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Fig. 1: Visual probing of multi-modal CLIP embeddings for text-to-image generation. (a) For the prompt of "waterlily pond by Monet",
users first discover misalignment of pre-trained models in the form of concept entanglement between "Monet" and "bridge" using
our Modal Fusion Map projection and concept axis view. (b) Data augmentation based on weighted embedding generation can be
performed to provide extra alignment reference set. (c) Set-set alignment interaction is performed to align the initial generated images
of "waterlily pond by Monet" to the augmented images reflecting user intents. (d) Post-alignment model can generate a set of images
with more diversity by disentangling "Monet" and "bridge".

Abstract— Multi-modal embeddings form the foundation for vision-language models, such as CLIP embeddings, the most widely
used text-image embeddings. However, these embeddings are vulnerable to subtle misalignment of cross-modal features, resulting in
decreased model performance and diminished generalization. To address this problem, we design ModalChorus, an interactive system
for visual probing and alignment of multi-modal embeddings. ModalChorus primarily offers a two-stage process: 1) embedding probing
with Modal Fusion Map (MFM), a novel parametric dimensionality reduction method that integrates both metric and nonmetric objectives
to enhance modality fusion; and 2) embedding alignment that allows users to interactively articulate intentions for both point-set and
set-set alignments. Quantitative and qualitative comparisons for CLIP embeddings with existing dimensionality reduction (e.g., t-SNE
and MDS) and data fusion (e.g., data context map) methods demonstrate the advantages of MFM in showcasing cross-modal features
over common vision-language datasets. Case studies reveal that ModalChorus can facilitate intuitive discovery of misalignment and
efficient re-alignment in scenarios ranging from zero-shot classification to cross-modal retrieval and generation.

Index Terms—Multi-modal embeddings, dimensionality reduction, data fusion, interactive alignment

1 INTRODUCTION

Neural embeddings are high-dimensional latent representations for
knowledge captured from self-supervised pre-training, such as word
embeddings and image embeddings. Recently, multi-modal (e.g., text
and image) embedding are playing a pivotal role for advancing multi-
modal AI models. This type of embeddings learns a joint representation
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space that encodes different modalities and their relationships, forming
the basis for cross-modal tasks such as text-to-image retrieval and gener-
ation [3,53,72,74]. The performance of multi-modal embedding models
rely heavily on the quality of multi-modal alignment, which seeks to
match data with corresponding semantics across different modalities
within the embedding space [23, 24, 52]. However, misalignment in
multi-modal embeddings is common due to the intricate many-to-many
mapping among concepts in different modalities. For instance, text-to-
image embeddings can easily encounter misalignment issues of concept
entanglement. As illustrated in Figure 1(a), the text prompt of ‘wa-
terlily pond by Monet’ becomes entangled with the ‘bridge’ concept in
the image modality, reducing the diversity of generated images.

Identifying misalignment in multi-modal embeddings is crucial for
enhancing model performance. Existing methods for evaluating mis-
alignment often rely on reference-based evaluations (e.g., CIDEr [62]
and SPICE [2]) that necessitate extensive human-labeled references, or
reference-free metrics (e.g., CLIPScore [32]) derived from pretained
multi-modal models. Despite not relying on references, reference-free



metrics are reliant on pretrained models, making it challenging for
fully automatic methods to detect misalignment in diverse and context-
dependent scenarios. For instance, the CLIPScore for the text prompt
‘waterlily pond by Monet’ fails to reflect the issue of concept entangle-
ment, as the CLIP model itself is biased towards the ‘bridge’ concept in
the image modality. Hence, existing fine-tuning techniques to improve
alignment often fall short of expectations in numerous scenarios. There
is a need for an interactive visualization tool to help users intuitively
investigate and address misalignment.

