, as it includes multiple
channels representing the expression of different proteins for each cell
(28 channels, resolution 1,024 x 1,024 x 55). For the evaluation in one
of the CyCIF cubes, almost all cell centers were annotated by hand.
The graph itself was then generated as described in Sec. 6.1.

10.1 Case Study 1: Verifying Interaction Profiles
To evaluate Cell2Cell’s accuracy, our expert aimed to recreate mea-
surements from a previous study on primary cutaneous melanoma [35].
For the original study, the experts used the following steps to create
the figure presented in the paper. First, the researchers find channels
of interest using an image viewer of choice. They find channel set-
tings (thresholds and value ranges to filter noise from the actual protein
signal) and create images for each channel and area of interest. The
experts manually extract a rectangular image part between the cells
of interest. They use multiple tools to convert the image information
present in the area of interest to an intensity profile along the long side
of the rectangle. This process has to be carried out for each channel
individually. The resulting information is then visualized using stan-
dard visualization tools. The data was only gathered at a singular depth
section. While the manual workflow was sufficient at the time, it does
not scale to many interactions and is difficult to reproduce: The position
and size of the rectangle were not based on prior cell center labels or
a cell graph, and the approach was restricted to finding and analyzing
cells in one section (slice), not supporting oblique 3D orientations.
Analysis: The scientist began by activating the DNA and HLAA chan-
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Fig. 8: Case Study 1 : (I, II) Different geometries to parameterize cell-cell interactions. Interaction of tumor cell (a) and cytotoxic T lymphocytes
(b) using cylindrical and conical integration. Channels rendered and interactions visualized: CD3D (green), CD8A (red), and SOX10 (white). (I) A
cylinder is used to capture the interaction profile. (II) A bicone shape is used. — Case Study 2: (III, IV and V) Quantifying immune suppression of
T-cell (b) by tumor cell (a). PD1 (red) and binding partner PDL1 (yellow) co-localize between cells a and b, as quantified along edge e1, e2. A similar
co-distribution does not occur in e3 between tumor cells c and d. Polarization heatmaps (V) give an overview of all markers for cells b and a.

nels to visualize the nuclei and then searched for specific markers,
namely CD8A and SOX10. Using the right side panel, he adjusted the
thresholds for these markers to enhance their visibility. He then used the
proofreading features to examine the graph structure and fine-tune cell
centers to align with the original experiment’s measurement area [35].
For the interaction profiles, the expert found the cylinder shape and
a voxel radius of 25 to recreate the original conditions most closely.
He set the thresholds for SOX10 and CD3D to suppress noise in those
channels. Finally, he analyzed the interaction profile for the markers
(CD3D, CD8A, and SOX10) along his targeted edge and obtained the
desired results (Fig. 8 I). Using the interactive functionality to zoom
and change viewing angles, Expert 1 was able to identify and extract
the contact zone (i.e., immune synapse) between a cytotoxic T lym-
phocyte and a tumor cell ( Fig. 8 I, left) To study the interaction more
closely, the expert asked us to switch to the bi-conic shape (see Fig 8 II),
which had not been available in the previous analyses. According to our
expert, the cone shape represents the area of interest more accurately
but is less intuitive when manually measuring the data.

10.2 Case Study 2: Interaction of Tumor and T-Cells

In this study, our expert was interested in analyzing the interaction
between tumor and t-cells, specifically in the suppressive role of the
PDL1-PD1 pathway, preventing tumors from being targeted by t-cells.
Analysis: The expert began by selecting a DNA channel to visualize
the dataset’s volumetric properties. Subsequently, we adjusted the
brightness and colormap of the DNA channel to enhance the visibility
of nuclei. We used the graph editing function to verify and adjust cell
center positions. After this proofreading step, the expert activated PDL1
in the volume renderer to identify potential PDL1-PD1 interactions.
This revealed one PDL1 positive cell (Fig. 8 IV, a) located in the top
center region. In addition, she saw that cell a was making contact
with a PD1 positive T cell (Fig. 8, b). To ascertain the phenotype of
cell a and its interacting partner b, we activated Cell2Cell’s heatmap
feature, providing a glance at all expressed proteins along selected
interaction edges. After proteins of interest were identified, we switched
to the detailed line chart views to measure SOX10 (a tumor marker)
and CD3D (immune marker), HLAA (marking cell membrane), along
with inhibitory pathway PDL1-PD1. This is depicted in (Fig. 8, III).
To visually corroborate this result spatially, the expert also activated
SOX10, HLAA, and PDL1 in the volume renderer, which exposed a
cluster of SOX10-positive cells surrounding our target cell (Fig. 8, IV).
We selected the respective interaction edges and employed Cell2Cell’s
sorting functionality to rank the edges by similarity. This revealed the
PDL1-PD1 expression as the main difference to the immune-cancer
cell interaction e2, while the signaling between the two cancer cells c,d
was ranked most different. Based on the SOX10 marker and the nuclear
morphology, the domain expert concluded that cells c and d were
tumor cells. We activated the polarization view to gain a cell-centric
perspective (Fig. 8, IV). This revealed that cell a expressed SOX10

