
AdaMotif : Graph Simplification via Adaptive Motif Design

Hong Zhou, Peifeng Lai, Zhida Sun, Xiangyuan Chen, Yang Chen, Huisi Wu, Yong Wang

(a) (b)

Fig. 1: Case analysis of the Cpan dataset [29]: (a) the original graph; (b) our simplified graph. The highlighted areas of each subfigure
show the enlarged communities labeled as “1” - “4”. The communities labeled as “1” and “2” are the same, and “3” and “4” are the
same. To make communities “1” and “3” in (a) easier to identify, their nodes and edges are highlighted in blue and red, respectively. To
facilitate the comparison, communities “1” and “2” are aligned vertically, and “3” and “4” are aligned horizontally. In (b), motifs with the
same color and similar shape represent similar communities. The size of the motif indicates the number of nodes in this community. For
more details on our visual encoding scheme, please refer to Sec. 3. Our result provides a clearer expression of community information.

Abstract—With the increase of graph size, it becomes difficult or even impossible to visualize graph structures clearly within the limited
screen space. Consequently, it is crucial to design effective visual representations for large graphs. In this paper, we propose AdaMotif ,
a novel approach that can capture the essential structure patterns of large graphs and effectively reveal the overall structures via
adaptive motif designs. Specifically, our approach involves partitioning a given large graph into multiple subgraphs, then clustering
similar subgraphs and extracting similar structural information within each cluster. Subsequently, adaptive motifs representing each
cluster are generated and utilized to replace the corresponding subgraphs, leading to a simplified visualization. Our approach aims to
preserve as much information as possible from the subgraphs while simplifying the graph efficiently. Notably, our approach successfully
visualizes crucial community information within a large graph. We conduct case studies and a user study using real-world graphs to
validate the effectiveness of our proposed approach. The results demonstrate the capability of our approach in simplifying graphs while
retaining important structural and community information.

Index Terms—Graph visualization, node-link diagrams, graph simplification

1 INTRODUCTION

The graph, a common form of relational data, consists of nodes and
edges. Examples of graphs include social networks, network topologies,
and molecular structures. As the scale of graphs increases, analyzing

• H. Zhou, P. Lai, Z. Sun, X. Chen, Y. Chen and H. Wu are with Shenzhen
University, Shenzhen, China. E-mail: hzhou@szu.edu.cn,
laipeifeng1111@gmail.com, zhida.sun@szu.edu.cn, {2310274034,
2310273092}@email.szu.edu.cn, hswu@szu.edu.cn.

• Y. Wang is with Nanyang Technological University, Singapore. Part of this
work was done when he was affiliated with Singapore Management
University. E-mail: yong-wang@ntu.edu.sg. Y. Wang is the corresponding
author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

large-scale graphs pose significant challenges in both data visualization
and data mining domains.

In graph visualization, the node-link diagram method is commonly
used due to its intuitive and effective representation. However, as the
scale of graphs increases, corresponding node-link diagrams become
more large-scale, and the structural information within the graphs also
becomes more complex. Effective visualization methods can aid users
in analyzing the structural information within large graphs. One feasible
approach is to simplify large-scale node-link diagrams.

Currently, research on simplifying large graphs mainly focuses
on two directions: glyph-based simplification (e.g. motif simplifi-
cation [16]) and graph sampling [32, 54, 57]). Glyph-based simplifi-
cation abstracts the graph structure, whereas graph sampling reduces
the number of nodes to achieve simplification. Motif simplification
can highlight special graph structures by representing them with motifs
that require less screen space. Therefore, it can be used for analyzing
large graphs and has a wide range of practical applications [16], e.g.,
social media networks [42]. However, these motifs are predefined and



can only be applied to three specific structures (i.e., fan, connector, and
clique) rather than general structures. Graph sampling is used to sim-
plify the analysis and processing of large-scale networks by working
with a manageable subset of the data. This technique can reduce the
graph size but cannot emphasize the community structures in the graph.

Community information in graphs has significant practical applica-
tions. For example, in social networks, community information can
be used to effectively monitor the development of public opinion and
recommend suitable products to users [7]. By comparing the simi-
larities and differences between communities, more precise policies
can be formulated and implemented, enhancing policy effectiveness.
Therefore, extracting and analyzing community structures, as well as
the similarities and differences between them, is of great importance in
areas such as social network analysis [39,48], information retrieval [30],
recommendation systems [22,55], transportation and logistics [23], and
biological network analysis [15].

In the field of graph mining, general community structures in graphs
can be detected by subgraph partitioning [14, 53] and graph embed-
ding [40, 47], and can be compared by graph alignment [8, 27, 28, 41].
These methods effectively assist users in mining community informa-
tion from graphs but lack intuitive expression, which hinders users from
further exploration and understanding.

We integrate graph visualization with related graph mining tech-
niques to propose a novel method for large graph simplification via
adaptive motif design. Our approach first divides a graph into subgraphs
(i.e., communities) based on their structural information, resulting in
numerous subgraph pieces. Then, it clusters similar subgraphs together
and calculates the centroid subgraph for each cluster, which represents
the structural information of that class of subgraphs. Finally, it aligns
the representative subgraphs to obtain their similar structures, thereby
generating a simplified motif that represents the overall structure of
each subgraph. By replacing the original subgraphs with simplified
motifs, the visual complexity of the visualization for the original graph
is significantly reduced, greatly improving visual clarity and readability.
Similar to other graph simplification methods, our approach also results
in information loss, which is inevitable. Although it loses the original
edge information between nodes in different communities, our method
is well-suited for analyzing the overall topology of communities and the
similarities and differences between them. Furthermore, our method is
not limited to analyzing specific community structures. It can automati-
cally generate adaptive motifs for general community structures to help
users visually analyze the characteristics of graphs.

The major contributions of this paper are as follows:
• A novel graph visualization simplification framework, AdaMo-

tif , where the simplification process generates adaptive motifs
automatically, representing the graph structure.

• A novel approach for community similarity representation, en-
suring a uniform layout effect among similar communities to
facilitate the discovery of their similarities.

• A novel method for community difference representation, show-
casing differences among communities with similar structures.

2 RELATED WORK

2.1 Graph Visualization Simplification
Existing research on graph visualization simplification can be catego-
rized into two groups: glyph-based simplification and graph sampling.
Glyph-based simplification achieves simplification by abstracting the
graph structure, while graph sampling achieves simplification by di-
rectly reducing the number of nodes.

Glyph-based Simplification. Using specialized glyphs to represent
corresponding data is an effective visualization method that can be
applied across different datasets [6, 19, 52]. A motif is defined as a
subgraph pattern that occurs more frequently than expected by chance
in a given network [3]. Motif simplification [16] utilizes graphical
representation to simplify the visualization of graphs by designing
special motifs to enhance the readability of graphs, particularly those
with three specific structures (i.e., fan, clique, and connector) rather than

general structures. Apart from motif simplification, other simplification
methods involve merging nodes based on node or edge weights [43,
44, 56]. While effectively reducing the scale of graphs and enhancing
crucial information, these approaches lead to the loss of significant
structural information presented in the original graph.

Graph Sampling. Graph sampling methods are commonly used
to reduce the scale of graphs, and thus simplify the graph visualiza-
tion [11]. Designing effective sampling methods can retain the core
important structures of the graphs while reducing visual clutter. The
MCGS [54] method samples a small number of special nodes to pre-
serve the key structure of the graph. Other graph sampling methods
include Context-aware [57] and Hierarchical [32] sampling, etc. How-
ever, as the sampling rate decreases, more information from the graph
is lost.

While our method also experiences information loss, emphasizing
community structures, similarities, and differences helps users better
analyze the relationships between communities and the overall topology,
leading to a deeper understanding of community dynamics.

2.2 Graph Structure Analysis
Graph mining involves using methods such as graph theory and network
analysis to explore, mine, and understand patterns within graphs.