However, the intricate data structures and feature characteristics in-
herent in multi-modal embeddings pose particular challenges for visual
probing and interactive alignment. A key challenge arises from the
modality gap, wherein embedding vectors from different modalities are
essentially disjointed in the joint embedding space [43]. To achieve
cohesive visualization of multi-modal embeddings, it is essential to
address the modality gap issue and unify the presentation of different
modalities within a single display space. Previous visualizations of neu-
ral embeddings have primarily centered on single-modal embeddings,
such as word or image embeddings [30, 45, 46]. Notably, these works
commonly employ classical dimensionality reduction (DR) methods
like t-SNE [61] and MDS [5], which are limited to separately displaying
multi-modal embeddings in distinct spaces. Fusion-based DR methods
(e.g., [10, 13]) offer a potential solution to jointly project embeddings
from different modalities. However, these methods typically treat intra-
and inter-modal distances equally, without giving special consideration
to cross-modal relations. For example, Data Context Map (DCM) [10]
solely relies on metric-based objectives that poorly capture the relative
rank order of inter-modal distances. As illustrated in Figure 5(left),
DCM projects rather even distribution of image embedding points
around the textual concepts, making it harder to observe differences in
distribution pattern.

Moreover, enabling interactive alignment for multi-modal embed-
dings presents another challenge, primarily due to two reasons. First,
user-intended alignment strategies encompass diverse operations. For
example, in Figure 1, upon identifying the concept entanglement be-
tween ‘Monet’ in the text modality and ‘bridge’ in the image modality,
users may prefer to drag the ‘bridge’ point far away or relocate the
entire set of ‘Monet’ images. However, existing studies often focus on
point-based operations [17, 68], while others solely support set-based
interaction [20]. Secondly, users would utilize interactive alignment
to refine the underlying models and ensure that the refined model per-
forms as expected, as illustrated by the disentangled images generated
post-alignment, as in Figure 5(d). Existing studies on DR refinement
mostly focus on adapting the projection layout [17, 20, 63, 68], whilst
overlooking the model refinement.

To fill the gap, we present ModalChorus, an interactive system that
supports visual probing and alignment of multi-modal embeddings.
ModalChorus mainly comprises two-stage exploration. First, in the em-
bedding probing stage, we propose Modal Fusion Map (MFM), a novel
parametric DR method integrating metric and non-metric objectives for
enhanced modality fusion. By taking the advantages of metric-based
objectives in preserving the intra-modal distances and non-metric-based
objectives in capturing inter-modal distance rank order [5, 13], MFM
effectively addresses the modality gap challenge induced by multi-
modal embeddings. Compared with conventional single-modal and
fusion-based DR methods, MFM achieves higher trustworthiness and
continuity regarding inter-modal relations (see Table 1), and can better
visually reflect the intra- and inter-modality contextual distributions
(see Figures 4 & 5). Next, in the embedding alignment stage, to ac-
commodate the diverse alignment scenarios, we design an alignment
interaction scheme that allows for alignment on multiple levels includ-
ing point, subset, and set. The interaction scheme is integrated with
MFM encompassing point-set and set-set alignment. Besides, a concept
axis view is also developed to enable linear visual representation for
the probing and alignment of multi-modal embeddings.

In summary, our make the following contributions:

• We propose Modal Fusion Map (MFM), a novel dimensionality
reduction method tailored for fusion projection of multi-modal
embeddings. The effectiveness of MFM is demonstrated using

both quantitative and qualitative evaluations.

• We develop ModalChorus, an interactive system that supports
visual probing of multi-modal embeddings to discover misalign-
ment, along with an interaction scheme that supports interactive
fine-tuning of the underlying multi-modal embedding models.

• We show the effectiveness of our system through case studies on
three embedding-based cross-modal tasks, ranging from zero-shot
classification to cross-modal retrieval and generation.

2 RELATED WORK

Visualization for Neural Embeddings. Deep learning relies on neural
networks that are often pre-trained on large amounts of data. Neural
embeddings are the foundational high-dimensional feature representa-
tion of raw data encoded by neural networks, such as text embeddings
like word2vec [49] and BERT [16] and image embeddings like Sim-
CLR [9]. Visualization researchers have dedicated significant efforts
to enhance the comprehension of neural embeddings. Previous studies
primarily focus on unimodal embeddings, encompassing word embed-
dings [30,31,45] and image embeddings [46]. Many of these studies in-
tegrate projection methods with axis-based [30,45,46] or set-based [31]
exploration techniques. For example, Liu et al. [45] identified analogy
axis between multiple pairs of words with the same semantic transition
in word embeddings projected by t-SNE. Latent Space Cartography [46]
extends the concept of semantic axis to customized axis defined by
users, which can be applied to exploration of both unimodal word
embeddings and image embeddings. EmbComp [31] combines t-SNE
projection with visualization of neighborhood set overlap to compare
different word embedding models.