primarily on the side opposite to the PDL1-PD1 interaction. The
polarization plot summarizes findings from a context-aware perspective.

10.3 Case Study 3: The Role of Macrophages
The third case study investigates T-cell interactions with macrophages.
Macrophages are a type of white blood cell that surrounds and kills
microorganisms, removes dead cells, and stimulates the action of other
immune system cells [6]. However, a hypothesis is that macrophages,
because of their capability to suppress inflammation, also provide a
supportive environment for tumor growth by suppressing T-cell recruit-
ment. Our second domain expert, Expert 2, previously evaluated where
physical contact between cell membranes occurred by visualizing the
polarization markers P(PD1, PDL1) in 2D slices. One issue during the
initial analysis was that her proximity analysis did not consider whether
cells made contact. Cell2Cell gives her the opportunity to explore these
interactions more efficiently, in 3D, and at scale.
Analysis: We started the analysis by activating channel DNA that
stains all cell nuclei. The expert then wanted us to look for specific
cancer (SOX10), immune (CD3, CD4, CD8), and macrophage (CD163)
markers to quickly spot where in the volume they were expressed. The
CD163 channel revealed a macrophage area in the lower left. We
marked the area in the volume to select all interaction edges involv-
ing macrophages. The expert then asked us to activate the checkpoint
pathway markers PDL1/PD1 which appeared between many of the
macrophages and t-cells (Fig 9, I). We quickly found one textbook
example of such an interaction and sorted the list of interactions by sim-
ilarity. This revealed that some interactions only expressed PDL1 and
PD1 directly together on the cell membranes while others expressed
these proteins only within the cells, leaving a gap in between the profile
(Fig 9, II). Latter cases could possibly be earlier stages of the pathway
formation. It is, however, also likely that the expressions are parts of
interactions with other cells outside the data cube. Following the expert,
we zoomed in on an interaction where PDL1 and PD1 signals were
spatially close to one another. We then activated the polarization view
to get a cell-centric understanding of marker distributions. This re-
vealed an interesting case of CD8 expression towards the opposite side
of a PDL1-PD1 pathway (Fig 9, III). Moreover, in the neighborhood
of this CD8 was a cell that stained negative for the immune, cancer,
and macrophage markers. To gain a quick understanding of the cell
type involved in the CD8 interaction, we activated the channel heatmap
profile. This gave us a quick overview of all involved proteins. Surpris-
ingly, none of the available protein markers in the dataset marked this
cell. Changing the camera’s viewport revealed that the call was only
half captured by the volume, motivating the need for thicker sectioned
data and evaluating additional protein markers in further experiments.

10.4 User Feedback
After the analysis sessions, we solicited user feedback regarding its
potential to aid their research. Expert 1 found the ability to analyze
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Fig. 9: Case Study 3: (I) a macrophage-rich area with PD1-PDL1 expressed between macrophages (cells surrounded by CD163 in green) and
t-cells (a) (expressing CD8). (II) Similarity sorting reveals (1) profiles with the two proteins being expressed in proximity at the cell membranes; (2)
profiles with clearly separated PDL1, PD1 expression in the cell centers. (3) Signals are overall shifted towards the t-cell. (III) Cell-centric view of
(a,c) showing a polarization of PDL1 and PD1 towards each other and CD8 on the opposite side. Cell (b) is negative for available type markers.

any interaction on the fly remarkable, as it helps him better understand
biological processes. He found the heatmap visualization useful for
analyzing all channels at a glance while still having the possibility to
switch to more line charts. The expert remarked that our tool will be
essential and marks a starting point for future, more elaborate cell-to-
cell interaction analysis. Expert 2 highlighted the capability to reveal
new protein interactions previously obscured by known interactions,
particularly when using the interaction profile visualized as line charts.
The expert found value in the efficient combination of volume view
and interaction heatmaps and line charts. Expert 2 observed that while
there was always room for improvement, the current speed of Cell2Cell
was notably better than what they experienced in their prior workflow
(see Sec. 10.1). The polarization visualization stood out as particularly
beneficial for analyzing interactions within tumor cell clusters.