Graph Clustering. Analyzing the community structure in graphs is
one of the important tasks in graph mining. Common methods for this
include subgraph partitioning, such as Louvain [14] and Infomap [53].
Analyzing the similarity between two graphs can be achieved by com-
puting the graph edit distance [20]. The distance effectively helps us
analyze the structural similarity between subgraphs and can also be
used for subgraph clustering. Furthermore, graph embedding is another
important method that transforms the structural information of a graph
into vector representations [21, 40, 47]. Through graph embedding, we
can map graphs into vector space and then use clustering algorithms
(such as k-means [24], spectral clustering [50], etc.) to cluster graph
vectors, thereby clustering similar graphs.

Graph Alignment. When users need to analyze the correspondence
between nodes in two graphs, graph alignment [41, 49] is an effective
method. Through graph alignment, we can calculate the graph similar-
ity matrix between two graphs, obtaining the similarity of any nodes
between the two graphs. Based on this similarity matrix, we can infer
the correspondence between similar nodes, further understanding and
analyzing the structure and relationships between the two graphs.

Graph Summarization. Descriptive analysis of graphs is also im-
portant [38]. For instance, the VoG method [35] is a large-scale graph
analysis approach based on the maximum description principle. This
method extracts the most descriptive subgraph structures from a large
graph to help users understand its overall characteristics. On the other
hand, the Momo method [10] focuses on analyzing and describing the
similarities and differences between two or more graphs. This method
can compare features such as structures, node attributes, and edge
relationships between different graphs, helping users discover com-
monalities and differences between graphs. Furthermore, the SSumM
method [36] generates sparse summary graphs, summarizing the infor-
mation of the graph to save storage space and analysis time.

Graph structure analysis methods can help users uncover important
information, but their results are often not intuitive. Our approach
employs relevant graph mining methods to extract communities and
identify their similarities and differences, and designs effective visual-
ization techniques to help users intuitively view and understand them.

3 ADAPTIVE MOTIF DESIGN

Our AdaMotif is a novel graph simplification approach aimed at extract-
ing and encoding graph structures into adaptive motifs, thus simplifying
the graph and assisting users in quickly capturing graph community
structures and understanding both the overall and local graph structures.

Fig. 2 illustrates the framework of our approach. The original
force-directed layout graph, with 77 nodes and 254 edges, is shown in
Fig. 2(a). This graph is divided into nine subgraphs, each annotated
with a different color in Fig. 2(b). These nine subgraphs are clustered
into three categories indicated by gray dashed boxes shown in the left



Fig. 2: Our AdaMotif framework overview: (a) the original force-directed layout graph [13]; (b) partitioning (a) into subgraphs annotated with different
colors; (c) clustering subgraphs into categories indicated by gray dashed boxes, selecting a cluster center as the representative subgraph for each
category, and further clustering these representatives into categories indicated by gray dashed boxes; (d) laying out representative subgraphs based
on the super-graph to show similarities and then laying out individual subgraphs to show differences. The red dashed ovals highlight the graph
differences and their encoding in our results; (e) generating adaptive motifs with colors encoding the categories; (f) the final simplified graph.

part of Fig. 2(c), and each category is selected with a representative
subgraph, highlighted with a red dashed box. These three represen-
tative subgraphs are clustered into two categories, indicated by gray
dashed boxes shown in the right part of Fig. 2(c). For the representative
subgraph category with two graphs, a super-graph is synthesized for
further visually representing their similarities in the layout as shown in
the right part of Fig. 2(d). After fixing the layouts for all representative
subgraphs, each non-representative subgraph in Fig. 2(c) is compared
with its representative subgraph in order to generate its layout. Similar
nodes are retained, while different nodes are either marked in white or
gray with an outer ring. Nine motifs for each subgraph in Fig. 2(c) is
generated and illustrated in Fig. 2(e). Finally, the sizes of the motifs are
scaled according to the number of nodes in the respective subgraphs,
and the final result (see Fig. 2(f)) is generated by performing an overall
layout. In the following subsections, we describe each step in detail.

3.1 Subgraph Partitioning

Community information is a key graph structure. We use a mature
community detection algorithm [5] that automatically identifies com-
munity subgraphs without needing prior settings for the number or size
of communities. Fig. 2(b) shows the partitioning result from Fig. 2(a),
with nine subgraphs in different colors. In Fig. 2(b), while most com-
munities are easily identifiable, the yellow, orange, and cyan ones are
intertwined, making visual analysis challenging and highlighting the
need for graph mining algorithms.

3.2 Hierarchical Clustering

Our hierarchical clustering consists of two steps: first, clustering the
subgraphs, and then, for each subgraph category, identifying represen-
tative subgraphs and further clustering these representative subgraphs.

Subgraph Clustering. After detecting community subgraphs, we
want to further present these subgraphs clearly and allow for intu-
itive observation of the similarities between them. For the subgraph
similarity, we measure it using representative vectors computed by
FEATHER [47] and employ the Affinity Propagation method [18] to
cluster subgraphs. Affinity Propagation aligns well with our objective
of generating designs automatically, as it does not require specifying
the number of clusters beforehand. As shown in Fig. 2(c), the nine sub-
graphs are clustered into three categories, each indicated by a dashed
box. We can observe that there is a certain degree of structural similarity
among the subgraphs within each category.

Representative Subgraph Clustering. For each subgraph category,
we compute a representative subgraph based on the cluster center of this
category. These representative subgraphs exhibit fewer differences from
other subgraphs within the same category and are used for subsequent
adaptive motif generation. Furthermore, we conduct another round of
clustering on these representative subgraphs. The three representative
subgraphs in Fig. 2(c) are further divided into two categories and
indicated by gray dashed boxes. In the next subsection, we will rely on
this clustering result to compute the layout of representative subgraphs,
showcasing the local structural similarities between them.

3.3 Subgraph Layout

Our adaptive motif design is highly based on the representative sub-
graphs for each cluster. The adaptive motifs are used to further rep-
resent the original graph, and thus, the structure of the graph can be
effectively simplified. However, this simplification may result in infor-
mation loss. We found that there are certain similarities and differences
between subgraphs in the same cluster and representative subgraphs
in the same cluster. Therefore, we aim to express these similarities



Fig. 3: An example of the similarity-aware representative subgraph layout
algorithm. Nodes with the same color indicate that they are matched
through graph alignment. In (c), the yellow nodes on the periphery are
placed in the center of the generated super-graph in (d). This is not due
to their importance, but because the positions of the blue and yellow
nodes were swapped. The blue nodes needed to be on the periphery to
connect to the unmatched gray nodes. This did not significantly impact
the final similarity-aware layout result in (e).

and differences in our design. Our subgraph layout has two compo-
nents: a similarity-aware representative subgraph layout is designed
to illustrate the similarities between representative subgraphs, and a
difference-aware individual subgraph layout is designed to illustrate
the differences between subgraphs in the same cluster.

Similarity-Aware Representative Subgraph Layout. In the hi-
erarchical clustering step, we classified the representative subgraphs
into clusters, each with certain similarities. We need to extract the
similarities and encode them into our layout. In the field of graph
matching, the maximum common subgraph method can be used to
accurately extract this graph similarity. However, this method is an
NP-hard problem [25, 33] and is only applicable to cases where the
graphs are relatively small. Therefore, we opt for graph alignment
methods [41, 49] to obtain inaccurate graph-matching results. Despite
the presence of some errors, this method has mature algorithms and low
time complexity, making it effective in detecting approximate graph
similarity information.

In our method, we employ the LREA [41] method as a functional
module for graph alignment. It outputs similarity values for each pair
of nodes from two graphs. We prioritize matching node pairs with both
high node degrees and high similarity values, while node pairs with
low similarity values are ignored. Since graph alignment algorithms
are only suitable for aligning two graphs at a time, for clusters with
multiple representative subgraphs, we rely on a synthesized super-graph
to achieve the alignment effect.