Recently, multi-modal embeddings such as CLIP [52] and
ALIGN [37] have fueled the advances in multi-modal AI such as text-
to-image generation. These embeddings can encode data from different
modalities in a joint space, contributing to various applications such as
cross-modal retrieval [4] and generation [53, 77]. However, this inte-
gration also introduces modality gap [43] that signifies discrepancies
between different modal embeddings, complicating the comprehen-
sion of multi-modal embeddings. There is a lack of visualization tool
tailored to the task. Specifically, the task demands an effective visual-
ization method for probing multi-modal embeddings and an interactive
scheme for improving alignment of multi-modal embeddings. To meet
the goal, we propose the Modal Fusion Map that can better preseve the
contextual information of multi-modal embeddings, and an interactive
alignment scheme that offers visual steering for modal alignment.
Contextual Dimensionality Reduction. Dimensionality reduction for
multi-modal data has been a challenging problem as traditional DR
methods like t-SNE [59,61], PCA [64], and MDS [5] cannot account for
cross-modal relations due to the modality gap [43, 50, 80]. Contextual
visualization is a type of DR method designed to project data points in
relation to attribute points [10, 48, 78], which can be applied to multi-
modal data projection, yielding more integrated visualization than dual
analysis [15]. Existing contextual visualizations can be categorized into
two types: anchor-based projection and fusion-based methods. Anchor-
based methods employ a two-stage approach, initially determining the
layout of points in one modality before calculating the position of points
in the other modality. For example, the RadViz method [11, 33, 73]
first lays out the attribute points on a circle and then projects the data
points based on their multi-dimensional attribute values. However, the
structure of the embedding space can be significantly distorted due to
the challenge of optimally laying out the anchor points.

One type of fusion methods, known as co-embedding meth-
ods [12, 70], introduces their own high-dimensional representations of
multi-modal data or modifies the embeddings of certain data points to
achieve a desired visual layout. However, these methods diverge from
our goal as they alter the original embeddings with custom models,
which cannot help users understand commonly used multi-modal em-
beddings in AI tasks. Other fusion methods are limited to more specific
conditions [25,26,67], such as COPE [25] which requires co-occurrence
statistics. Visualization researchers have developed more general fu-
sion methods [10, 78]. Particularly, Data Context Map (DCM) [10]
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Fig. 2: Overview of our framework. Multi-modal embeddings and concepts extracted from text and images are first projected with Modal Fusion
Map, a novel modality-fusing DR method we propose. In the visual exploration stage, visual probing of the embeddings is enabled in the projection
view and the concept axis view, allowing users to explore embedding sets and individual instance point. Finally, in the embedding alignment stage,
interactive alignment with point-set and set-set alignment schemes is provided, along with optional augmentation with few-shot samples.

defines the distance matrix for the attributes and merges it with the
data distance matrix before using MDS to jointly project the attribute
points and data points. However, in DCM, intra-modal and inter-modal
distances are equally treated in metric-based optimization, which limits
its ability to adequately capture the cross-modal non-metric ordinal
structure of multi-modal embeddings. In our study, we introduce the
Modal Fusion Map, which integrates both metric and nonmetric ob-
jectives into modality fusion using a novel parametric DR method, to
effectively preserve relationships for intra- and inter-modal distances
of multi-modal embeddings.