Both experts expressed interest in the ability to import cell types from
a list into the tool for validation and comparison with the interactions,
which we subsequently implemented. Expert 2 suggested a possible
extension to this feature, which could involve implementing a semi-
automated cell typing algorithm, allowing domain experts to import a
set of rules that translate interactions directly into cell types based on
specific marker measurements. Expert 2 was interested in the prospects
of handling larger, forthcoming datasets. Cell2Cell is scalable and
will accommodate a moderate increase in volume sizes. If scalability
becomes a concern, the domain expert suggested that cropping images
to regions of interest would serve as an acceptable workaround.

In summary, both domain experts affirmed that our tool would ben-
efit their research and that they trust the results it produces. They
highlighted the value of our interaction comparison and polarization
visualizations in providing new insights into the data.

11 LIMITATIONS AND FUTURE WORK

While our multichannel volume rendering approach offers significant
benefits for analyzing cellular interactions in 3D data, it is important to
recognize its limitations and avenues for future work.

Cell Segmentation and Image Quality. Our method relies on accurate
3-D coordinates for cell centroids and manual refinement. The spherical
approximation of cells as interacting spheres (approx. 1.5-2 nuclear
radii) is scalable but ignores interactions at a distance mediated by
projections > 4 nuclear radii [35]. Cell boundary segmentation could
provide a more accurate shape representation. Besides segmentation,
image quality also affects interaction analysis. The signal-to-noise ratio
in the image channels has to be high enough for an accurate analysis.

Multi-channel Volume Rendering. Our current implementation ren-
ders six channels simultaneously. This limitation maintains clarity
and avoids overplotting and mixing of too many colors. Advances in
transfer function design and renderings could enable simultaneous visu-
alization of more channels while preserving clarity and interpretability.
To make the rendering scalable to larger data, "Residency Octree" [22]

presents a novel web-based technique [22], combining the advantages
of out-of-core volume rendering using page tables with those of stan-
dard octrees. We aim to integrate this technique in the near future.
Complex Interaction Modeling. Cell2Cell reduces localized 3D dis-
tributions to one dimension (interaction and polarization profiles) to
quantify the signal. While this works well to capture the most signifi-
cant information, deep learning could be used to learn more complex
features from segmented data. Autoencoders could compress the mul-
tiplex data to a lower dimensional representation, and graph neural
networks could be utilized to learn interactions of larger cellular com-
munities and for improved ranking and clustering [49]. Visual analytics
could help to steer such algorithms interactively and explain results.
Imaging Modalities. We showed the utility of our approach using
CyCIF datasets provided by our collaborators. These datasets have
a high resolution and feature multiple channels presenting various
biological meaningful structures to investigate. In the next step, we
want to enable scientists working with other imaging techniques like
CODEX or Image Mass Cytometry to also use Cell2Cell for the analysis
of their data. Access to 3D data on a single cell level featuring multiple
channels is limited and therefore we rely on the advancement of imaging
techniques to deliver more data for the analysis in Cell2Cell.

12 CONCLUSIONS

We have presented Cell2Cell, which combines a two-pronged approach
for analyzing cell-to-cell interactions in 3D multi-channel volume data.
Our tool is designed to aid domain experts in advancing their under-
standing of the intricate mechanisms underlying cellular interactions
in the context of cancer and immunology research. First, our tool
computes a cell graph where cell centers are represented as nodes, and
edges depict interactions between cells. We then automatically analyze
and visualize marker intensities along these edges, enabling the creation
of interaction profiles and facilitating comparative analysis using both
spatial and abstract data views. Second, our cell-centered approach al-
lows scientists to visually analyze 3D cell polarization based on marker
distributions, providing an orthogonal perspective on cell interactions.
While such analysis has been carried out manually on an individual
cell-to-cell basis, our computational approach enables analysis at scale.
Incorporating these analytics into a web-based volume rendering inter-
face enables effective and efficient visual exploration and verification of
the computed measures. This "in-situ" visual exploration (close to the
actual imaging data) is essential, empowering pathologists to leverage
their deep visual understanding of healthy and diseased tissue features.
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