For each representative subgraph cluster, if there is only one graph,
we do not synthesize a super-graph (e.g., the cluster at the top of
Fig. 2(d)). If there are multiple graphs (e.g., the cluster at the bottom of
Fig. 2(d)), we select one graph as the basis and align another graph to
generate the super-graph. Fig. 3 illustrates an example of the progress
in generating the super-graph. In Fig. 3(a), the two representative
subgraphs belong to the same category, indicating a certain level of
similarity between them. Therefore, we further use the LREA method
to compute their aligned nodes (i.e., similar nodes) and color them in
Fig. 3(b). Nodes in the upper and lower graphs with the same color are
aligned nodes, while the gray nodes are unaligned nodes. Subsequently,
in Fig. 3(c), we use the upper graph as a basis. The aligned nodes in
the lower graph are removed, and the remaining unaligned nodes are
then connected to the corresponding aligned nodes in the upper graph
based on their connections to the removed aligned nodes, resulting in
the super-graph shown in Fig. 3(d). If there are other graphs within this
representative subgraph category, the super-graph will be continuously
updated as it aligns with other graphs one by one. Next, we apply force-
directed node-link diagram layout [13] to the super-graph to obtain
layout information for all the nodes (see Fig. 3(d)). Then, we align the
node layouts of all the representative subgraphs with the corresponding
node layouts of their super-graphs to illustrate their similar structures
(see Fig. 3(e)). As shown in Fig. 3, the layout transformation of the two
graphs from Fig. 3(a) to Fig. 3(e) facilitates the observation of their
similarities. Therefore, this example of similarity-aware representative

Fig. 4: An example of the difference-aware individual subgraph layout
algorithm. Nodes with the same color indicate that they are matched
through graph alignment. The red dashed ovals highlight the graph
differences in (c) and their encoding in (d).

(a) (b) (c) (d) (e)

Fig. 5: Five node encoding types in the difference-aware individual
subgraph layout algorithm: (a) unaligned nodes; (b) aligned nodes not
linked to unaligned nodes; (c)-(e) aligned nodes linked to unaligned
nodes, and a wider outer ring indicates more linked unaligned nodes.

subgraph layout demonstrates an effective way to show graph similarity.
Difference-Aware Individual Subgraph Layout. For each sub-

graph cluster, we represent their similarities using the representative
subgraph, but they also have differences. To illustrate their differences,
we propose a difference-aware individual subgraph layout method, and
an example is provided in Fig. 4. For each non-representative subgraph
(e.g., the graph in Fig. 4(a)), we first compare it with the representative
subgraph (e.g., the lower graph in Fig. 4(b)) of its cluster using graph
alignment to find their approximately identical parts (i.e., nodes with
the same color in both graphs in Fig. 4(c)). The unaligned parts (i.e.,
the gray nodes in Fig. 4(c)) represent their differences.

Since our adaptive motif is designed based on the representative
subgraph, the differences should be illustrated based on the represen-
tative subgraph. Therefore, based on the representative subgraph, we
identify three different types of nodes: 1) unaligned nodes that belong
to the representative subgraph but do not have corresponding aligned
nodes in the subgraph (e.g., the white node with a dashed boundary
in Fig. 4(d)); 2) aligned nodes connected with unaligned nodes that
do not belong to the representative subgraph but have corresponding
aligned nodes in the subgraph (e.g., the gray node with an outer ring
in Fig. 4(d)); and 3) aligned nodes that are not connected with any
unaligned nodes not in the representative subgraph (e.g., the normal
gray node in Fig. 4(d)). For the first type of node, the edges connected
to this node are also set as dashed lines. For the second type of node,
the radius of the outer ring represents the number of unaligned nodes
connected to this node. A larger radius indicates a larger number of
connected unaligned nodes. Fig. 5 illustrates all node encoding types
in our difference-aware individual subgraph layout algorithm. Fig. 5(a)
shows a white node with a dashed boundary, Fig. 5(b) displays a nor-
mal gray node, and Fig. 5(c)-(e) illustrate three different sizes of gray
nodes with an outer ring that we employ. The radius of all the white
node with a dashed boundary and gray nodes is the same, except for
the outer rings of gray nodes. We use only three sizes of radius for
the outer ring to represent the number of connected unaligned nodes.
The radius of the outer ring in Fig. 5(c)-(e) corresponds to three levels
of node numbers: small, medium, and large. This encoding scheme
can help users roughly identify and distinguish different levels of node
numbers, without the outer rings being too small to identify or too large
to obscure nearby information. We can observe that using the layout of
Fig. 4(e) to represent Fig. 4(a) makes it easier to identify the differences
between a subgraph and its representative subgraph.

3.4 Adaptive Motif Generation
Our adaptive motifs are generated based on the subgraph Layout. That
is, the motifs of representative subgraphs are generated based on the
similarity-aware representative subgraph layout, while the motifs of
other subgraphs are generated based on the difference-aware individual



(a) (b)

(c) (d) (e) (f) (g) (h)

Fig. 6: Cpan dataset [29]: (a) the original graph with three communities in different colors; (b) the simplified graph with three motifs highlighted with
gray boxes; (c), (e), and (g) separately displayed communities in different colors in (a); (d), (f), and (h) separately displayed motifs highlighted with
gray boxes in (b). (c) and (d) represent the same community. (e) and (f) represent the same community. (g) and (h) represent the same community.

subgraph layout. The size of the motif indicates the number of nodes
within the corresponding subgraph. To enhance the visibility of each
motif, we add an outer contour and filled them with color. Different
colors represent different subgraph clusters. The convex hull algorithm
can be used to extract the contours of each subgraph [26]. However,
due to the irregular shapes of each motif, some convex polygons do not
wrap the motifs very tightly. Using concave polygons might be more
suitable, allowing users to capture the distinctive features of the motifs.
Therefore, we adopt the alpha-shape algorithm [17], which supports the
extraction of concave polygon boundaries. For aesthetic purposes, we
further utilize a polybuffer algorithm [1] to enlarge the outer contour
in order to enclose nodes of certain sizes. As shown in Fig. 2(e),
each motif is generated from the corresponding subgraphs in Fig. 2(c)
and represented using our subgraph layout representation in Fig. 2(d).
After generating all motifs, we then perform a force-directed layout
to optimize the overall layout. Our motif design simplifies nodes and
reduces edges in the graph. In our design, edges between nodes in the
original graph are replaced by a single edge connecting motifs, even if
multiple edges existed between nodes within those motifs in the original
graph. We represent the number of edges connecting nodes within these
two motifs in the original graph using the grayscale value of the edge. A
darker grayscale value indicates a higher number of the original edges.
Additionally, we use the edge bundling technique [12, 31] to enhance
the overall visual effect of our method. Fig. 2(f) illustrates the final
simplified effect of Fig. 2(a). Our method is entirely automated and can
adapt to simplify various datasets with different types of subgraphs.

4 CASE STUDY

In this section, we apply our AdaMotif method to three graphs of
different scales and demonstrate the effectiveness of our approach.