Visual Steering for Modal Alignment. Pre-training of multi-modal
foundation embedding models relies on alignment through methods like
contrastive learning, such as ViLBERT [47] and CLIP [52]. For exam-
ple, the CLIP embeddings [52] is pre-trained on large-scale image-text
pair corpus by matching image and text caption in a joint representation
space with contrastive multi-class N-pair loss. The pre-training methods
typically aim to establish a foundational model, yet the varying quality
of pre-training data often leaves some misalignment in specific cases,
which requires adaptation such as few-shot fine-tuning [21,35,50] to re-
fine the alignment. Misalignment cases may require human knowledge
to be discovered, and the fine-tuning process also typically involves
users’ choice of alignment data and direction, which necessitates an
interactive system to support human-in-the-loop workflow. This sce-
nario differs from interactive prompt engineering of pre-trained mod-
els [19, 28, 60, 66], as prompt engineering only seeks to alter the input
without refining the model, which is not enough for steering complex
multi-modal models with misalignment.

Some previous visual analytics systems support interactive im-
provement of AI models through label correction or data augmen-
tation [7, 27, 29]. For example, VATLD [27] leverages disentangled
representation learning for semantic exploration of traffic light de-
tection results in relation to explainable data dimensions. However,
these studies only focus on task-specific models without paying atten-
tion to foundational embeddings [71]. Many studies also rely on the
ground-truth labels for insight discovery, which may not be available
in real-time probing of pre-trained models. In addition, these studies
lack support for visual steering interaction directly in the visualization
space, which is more intuitive for the alignment operation our study
aims at.

Some visualization researchers have studied interactive visual steer-
ing of dimensionality reduction results [17, 20, 63, 68]. For example,
Xia et al. [68] proposed a contrastive learning-powered parametric
dimension reduction method to support point-level interaction to en-
hance the visual clustering effect. ULCA [20] supports set-level visual
steering interaction for comparative analysis. DRAVA [63] introduces
an interaction method to adjust the positions of small multiples in axis-
based visualization based on βVAE. However, these interactions only
focus on refining the projection layout for visual exploration purposes,
lacking the ability to align the underlying models or high-dimensional
representations. In addition, the interaction schemes of most previous

studies are limited to a single type of interaction, such as point-based or
set-based interaction in a single view, which cannot cover the diverse
alignment scenarios of multi-modal embeddings. In our study, we de-
velop an interaction scheme supporting point-set and set-set alignments,
enabling flexible alignment of underlying embedding-based models.

3 OVERVIEW

3.1 Background and Domain Problem
Multi-modal embedding. Multi-modal embedding models are pre-
trained encoder models for the representation of multi-modal data. For
example, the CLIP model is pre-trained on a large corpus of image-text
pairs, using transformers and vision transformers to first separately
encode text and image into high-dimensional vectors. Then, through
a linear transformation, the text embedding and image embedding
vectors are aligned in a shared embedding space with contrastive loss.
Multi-modal embeddings are the foundational encoder for many AI
tasks that involve multi-modal data in its input and/or output. Common
tasks include semantics-based image classification [52], cross-modal
retrieval [24], and text-to-image generation [8, 54].
Alignment. In multi-modal models, alignment means the matching
of data representations with corresponding semantics from different
modalities. In the pre-training stage of CLIP, for example, the align-
ment is achieved by updating the embeddings of an image and its
corresponding text caption so that they are closer than incorrect pairs in
the high-dimensional representation space. However, due to the varying
quality and large quantity of data in pre-training and imperfection in
training algorithms, there may be misalignment in the pretrained model,
which requires further adaptation for enhancing alignment [21, 35, 50].
Multi-level Alignment. There is mainly alignment on three levels:
point, subset, and set, requiring two types of alignment: point-set
alignment and set-set alignment. Specifically, users may discover mis-
alignment of an individual point (e.g., misclassified image point or
misunderstood text point), a subset (e.g., a subset of incorrect samples
in the whole set of text-to-image retrieval results), and a set (e.g., biased
or entangled generation results of text-to-image models), requiring dif-
ferent alignment operations. To clarify, we refer to keywords extracted
by our system or entered by users as concepts, which are the main text
embeddings we focus on in this study for contextual exploration of
embeddings, while particular image point is referred to as instances.
Problem: visualization for embedding. Many visualization studies
treat embedding methods as a tool for processing data, with the aim of
optimizing the visual display of raw input data. That is, these visual-
izations regard embedding as a projection method. Instead, in the field
of AI, representation learning of single and multi-modal embeddings
has been playing a pivotal role for various downstream tasks [41, 55].
The high-dimensional embeddings themselves are the key intermedi-
ate representations of data extracted from raw text or pixels, not just
the representation for visual display only. To gain insight into large
AI models, particularly for the alignment problem, high-dimensional
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Fig. 3: (a) Data Context Map (DCM) only considers metric-based optimization that indiscriminately seeks to preserve the absolute distance for
intra-modal and inter-modal pairs of data points. (b) Inspired by the observation that the nonmetric rank order of cross-modal distances is important
for multi-modal embedding-based tasks, our Modal Fusion Map (MFM) combines metric and nonmetric objectives for fusion.

visualization methods should prioritize capturing the features of the
foundational embeddings itself (G1). For example, suppose two classes
of images are indeed close in the embedding space, which signifies
risks of misalignment in the embedding. In that case, we do not wish to
maximize the class separation in projection space just for visual display
since it can mislead users. For another example, if the prompt’s text
embedding in the generation model is not close to the generated images,
we should be cautious about directly putting the text at the centroid
of the generated image set, which may lead users to believe that the
generation is fully aligned.

To summarize, the former studies focus on embedding for visualiza-
tion, while our work aims at visualization for embedding. In addition,
the aim for interaction in this scenario is to improve the foundational
high-dimensional embeddings (G2) instead of improving the visual
display of data like previous studies did [20, 68].

3.2 Challenges and Design Requirement
Accomplishing these two goals is challenging for existing visualization
methods, particularly due to:

C1 Modality Gap. The heterogeneous distributions of different modal-
ities in the joint embedding space result in the modality gap [43,80],
making it difficult for existing DR methods to simultaneously cap-
ture intra-modal and cross-modal features.

C2 Diverse alignment intentions. The diverse alignment scenarios in
different cross-modal tasks post challenges to designing a compre-
hensive interaction scheme integrated into the visualization.

To tackle the challenges, we summarize the design requirements of
ModalChorus, which should support flexible and effective R1) visual
probing of multi-modal embeddings to meet G1.

R1.1 Accurately preserving inter- and intra-modal distances. An
effective fusion-based DR method is needed to bridge the modal-
ity gap while maximally preserving inter- and intra-modal rela-
tions.

R1.2 Effective visual presentation to help identify misalignment.
Apart from the projection, effective graphical enhancement is
needed to assist discovery of misalignment issues such as mis-
classification or entanglement.

Second, ModalChorus shall facilitate R2) interactive alignment of
multi-modal embeddings to support G2:
R2.1 Supporting alignment on point and set levels. Users may

discover embedding misalignment on an individual data point
or a whole set of points, demanding different types of alignment
interaction, including point-set and set-set alignment.

R2.2 Supporting axis-based alignment. Previous embedding visual-
ization studies have identified the semantic axis as an effective
complement of the overall projection for more focused concept-
related exploration [30,45,46]. Besides directly manipulating the
projection of embeddings, users also need to perform axis-based
alignment as the axis can more clearly show the direction of
alignment with respect to a specific semantic concept.

R2.3 Supporting data augmentation. When users discover misalign-
ment but cannot find correct reference data, they would like to
provide extra data and process it to help the alignment.

3.3 ModalChorus Overview
An overview of our system is shown in Fig. 2, which mainly consists
of two stages: 1) embedding probing and 2) embedding alignment. In
the first stage, starting from a particular dataset and task, along with
user-provided input or automatically extracted concept, we support
visual probing of the embeddings with sampled data for interpretation
of embeddings and discovery of misalignment. Particularly, we develop
Modal Fusion Map, a novel parametric fusion method that integrates
metric and nonmetric objectives for multi-modal embedding projection.
We also incorporate a concept axis view that allows users to explore the
correlation of image embeddings in relation to concept text embeddings.
An additional instance gallery displays similar images to the selected
image point in the embedding space for neighborhood exploration.

In the second stage, upon discovering misalignment, we enable
users to select a particular point, subset, or set and perform point-set
alignment or set-set alignment in either the projection view or the
concept axis view. In some cases, when new data is needed to enhance
the alignment, we allow users to upload their collected data for few-shot
alignment or use our system’s weighted embedding generation function
to generate candidate augmentation data. Finally, the visual alignment
operations are mapped to the backend fine-tuning.