4.1 Small Graph

Firstly, we tested our method on a real small graph, which is the
character network from Les Misérables [34] with 77 nodes and 254

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 7: An example of the similarity-aware representative subgraph layout
result: (a) a super-graph generated by (b)-(d) representative subgraphs,
and (e)-(g) represent the corresponding layouts for (b)-(d) based on (a).

edges. Due to its small scale, we can clearly see the overall graph
structure in Fig. 2(a). The nine communities in the graph are labeled
with different colors in Fig. 2(b). We can clearly see the overall graph
structure and identify the six communities located on the periphery.
However, the three communities in the middle (i.e., the orange, yellow,
and cyan communities) are intertwined and difficult to distinguish, let
alone compare them. If the communities are displayed independently
(as shown in the left part of Fig. 2(c)), it is relatively easy to identify and
compare. However, it becomes impossible to examine the community



connections and the overall graph structure.
In our results (see Fig. 2(f)), the communities are displayed as motifs,

making them easy to be identified and compared. Furthermore, we
can determine their scale and category information based on their size
and color. Moreover, we can observe that the blue motif represents a
star-shaped structure (i.e., a central node surrounded by many periph-
eral nodes), the yellow motif represents a clique structure (i.e., highly
interconnected nodes), and the pink motif represents a grid structure
(i.e., most nodes have balanced degrees). Motif “1” has a star-shaped
structure, with the central node possibly being the main character. So,
we checked the original information of the nodes and found that this
is indeed the case. The central node represents Valjean, the protago-
nist of Les Misérables. Additionally, the four yellow motifs represent
communities of closely related characters. In the context of the novel,
these four communities correspond to the characters involved in the
Champmathieu case, the young revolutionaries, the characters associ-
ated with Fantine’s life, and those connected to Valjean’s growth and
transformation. These close-knit communities play a pivotal role in the
development of the novel’s narrative.

The differences between motifs of the same color (i.e., communities
of the same type) can also be roughly discerned by the number of the
white node with a dashed boundary and the gray node with an outer
ring. In Fig. 2(f), the four blue labeled motifs have different sizes.
Although motif "2" is the same size as the representative subgraph
motif "1", it still has subtle structural differences compared to motif
"1". This is because it contains one white node and one gray node
with an outer ring. The other two slightly smaller motifs "3" and "4"
contain multiple white nodes, indicating that they are simpler than the
representative motif’s star-shaped structure, resembling more like a
small star dragging a long tail. These structural differences are difficult
to discern in Fig. 2(b), let alone in Fig. 2(a). Although Fig. 2(c) can
provide clear community similarities and differences, the community
connections and the overall graph structure are missed.

However, the community connections are also clearly shown in our
result (see Fig. 2(f)), since the number of edges is greatly reduced
after graph simplification. For example, the blue motif in the bottom
right corner and the orange motif on the rightmost are connected by
a dark gray edge label with “5”, indicating that there are many edges
connecting nodes between these two motifs. However, specific edge
information between nodes is lost. This is an inevitable consequence
of information loss caused by graph simplification.

Therefore, our method can help users identify communities and
compare their similarities and differences, while also allowing them to
examine the community connections and the overall graph structure.
This cannot be achieved solely with Fig. 2(b) or (c). This example
demonstrates that our method works well for small graphs.

4.2 Medium-Sized Graph
Secondly, we tested our method on a medium-sized graph named
Cpan [29], which is a collaboration network with 839 nodes and 2,127
edges. This graph depicts the relationships between developers using
the same Perl modules. Fig. 1(a) shows the original graph with the
force-directed layout, while Fig. 1(b) illustrates our simplified result.
In Fig. 1(a), only communities with big star-shaped structure can be
clearly observed, one of them is highlighted with gray box labeled as
“1”. Communities with other structures, such as clique structure, grid
structure, or more general structures, are difficult to identify due to the
high density of nodes and edges.

In Fig. 1(b), communities with both big star-shaped structure and
other structures can be easily identified. The community labeled as
“1” and “2” in the gray box are the same one. We can observe that our
motif effectively captures the star-shaped structure of this community.
Many structures that are not distinguishable in Fig. 1(a) can be clearly
identified in Fig. 1(b). For example, the community “3” and “4” in
the gray box are the same one. The nodes of community “3” are
highlighted in red in Fig. 1(a), and it can be observed that these nodes
are relatively scattered, making community “3” difficult to identify.
However, our motif for community “4” effectively captures the structure
of this community and is easily recognizable.

In Fig. 6(b), users can observe that all the communities are divided
into five categories based on the motif colors. Three motifs from
different community categories are highlighted with gray boxes and
numbered. Their corresponding communities are difficult to identify
in Fig. 6(a), even though we have also highlighted them with corre-
sponding colors. The community corresponding to the green motif
labeled as “1” in Fig. 6(b) is also marked in green in Fig. 6(a). The
same applies to the other two numbered motifs. In Fig. 6(a), the three
communities colored in yellow and green are intertwined, making them
difficult to identify and even harder to compare. However, they are
easily identifiable and comparable in our results shown in Fig. 6(b),
due to the use of different motifs. Fig. 6(c) and (d) represent the same
community. Fig. 6(e) and (f) represent the same community. Fig. 6(g)
and (h) represent the same community. Through comparison, it can be
observed that our motif effectively represents the community scattered
in the original graph, making them clear and easy to identify.

Furthermore, we verified the effectiveness of our similarity-aware
representative subgraph layout result. By examining the intermediate
results of our program, we found that the five representative subgraphs
of this graph have been divided into two classes: one containing two
subgraphs and the other containing three. The super-graph generated
by the class with three representative subgraphs is shown in Fig. 7(a),
and the three representative subgraphs before and after super-graph
alignment are shown in Fig. 7(b)-(g). We found that the alignment
effect of the super-graph is quite evident. In Fig. 7(b)-(d), there is a
prominent star-shaped node in each, representing nodes with high simi-
larity. However, in Fig. 7(b), this node is located below; in Fig. 7(c),
it is located above; and in Fig. 7(d), it is located to the right, result-
ing in inconsistent positioning, which makes it difficult to compare
them. In contrast, in our results in Fig. 7(e)-(g), these prominent star-
shaped nodes are all positioned at the top of the graph, making them
easy to compare. Therefore, our similarity-aware representative sub-
graph layout algorithm can effectively demonstrate the similarities and
differences between communities.

Fig. 8: Using both color and Bubble Sets [9] to show communities in the
AS-733 dataset.

4.3 Large Graph
Finally, we tested our method on a large graph named AS-733 [37],
which is an autonomous systems network on the Internet with 6,474
nodes and 13,895 edges. From the previous case study about Cpan, we
observed that for medium-sized graphs, the community information
becomes difficult to recognize from the original graph visualization,
even when using colors to encode the communities (see the colored
communities in Fig. 1(a) and 6(a)). Therefore, for the AS-733 graph,
which is much larger than Cpan, we tried to represent different com-
munities using both color and Bubble Sets [9] in the original graph
visualization (see Fig. 8). As shown in Fig. 8, the scale of the graph has
indeed become quite large. Although using Bubble Sets can better en-
code communities with scattered nodes, it is still difficult to recognize
any community in areas with too many overlapping communities (e.g.,



(a) (b)

Fig. 9: AS-733 dataset: (a) the Primitive AdaMotif result that executes our subgraph partitioning and hierarchical clustering but does not execute our
subgraph layout; (b) our AdaMotif result.

the central area in Fig. 8) due to the overlapping of many Bubble Sets.
Therefore, it is necessary to represent the nodes of each community in
a consolidated manner (e.g., our motif shapes) and avoid overlap.

Next, we implemented a simplified version of AdaMotif , called Prim-
itive AdaMotif. Primitive AdaMotif executes our subgraph partitioning
and hierarchical clustering, but does not execute our subgraph layout.
It also uses our outer contour and colors to represent each community.
The size of the outer contour indicates the number of nodes in the com-
munity. To facilitate the comparison between Primitive AdaMotif and
AdaMotif , we used the same encoding scheme to represent the edges
between motifs and applied the edge bundling technique. Their results
applied to the AS-733 graph are shown in Fig. 9(a) and (b), respectively.
In both results, the graph is simplified into multiple structures, signifi-
cantly reducing the scale of the graph and enhancing the utilization of
screen space. Additionally, we can quickly identify four big star-shaped
communities (i.e., the four large pink communities). Despite the large
number of nodes, we can still identify multiple communities and their
categories via the colors from the results of both Primitive AdaMotif
and AdaMotif , as shown in Fig. 9(a) and (b).