4 MULTI-MODAL CONTEXTUAL VISUALIZATION

In this section, we describe Modal Fusion Map, a novel DR method we
propose to address R1 visual probing of multi-modal embedding.

4.1 Problem Identification
To address the modality gap problem in multi-modal embedding visual-
ization, data matrix fusion methods [10, 13] are a promising solution.
Matrix fusion methods such as Data Context Map (DCM) [10] are
derived from the MDS method for distance-based fusion. The origi-
nal Data Context Map is designed for the attribute and data spaces of
multi-dimensional data. Specifically, to align data points from different
modalities, it constructs a large distance matrix containing the pairwise
distances between all the data points and attribute points, where the
intra-modal distance is the original high-dimensional distance such as
Euclidean or Cosine distance while the cross-modal distance needs to
be defined according to data properties. For example, DCM defines the
distance between attribute point and data point as 1− v, where v is the
data point’s value in this attribute dimension.

First, to account for high dimensional latent space, we can natu-
rally change the attribute-data distance in DCM to the Cosine distance
between text embedding and image embedding. However, this modifi-
cation may not suffice for the complexity of multi-modal embedding.
Specifically, to enhance the modality merging effect, it is important
to flexibly adjust the weights of intra-modality and inter-modality dis-
tance. Directly scaling the submatrix as mentioned in [13] may have
the risk of significantly distorting the embedding space or exacerbating
the modality gap. More importantly, when multi-modal embeddings
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Fig. 4: For the zero-shot classification task on CIFAR-10 which relies on cross-modal similarity (color of points represent the predicted class), MFM
can better reflect set relations and outliers for visual probing of misalignment.

like CLIP are used for cross-modal tasks such as text-to-image retrieval,
the absolute distance between the text and image embeddings is less
important than the relative order of the distance values. In visualization
of multi-modal embeddings, such characteristics should also be consid-
ered. This means that we should develop a better fusion method that
considers both metric and non-metric objectives [18, 34, 51].

4.2 Modal Fusion Map
Dimensionality Reduction. Inspired by recent work on parametric
dimensionality reduction [68, 69, 75], to satisfy the projection require-
ments presented above, we propose Modal Fusion Map (MFM) which
can flexibly combine different objectives for joint multi-modal em-
bedding projection. The hypothesis is that in the high dimensional
embedding space, there exists a subspace or manifold surface S be-
tween the text embeddings set T and image embeddings set I, such
that the projection of embeddings from both modalities on this surface
(P(T ),P(I) ∈ S) can result in an optimized 2D parametric represen-
tation S(x,y). Specifically, like other matrix-based methods, we first
compute the merged distance matrix:

M =

(
II, IT
T I, T T

)
, (1)

where II is image distance submatrix, T T is text distance submatrix,
IT = T IT is the cross-modal distance submatrix, all using cosine dis-
tance or the equivalent Euclidean distance between normalized vectors.
Each submatrix is normalized by their mean value.

Next, instead of directly applying the traditional MDS method to the
merged matrix as in DCM, we parametrize the projection with a three-
layer feed-forward neural network mapping 512 or 1024-dimensional
CLIP embedding to the 2-dimensional projection space. See supplemen-
tary material for more detail. Then, to implement the MDS objective,
we construct a loss function using the Pearson correlation between the
high dimensional merged distance matrix and the projected distance
matrix for scale-free optimization.

LM =− ∑(Mi, j −M)(Pi, j −P)√
∑(Mi, j −M)2

√
∑(Pi, j −P)2

, (2)

where P stands for the distance matrix of the projected points.
In this way, we can easily define loss terms for the intra-modality and

inter-modality submatrices, denoted as LT T , LII , and LIT , respectively.
Accordingly, the loss function for metric MDS is the weighted sum. In
our case, we only consider the overall term and the cross-modal term:
L1 = w1LM +w2LIT , where we set w1 = 10,w2 = 2.

In addition, for the nonmetric loss to preserve cross-modality dis-
tance order, we further introduce another loss term:

L2 =
−∑ j<k f ((T Ii, j −T Ii,k)∗ (P(T I)i, j −P(T I)i,k))

∥P(T I)∥2
, (3)

Table 1: Evaluation of projection methods with inter-modal and intra-
modal trustworthiness (T) and continuity (C) metrics.

Inter-modal Intra-modal
T(30) C(30) T(30) C(30)

PCA 0.9177 0.9301 0.7297 0.8183
MDS 0.9274 0.9336 0.8039 0.8537

Isomap 0.9307 0.9281 0.7706 0.8637
t-SNE 0.9290 0.9296 0.9098 0.9010

NDCM 0.9223 0.9225 0.5304 0.5309
DCM 0.9385 0.9434 0.8481 0.8941
MFM 0.9589 0.9645 0.8764 0.9117

where f (x) = 0,x ≥ 0
−x,x < 0 . This loss term will be zero when all the

cross-modal distance order is preserved in the projection. The final loss
L = L1 +αL2,α = 0.05. w1, w2, α are selected empirically. Code is
available at: https://github.com/yilinye/Modal-Fusion-Map.

Contour-based graphical enhancement. We provide graphical en-
hancements in the form of density contour as inspired by recent
work [78]. As shown in Fig. 5, the density plot can show the default
KDE density estimation of data point distribution. The KDE contour
can serve as a graphical representation of sets in the projection view,
which can facilitate subsequent alignment interaction as we describe be-
low. Alternatively, when users provide customized metrics defined for
the data points, such as CLIP-Score for generated samples, the density
plot can show the kernel estimation of the metric value distribution.

4.3 Evaluation
Qualitative Comparison. As shown in Fig. 4 and Fig. 5, MFM has
many advantages for displaying both intra-modality and inter-modality
features compared to the DCM method and traditional projection meth-
ods like MDS and t-SNE. Specifically, Fig. 4 displays an intra-modal
case with the projection of CLIP image embeddings for samples of 6
classes in CIFAR-10 dataset. The colors represent the zero-shot classifi-
cation results based on CLIP. Among the results, we can see that t-SNE
achieves the best separation effect. However, t-SNE also has significant
drawbacks in understanding the embeddings and identifying misalign-
ment because it does not consider cross-modal features. First, t-SNE is
weaker at showing contextual information, such as the relation between
different sets. For example, we can find in Fig. 4, the frog set (green
point 1) can be confused with the bird set (yellow point 2) because of
similar color or background, yet the t-SNE projection does not clearly
show the relation compared to MFM. In addition, our joint projection
also shows better within-set distribution than t-SNE. For example, with
MFM, we can clearly see outliers or border points within sets (e.g.blue
point 5 and green point 6). Point 5 corresponds to an image of a car
driving on a highway, while most other car images are static scenes of
parked cars. Point 6 is a long-necked ostrich that is quite different in
appearance from other birds. However, these points are hard to identify

https://github.com/yilinye/Modal-Fusion-Map
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tances between text and image embeddings, resulting in rather even
distribution of image embedding points around the concept text embed-
dings, making it harder to observe differences in distribution pattern.

in the t-SNE projection. The MDS result in Fig. 4 (b) is more effective
than t-SNE for showing the pointwise relationship, but the clustering
effect is apparently weaker than t-SNE and MFM. In addition, MDS
tends to distribute the points quite evenly in the projected space, which
compromises the display of in-set distribution and outliers. The DCM
method shows the contextual set relationship better than t-SNE and
displays set outliers only slightly better than MDS, since for the image
modality, both DCM and MDS use metric loss, but MFM achieves
better effect in both aspects. Additionally, we compute Z-Score for
a data point to help verify whether a visual outlier or border point is
indeed so in the original high-dimensional space (see supplementary
for detail). We find that point 6, the most obvious outlier in Fig. 4 (d)
indeed has the highest Z-score of 1.2379.