However, it is hard to compare communities to identify their simi-
larities and differences by using Primitive AdaMotif. On the contrary,
AdaMotif shows clear advantages. Firstly, for comparing different
types of communities (i.e., communities of different colors), as shown
in Fig. 9(b), it is easy to see that the pink and blue motifs are both
main star-shaped communities, while the green motif contains multi-
ple star-shaped communities. Given the diverse community shapes in
Fig. 9(a), it is not easy to draw such conclusions by visual inspection
alone. Secondly, for comparing communities of the same type (i.e.,
communities of the same color), it is relatively easy to distinguish the
differences among the four large pink star-shaped motifs located in the
middle of Fig. 9(b). This is because, based on the graph alignment
result, white nodes (indicating that this community actually does not
have this node compared to the representative subgraph) and gray nodes
with an outer ring (indicating that there are still some nodes in this
community that are not displayed) are marked, which facilitates visual
comparison. This last example demonstrates that our method performs
well on large graphs as well and shows its advantages over the original
graph visulaization and the result of Primitive AdaMotif.

We implemented our AdaMotif method on a desktop with the
Windows 10 operating system, Intel Core i3-12100F 3.3GHz CPUs,
NVIDIA RTX 2060 12GB graphics card, and 16GB of memory. The
computation times of our method for datasets used in Fig. 2, Fig. 6, and

Table 1: The accuracy and time taken for tasks between the original
graph and the AdaMotif . The tested datasets are classified into three
scales, and the tasks are divided into three categories.

Scale Task Accuracy Time(s)
Original

graph AdaMotif Original
graph AdaMotif

Small
graph

Similarity 0.433 0.817 30.38 28.403
Difference 0.867 0.867 29.305 21.360
Graph size 0.517 0.750 23.790 25.055

Medium
-sized
graph

Similarity 0.350 0.817 46.019 30.163
Difference 0.683 0.650 29.445 27.218
Graph size 0.383 0.467 49.518 47.075

Large
graph

Similarity 0.250 0.900 31.775 20.500
Difference 0.600 0.733 19.763 14.802
Graph size 0.183 0.317 27.005 32.403

Fig. 9 are 15.12s, 21.9s, and 41.46s respectively.

5 EXPERT INTERVIEW

To further assess the effectiveness of AdaMotif , we presented the AS-
733 graph to a computer network expert with over 15 years of experi-
ence in High-Performance Routing and Internet Architecture. He found
AdaMotif beneficial for research, as it classifies Autonomous System
(AS) communities and provides a global view of Internet topology. Our
method effectively highlights similarities and differences between com-
munities, aiding in identifying critical parts of the Internet, optimizing
performance, and improving security. By analyzing the similarities
and differences between AS communities, the security of each AS
can be assessed. For example, it is critical to monitor and analyze the
security incidents of computer networks, which can exist in different
communities [45]. With AdaMotif , the network security practition-
ers and researchers can investigate the similarities and differences of
communities that have experienced security incidents, enabling them
to identify and respond to security threats. He also noticed that our
motifs lose some information about the original nodes and edges. He
suggested adding more interactive features to help them view such
information simultaneously. Overall, our method is very promising,
and he is eager to apply AdaMotif to visualize other large graphs of
computer networks he needs to analyze.



Table 2: The results of the normal distribution test for the objective ques-
tions (∗, p < 0.05), where * indicates that the data significantly deviates
from a normal distribution.

Task Method Wacc pacc Wtime ptime

Similarity Original graph 0.938 0.641 0.565 <0.001*
AdaMotif 0.919 0.504 0.793 <0.001*

Difference Original graph 0.908 0.425 0.697 <0.001*
AdaMotif 0.975 0.924 0.671 <0.001*

Graph size Original graph 0.884 0.285 0.585 <0.001*
AdaMotif 0.863 0.198 0.775 <0.001*

Table 3: The results of the normal distribution test for the subjective ques-
tions (∗, p < 0.05), where * indicates that the data significantly deviates
from a normal distribution.

Task Method W p
Overall

structure
Original graph 0.952 0.019 *

AdaMotif 0.794 0.000 *
Local

structure
Original graph 0.886 0.004 *

AdaMotif 0.845 0.000 *

6 USER STUDY

We performed a formal user study to further investigate the effectiveness
of the AdaMotif . The user study compared the AdaMotif method with
commonly used force-directed node-link diagrams.

6.1 Hypothesis
To guide the user study, we formulated four specific hypotheses:

H1. AdaMotif offers a more robust advantage in finding and analyz-
ing communities. Our method reveals that communities with analogous
motifs are similar, allowing for clear identification of structurally alike
communities within the graph.

H2. AdaMotif aids in pinpointing distinctions among comparable
communities. While these communities share motifs, their internal
subgraphs reveal unique characteristics.

H3. AdaMotif facilitates a more intuitive visual estimation of the
graph’s size. Our method enables an initial approximation of the size
of similar subgraphs across different communities, which in turn aids
in estimating the overall graph size.

H4. AdaMotif performs better in understanding both the overall
structure (H4a) and local structure (H4b) of the graph. Our method
displays multiple communities and showcases both their commonalities
and differences, making it easier to be aware of structural information.

6.2 Study Design
Our study was structured around a within-subjects design, incorporating
both objective and subjective questions. For the objective questions, we
employed a Latin-Square sequence to mitigate order effects. Regarding
the subjective questions, we conducted semi-structured interviews with
identical questions for all the participants. This uniform set of questions
was applied across all datasets and methods to maintain consistency.

Tasks. We designed the research tasks and methodology by employ-
ing common graph visualization tasks and user rating evaluations. We
referred to relevant research methods [2, 16] and validated our hypothe-
ses. Our tasks were multiple-choice or fill-in-the-blank questions, and
the accuracy was determined by whether the answers were correct. The
specific tasks are as follows:
1. Similarity. About how many communities similar to the highlighted
community exist in the graph?

2. Difference. Which community has the largest number of nodes
among the four given similar communities in the graph? These four
communities are highlighted in the graph with different colors.

3. Graph Size. About how many nodes are in the graph? (Each option
is an interval range. The interval ranges are determined based on the
scale of the graph.)

(a) (b)

Fig. 10: Means and standard errors of the Original graph and AdaMotif
on similarity, difference and graph size (∗, p < 0.05).

Fig. 11: Means and standard errors of the Original graph and AdaMotif on
overall structure and local structure on a 7-point Likert scale(∗, p < 0.05).

4. Understandability. There are four evaluation tasks: assessing the
overall comprehensibility of the original graph, the comprehensibility
of its communities; the overall comprehensibility of the AdaMotif
graph, and the comprehensibility of its communities. All evaluations
are conducted after completing tasks for all tested datasets.

Dataset. We used six datasets which represent three tiers of graph
sizes. Small graphs: 1) Aves16 [46], which has 64 nodes and 177
edges; 2) The character network from Les Misérables [34], which has
77 nodes and 254 edges. Medium-sized graphs: 3) Bio-diseasome [46],
which has 516 nodes and 1188 edges; 4) Cpan [29], which has 839
nodes and 2,127 edges. Large graphs: 5) AS-733 [37], which has
6,474 nodes and 13,895 edges; 6) LastFM Asia Social Network [47],
which has 7,624 nodes and 27,806 edges.

Participants. We recruited 30 participants (19 males and 11 females)
for our user study. Among them, 19 participants have a background in
computer-related disciplines, whereas the remaining 11 are from vari-
ous backgrounds in non-computer fields. Additionally, 16 participants
have prior knowledge of graphs, in contrast to 14 who are not. We ran-
domly assigned participants into two groups. Subsequent adjustments
were made to balance the groups, ensuring equitable representation
across gender, field of study, and familiarity with graphs. This was
done to meet the requirements of the within-subjects design.

Procedure. Each participant took approximately 30 minutes to com-
plete the tasks. With each dataset divided into original and AdaMotif
graphs, and with the same tasks for each, there are a total of 36 ques-
tions across the six datasets. After completing the dataset tasks, there
are four evaluation tasks, making it a total of 40 tasks per participant.
We set a timer for the first 36 dataset tasks to assess the speed of partici-
pants’ responses. Two additional, simple tasks involving counting only
a limited number of nodes (⩽ 8) and communities (⩽ 4) served as an
attention check for participant attentiveness. A reward mechanism was
implemented to incentivize focused participation, based on the local
minimum hourly wage standards (i.e., 30 RMB per hour in Shenzhen,
China).

6.3 Result
We conducted statistical analysis for each graph size separately, taking
into account both the original and simplified graphs. We tracked the
accuracy and the duration required by users to complete the tasks. At
the smallest graph dimensions, our method excelled in the similarity
task, while its performance in the remaining tasks aligned closely
with that of the original graphs. However, as the scale increased, the
advantages of our method became more pronounced. Details are in



Table. 1. Additionally, we conducted a statistical analysis across all data
sizes and tasks to reflect their performance, which we represented using
error bars. Details are in Fig. 10. Overall, the AdaMotif outperformed
the original graph across all tasks. Consistently, our method obtained
better results in understandability tasks. Details are in Fig. 11.

We conducted an analysis of the obtained statistical results. For each
task, we performed measures analysis of means and standard errors
on the collected data. For measures with statistically significant dif-
ferences, we employed the following test protocol: Given the use of
non-standardized scales, it was imperative to first ascertain the normal-
ity of the data distribution. We performed the Shapiro-Wilk test for
each task’s data to verify normal distribution adherence. In cases of
normal distribution, an independent-samples t-test was utilized for met-
rics with significant differences. Conversely, for data not conforming
to normal distribution, the Wilcoxon signed-rank test was applied. The
specifics of normal distribution test are detailed in Table. 2 and 3.

Similarity. In the study, participants demonstrated a higher ac-
curacy for using AdaMotif (Meanacc = 0.845, SDacc = 0.048) to
identify structurally similar communities within graphs compared
to the original graph (Meanacc = 0.344, SDacc = 0.092). The accu-
racy score of AdaMotif was statistically significantly higher by 0.500,
95% CI [0.335 to 0.666] than the original graph, t(4)acc = 8.381,
pacc < 0.001, via the t-test. In terms of task completion time, AdaMotif
(Meantime = 24.417, SDtime = 30.709) also outperformed the original
graph (Meantime = 36.060, SDtime = 30.177). Based on the Wilcoxon
signed-rank test, there was a significant difference between our method
and the original graph (Ztime =−5.257, ptime < 0.001). Both in terms
of accuracy and time, AdaMotif showed significantly superior perfor-
mance (Table. 1, Fig. 10, H1 accepted).

Difference. Participants performed well utilizing both AdaMotif
and the original graph in telling different communities. The accu-
racy results for AdaMotif (Meanacc = 0.750, SDacc = 0.109) showed a
bit higher than the original graph (Meanacc = 0.717, SDacc = 0.137).
Statistical analysis via the t-test revealed no significance with the
mean difference of 0.033, 95% CI [−0.247 to 0.314], t(4)acc = 0.330,
pacc = 0.379. In terms of time efficiency, AdaMotif (Meantime =
20.671, SDtime = 21.311) recorded slightly faster than the original
graph (Meantime = 26.172, SDtime = 26.851). Based on the Wilcoxon
signed-rank test, there was a significant difference between our method
and the original graph (Ztime = −3.283, ptime = 0.001). Our method
achieves slightly better accuracy than the original graph in distinguish-
ing similar communities (Table. 1, Fig. 10), while also being more
efficient in handling these tasks. (H2 partially accepted).

Graph Size. Visual estimation of node counts in graphs becomes
increasingly challenging with larger datasets. The use of AdaMo-
tif (Meanacc = 0.511, SDacc = 0.220) showed to enhance the ac-
curacy of such estimations when compared with the original graph
(Meanacc = 0.361, SDacc = 0.168). There was no statistically signifi-
cant mean difference of 0.150, 95% CI [−0.294 to 0.594], t(4)acc =
0.940, pacc = 0.200. In terms of time period assumption, there is no
improvement of AdaMotif (Meantime = 37.239, SDtime = 40.734) over
the original graph (Meantime = 33.440, SDtime = 29.904). Based on the
Wilcoxon signed-rank test, there was no significant difference between
our method and the original graph (Ztime =−0.996, ptime = 0.319). Our
method still faces challenges in performance with very large datasets
(Table. 1, Fig. 10, H3 rejected).

Understandability. Our method (Mean = 5.965, SD = 1.048) sig-
nificantly outperforms the original graph (Mean = 3.835, SD = 1.551)
in terms of overall structural comprehensibility (Fig. 11). Based on
the Wilcoxon signed-rank test, there was a significant difference be-
tween our method and the original graph (Z = 35.500, p < 0.05, H4a
accepted). Similarly, in terms of local structural comprehensibility,
our method (Mean = 6.035, SD = 0.795) also outperforms the original
graph (Mean = 3.235, SD = 1.542) (Fig. 11). The Wilcoxon signed-
rank test suggests that there was a significant difference between our
method and the original graph (Z = 5.000, p < 0.05, H4b accepted).

In summary, our method outperforms the original graph across mul-
tiple evaluation tasks. Particularly, in the case of small-scale data, our
method excels in identifying similar community structures. As the

data scale increases, the advantages of our method become even more
pronounced, demonstrating its effectiveness in graph simplification.
Both user ratings and verbal feedback highlight the strong performance
of our method. The adaptive motifs enable users to gain a deeper under-
standing of each community and analyze the required information more
efficiently. Therefore, our method effectively simplifies the graph.

7 DISCUSSION AND FUTURE WORK

The experiments demonstrate that AdaMotif possesses distinct bene-
fits. Our simplified results are aesthetically appealing and significantly
reduce visual clutter while accentuating different patterns of graph com-
munities. Our method was initially inspired by the motif simplification
approach [16] which can discover and represent only three specific
types of structures: fan, clique, and connector. On the contrary, our
method is applicable to general graph structures. Furthermore, our
method can automatically discover any type of structure in the graph
and represent it with adaptive motifs. Our method currently only works
on undirected graphs. In the future, we plan to study the simplification
of other types of graphs (e.g., directed graphs and dynamic graphs).

While the communities revealed by our motifs are highly dependent
on the selected community detection algorithm [5], it is not limited to
that algorithm because each step of our framework is relatively inde-
pendent, and replacing that algorithm with other community detection
method will not affect the whole framework. Therefore, theoretically,
users can choose any algorithm based on their requirements to discover
the communities and represent them as motifs of different shapes.

The community similarities and differences reflected in our motifs
are based on the graph clustering and graph alignment algorithms uti-
lized. Different graph clustering algorithms may generate different
results, and the graph similarities and differences identified by graph
alignment algorithms may not be accurate. Although we know that the
maximum common subgraph method will give more accurate results,
it is an NP-hard problem, which severely limits the efficiency of our
method on large graphs. Therefore, we choose to use the graph align-
ment method with lower time complexity and higher inaccuracy. In
the future, we plan to explore whether there is any heuristic maximum
common subgraph method to improve the accuracy of our method.

Our method is more effective for graphs with clear community struc-
tures. When the graph does not own clear communities, the advantage
of our approach in visualizing large graphs can be weakened. Further-
more, our method is effective for large graphs, it is important to note
that our implemented algorithms are still limited by the computer mem-
ory and screen size. For extreme large graphs, our approach can still
suffer from scalability issues in terms of computation time and visual
clutter. In the future, we will improve the scalability of our method
to handle larger graphs. One possibility is to use GPU-accelerated
algorithms to handle super-large graphs and design methods for multi-
layered displays to address the issue of small screens.

In the field of graph simplification, information loss is an inevitable
challenge. Our method loses the original edge information between
nodes across communities. Therefore, we plan to design an appropriate
encoding scheme for the simplified edges in our results in the future.

For the layout of different community motifs, we use the basic force-
directed layout algorithm [13] in our current implementation. It will be
interesting to incorporate other algorithms [4, 51] into our approach to
further enhance our motif layout effect, which is left as future work.

8 CONCLUSION

We have proposed a novel framework for simplifying large graphs
using adaptive motif design, which combines the advantages of graph
visualization and graph mining techniques. Communities in the graph
are first detected, represented as subgraphs, and then clustered. A
representative subgraph is computed for each category. Based on graph
alignment results, a similarity-aware representative subgraph layout
algorithm, and a difference-aware individual subgraph layout algorithm
are used to decide the subgraph layouts. Finally, adaptive motifs are
generated, and these motifs replace the original subgraphs. Thus, our
method significantly simplifies the original graph, making it easier for
users to analyze and explore the community structures.



ACKNOWLEDGMENTS

The authors would like to thank all the participants for their par-
ticipation in the user studies and interviews, Dr. Shu Yang for
the constructive discussions, and all the anonymous reviewers for
their valuable comments and suggestions. This work is partially
supported by the Shenzhen Science and Technology Major Project
(KJZD20230923114605011), the Scientific Development Funds of
Shenzhen University (No. 000001032518), the National Natural Sci-
ence Foundation of China (No. 62273241), the Natural Science Foun-
dation of Guangdong Province, China (No. 2024A1515011946), and
NTU Start Up Grant.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/
pb8t3/. In particular, these include: (1) datasets used to generate the
figures in the paper and the user study examples, (2) figure images in
multiple formats, and (3) all materials related to the user study. Our
code is shared at https://github.com/lpfeng11/AdaMotif.

FIGURE CREDITS

Fig. 2(a) is generated by using the force-directed graph layout compo-
nent of D3 [13].

REFERENCES

[1] https://ww2.mathworks.cn/help/matlab/ref/polyshape.polybuffer.html. 5
[2] M. Abdelaal, N. D. Schiele, K. Angerbauer, K. Kurzhals, M. Sedl-

mair, and D. Weiskopf. Comparative evaluation of bipartite, node-
link, and matrix-based network representations. IEEE Transactions
on Visualization and Computer Graphics, 29(1):896–906, 2022. doi:
10.1109/TVCG.2022.3209427. 8

[3] U. Alon. Network motifs: theory and experimental approaches. Nature
Reviews Genetics, 8(6):450–461, 2007. doi: 10.1038/nrg2102. 2

[4] D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel graph
layout by topological features. IEEE transactions on visualization and
computer graphics, 13(2):305–317, 2007. doi: 10.1109/TVCG.2007.46. 9

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechan-
ics: theory and experiment, 2008(10):P10008, 2008. doi: 10.1088/1742-
5468/2008/10/P10008. 3, 9

[6] M. Brehmer, R. Kosara, and C. Hull. Generative design inspiration for
glyphs with diatoms. IEEE Transactions on Visualization and Computer
Graphics, 28(1):389–399, 2021. doi: 10.1109/TVCG.2021.3114792. 2

[7] B. Cabrera, B. Ross, D. Röchert, F. Brünker, and S. Stieglitz. The in-
fluence of community structure on opinion expression: an agent-based
model. Journal of Business Economics, 91:1331–1355, 2021. doi:
10.1007/s11573-021-01064-7. 2

[8] X. Chen, M. Heimann, F. Vahedian, and D. Koutra. Cone-align:
Consistent network alignment with proximity-preserving node embed-
ding. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, pp. 1985–1988, 2020. doi:
10.1145/3340531.3412136. 2

[9] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set
relations with isocontours over existing visualizations. IEEE transactions
on visualization and computer graphics, 15(6):1009–1016, 2009. doi:
10.1109/TVCG.2009.122. 6

[10] C. Coupette and J. Vreeken. Graph similarity description: How are
these graphs similar? In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining, pp. 185–195, 2021. doi:
10.1145/3447548.3467257. 2

[11] Y. Cui, X. Li, J. Li, H. Wang, and X. Chen. A survey of sampling method
for social media embeddedness relationship. ACM Computing Surveys,
55(4):1–39, 2022. doi: 10.1145/3524105. 2

[12] D3. https://github.com/d3/d3-shape#curvebundle. 5
[13] D3. https://observablehq.com/@d3/force-directed-graph-component. 3, 4,

9, 10
[14] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti. Generalized louvain

method for community detection in large networks. In 2011 11th inter-
national conference on intelligent systems design and applications, pp.
88–93. IEEE, 2011. doi: 10.1109/ISDA.2011.6121636. 2

[15] N. T. Doncheva, Y. Assenov, F. S. Domingues, and M. Albrecht. Topo-
logical analysis and interactive visualization of biological networks

and protein structures. Nature protocols, 7(4):670–685, 2012. doi:
10.1038/nprot.2012.004. 2

[16] C. Dunne and B. Shneiderman. Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 3247–3256, 2013. doi: 10.1145/2470654.2466444. 1, 2, 8, 9

[17] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of
points in the plane. IEEE Transactions on information theory, 29(4):551–
559, 1983. doi: 10.1109/TIT.1983.1056714. 5

[18] B. J. Frey and D. Dueck. Clustering by passing messages between data
points. science, 315(5814):972–976, 2007. doi: 10.1126/science.1136800.
3

[19] J. Fuchs, P. Isenberg, A. Bezerianos, and D. Keim. A systematic re-
view of experimental studies on data glyphs. IEEE transactions on
visualization and computer graphics, 23(7):1863–1879, 2016. doi:
10.1109/TVCG.2016.2549018. 2

[20] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern
Analysis and applications, 13:113–129, 2010. doi: 10.1007/s10044-008-
0141-y. 2

[21] A. Grover and J. Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp. 855–864, 2016.
doi.org/10.1145/2939672.2939754. 2

[22] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. A
survey on knowledge graph-based recommender systems. IEEE Transac-
tions on Knowledge and Data Engineering, 34(8):3549–3568, 2020. doi:
10.1109/TKDE.2020.3028705. 2

[23] A. Gupta and R. K. Singh. Developing a framework for evaluating sus-
tainability index for logistics service providers: graph theory matrix ap-
proach. International Journal of Productivity and Performance Man-
agement, 69(8):1627–1646, 2020. doi: 10.1108/IJPPM-12-2019-0593.
2

[24] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means cluster-
ing algorithm. Journal of the royal statistical society. series c (applied
statistics), 28(1):100–108, 1979. doi: 10.2307/2346830. 2

[25] J. Hartmanis. Computers and intractability: a guide to the theory of
np-completeness (michael r. garey and david s. johnson). Siam Review,
24(1):90, 1982. doi: 10.1137/1024022. 4

[26] J. Heer and D. Boyd. Vizster: Visualizing online social networks. In
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005., pp.
32–39. IEEE, 2005. doi: 10.1109/INFVIS.2005.1532126. 5

[27] M. Heimann, X. Chen, F. Vahedian, and D. Koutra. Refining network
alignment to improve matched neighborhood consistency. In Proceedings
of the 2021 SIAM International Conference on Data Mining (SDM), pp.
172–180. SIAM, 2021. doi: 10.1137/1.9781611976700.20. 2

[28] J. Hermanns, K. Skitsas, A. Tsitsulin, M. Munkhoeva, A. Kyster,
S. Nielsen, A. M. Bronstein, D. Mottin, and P. Karras. Grasp: Scal-
able graph alignment by spectral corresponding functions. ACM Trans-
actions on Knowledge Discovery from Data, 17(4):1–26, 2023. doi:
10.1145/3561058. 2

[29] S. Heymann. Cpan-explorer, an interactive exploration of the
perl ecosystem. https://gephi.wordpress.com/2009/06/25/cpan-explorer-
an-interactive-exploration-of-the-perl-ecosystem/. Gephi Blog, 2009. 1, 5,
6, 8

[30] O. Hoeber. Information visualization for interactive information retrieval.
In Proceedings of the 2018 Conference on Human Information Interaction
& Retrieval, pp. 371–374, 2018. doi: 10.1145/3176349.3176898. 2

[31] D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph
visualization. In Computer graphics forum, vol. 28, pp. 983–990. Wiley
Online Library, 2009. doi: 10.1111/j.1467-8659.2009.01450.x. 5

[32] B. Jiao, X. Lu, J. Xia, B. B. Gupta, L. Bao, and Q. Zhou. Hierar-
chical sampling for the visualization of large scale-free graphs. IEEE
Transactions on Visualization and Computer Graphics, 2022. doi:
10.1109/TVCG.2022.3201567. 1, 2

[33] V. Kann. On the approximability of the maximum common subgraph
problem. In STACS 92: 9th Annual Symposium on Theoretical Aspects of
Computer Science Cachan, France, February 13–15, 1992 Proceedings 9,
pp. 375–388. Springer, 1992. doi: 10.1007/3-540-55210-3_198. 4

[34] D. E. Knuth. The Stanford GraphBase: a platform for combinatorial
computing, vol. 1. AcM Press New York, 1993. 5, 8

[35] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. Summarizing and
understanding large graphs. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 8(3):183–202, 2015. doi: 10.1002/sam.11267.

https://osf.io/pb8t3/
https://osf.io/pb8t3/
https://github.com/lpfeng11/AdaMotif


2
[36] K. Lee, H. Jo, J. Ko, S. Lim, and K. Shin. Ssumm: Sparse summarization

of massive graphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 144–154, 2020.
doi: 10.1145/3394486.3403057. 2

[37] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densifica-
tion laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge dis-
covery in data mining, pp. 177–187, 2005. doi: 10.1145/1081870.1081893.
6, 8

[38] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods
and applications: A survey. ACM computing surveys (CSUR), 51(3):1–34,
2018. doi: 10.1145/3186727. 2

[39] S. Majeed, M. Uzair, U. Qamar, and A. Farooq. Social network analysis vi-
sualization tools: A comparative review. In 2020 IEEE 23rd International
Multitopic Conference (INMIC), pp. 1–6. IEEE, 2020. doi: 10.1109/IN-
MIC50486.2020.9318162. 2

[40] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal. graph2vec: Learning distributed representations of graphs.
arXiv preprint arXiv:1707.05005, 2017. doi: 10.48550/arXiv.1707.05005.
2

[41] H. Nassar, N. Veldt, S. Mohammadi, A. Grama, and D. F. Gleich. Low
rank spectral network alignment. In Proceedings of the 2018 World Wide
Web Conference, pp. 619–628, 2018. doi: 10.1145/3178876.3186128. 2, 4

[42] NodeXL. https://nodexl.com/. 1
[43] P. Oliver, E. Zhang, and Y. Zhang. Scalable hypergraph visualization.

IEEE Transactions on Visualization and Computer Graphics, 2023. doi:
10.1109/TVCG.2023.3326599. 2

[44] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian. Fast
influence-based coarsening for large networks. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 1296–1305, 2014. doi: 10.1145/2623330.2623701. 2

[45] J. Raynor, T. Crnovrsanin, S. Di Bartolomeo, L. South, D. Saffo, and
C. Dunne. The state of the art in bgp visualization tools: A mapping
of visualization techniques to cyberattack types. IEEE Transactions
on Visualization and Computer Graphics, 29(1):1059–1069, 2022. doi:
10.1109/TVCG.2022.3209412. 7

[46] R. A. Rossi and N. K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015. doi:
10.1609/aaai.v29i1.9277. 8

[47] B. Rozemberczki and R. Sarkar. Characteristic functions on graphs: Birds
of a feather, from statistical descriptors to parametric models. In Proceed-
ings of the 29th ACM international conference on information & knowl-
edge management, pp. 1325–1334, 2020. doi: 10.1145/3340531.3411866.
2, 3, 8

[48] S. Tabassum, F. S. Pereira, S. Fernandes, and J. Gama. Social network
analysis: An overview. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 8(5):e1256, 2018. doi: 10.1002/widm.1256. 2

[49] H. T. Trung, N. T. Toan, T. Van Vinh, H. T. Dat, D. C. Thang, N. Q. V.
Hung, and A. Sattar. A comparative study on network alignment tech-
niques. Expert Systems with Applications, 140:112883, 2020. doi:
10.1016/j.eswa.2019.112883. 2, 4

[50] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17:395–416, 2007. doi: 10.1007/s11222-007-9033-z. 2

[51] M. Xue, Z. Wang, F. Zhong, Y. Wang, M. Xu, O. Deussen, and Y. Wang.
Taurus: towards a unified force representation and universal solver for
graph layout. IEEE Transactions on Visualization and Computer Graphics,
29(1):886–895, 2022. doi: 10.1109/TVCG.2022.3209371. 9

[52] L. Ying, X. Shu, D. Deng, Y. Yang, T. Tang, L. Yu, and Y. Wu. Metaglyph:
Automatic generation of metaphoric glyph-based visualization. IEEE
Transactions on Visualization and Computer Graphics, 29(1):331–341,
2022. doi: 10.1109/TVCG.2022.3209447. 2

[53] J. Zeng and H. Yu. A distributed infomap algorithm for scalable
and high-quality community detection. In Proceedings of the 47th In-
ternational Conference on Parallel Processing, pp. 1–11, 2018. doi:
10.1145/3225058.3225137. 2

[54] Y. Zhao, H. Jiang, Y. Qin, H. Xie, Y. Wu, S. Liu, Z. Zhou, J. Xia, F. Zhou,
et al. Preserving minority structures in graph sampling. IEEE Transactions
on Visualization and Computer Graphics, 27(2):1698–1708, 2020. doi:
10.1109/TVCG.2020.3030428. 1, 2

[55] S. Zhou, X. Dai, H. Chen, W. Zhang, K. Ren, R. Tang, X. He, and
Y. Yu. Interactive recommender system via knowledge graph-enhanced
reinforcement learning. In Proceedings of the 43rd international ACM

SIGIR conference on research and development in information retrieval,
pp. 179–188, 2020. doi: 10.1145/3397271.3401174. 2

[56] Y. Zhou, A. Rathore, E. Purvine, and B. Wang. Topological simplifica-
tions of hypergraphs. IEEE Transactions on Visualization and Computer
Graphics, 2022. doi: 10.1109/TVCG.2022.3153895. 2

[57] Z. Zhou, C. Shi, X. Shen, L. Cai, H. Wang, Y. Liu, Y. Zhao, and
W. Chen. Context-aware sampling of large networks via graph repre-
sentation learning. IEEE Transactions on Visualization and Computer
Graphics, 27(2):1709–1719, 2020. doi: 10.1109/TVCG.2020.3030440. 1,
2


	Introduction
	Related Work
	Graph Visualization Simplification
	Graph Structure Analysis

	Adaptive Motif Design
	Subgraph Partitioning
	Hierarchical Clustering
	Subgraph Layout
	Adaptive Motif Generation

	Case Study
	Small Graph
	Medium-Sized Graph
	Large Graph

	Expert Interview
	User Study
	Hypothesis
	Study Design
	Result

	Discussion and Future Work
	Conclusion