Fig. 5 shows the inter-modal case with the projection of CLIP text
embeddings of three text queries together with the image embeddings
of the query results. Regarding the DCM results (Fig. 5 (a)), it does
successfully merge the modality. However, as shown in both cases,
DCM has a significant weakness in that it scatters out the image em-
bedding points quite evenly across the space, making it difficult for
users to find distributional differences between different regions. In
comparison, for example, in Fig. 5 (b), we can find an obvious dense
cluster in MFM results which contain many similar images of bear
in the wild, but this pattern is less evident in DCM results. In addi-
tion, MFM also more clearly shows the relation between concepts than
DCM, as we can find that the query results of bear and person and
bear have obvious overlap in both DCM and MFM results, signifying
the closer relationship between these two text concepts, but the relative
position of text embeddings in MFM is more coherent to this relation.
Quantitative Evaluation. To show some quantitative evidence of the
advantage of MFM, we evaluate the method on COCO dataset using the
trustworthiness metric and continuity metric [38, 68], where the former
calculates how faithfully the projected kNN reflects the true kNN’s in
the embedding space and the latter calculates how well the original
high-dimensional kNN is preserved in the projection. Particularly, we
calculate both inter-modal and intra-modal kNN for k=30. However, in
our scenario the inter-modal metric is more important as it measures the
methods’ ability to preserve multi-modal embedding structure. For the
evaluation process, we perform multiple rounds (r = 500) of evaluation
where in each round we randomly sample 500 images from COCO
and project them together with the 80 category text embeddings in
COCO object labels. The final metric is the average of the results in
all rounds. As shown in Table 1, the experimental results indicate that
MFM method performs consistently better than all the other methods in
inter-modal truthworthiness and continuity, with higher than 2% margin
over the strongest baseline DCM. In addition, MFM also achieves good
performance in intra-modal metrics, only second to t-SNE. NDCM [13]
is another fusion method using fully nonmetric objective. We can see

that among the three fusion methods (MFM, DCM and NDCM), our
MFM is consistently better across inter-modal and intra-modal metrics,
while fully nonmetric fusion method has significant disadvantage in
keeping the intra-modal features. We also need to note that the inter-
modal metrics for non-fusion traditional methods like t-SNE and MDS
cannot fully reflect their weakness in inter-modal scenarios because the
modality gap will cause large distances between image embeddings and
text embeddings in the projection space, making it difficult to perceive
the differences between the inter-modal distances [43, 50, 80].

5 ModalChorus SYSTEM

5.1 Visualization Interface
Settings Panel. The settings panel (Fig. 6 (a)) allows users to specify
some basic settings for their exploration, including tasks and inputs.
Users can also select specific concepts in their input to produce con-
textual visualization in the projection view. Instead of relying solely
on textual concepts explicitly extracted from existing text labels or
prompts, ModalChorus extracts implicit concepts from images to pro-
vide a comprehensive display of concepts. To achieve this, we first
leverage BLIP-2 [42], a multi-modal language model capable of receiv-
ing images as input and generating textual descriptions of those images.
We then employ the TopicRank [6] algorithms to extract candidate
visual concepts based on the text generated by BLIP-2.
Projection View. The projection view (Fig. 6 (b)) is the main view of
the system leveraging our proposed Modal Fusion Map to help users
probe the embedding with different tasks and data. Users can choose
to turn on or turn off the contour to emphasize set relation or facilitate
instance exploration respectively. The projection view also includes an
instance retrieval subview below (Fig. 6 (c)). Users can mouse over the
embedding point to see the corresponding image in the gallery. They
can also click the point to retrieve similar images to the selected one.
In addition, users can select a subset of points by lasso or ctrl-click, as
shown in Case 2 and Fig. 10 in Sect. 6.
Concept Axis View. As shown in Fig. 6 (d) and Fig. 7 (a), the concept
axis view supports axis-based exploration of image embeddings in
relation to text embeddings for user-selected concepts from the settings
panel. Users can define one-end axis with a single concept (e.g., bridge)
or two-end axis with opposing concepts they want to contrast (e.g.,
Monet and Van Goph). For one-end axis, the position of an image
embedding point x is:

µA(x) = l · sim(x,A)−min(sim(x̂,A))
max(sim(x̂,A))−min(sim(x̂,A))

, (4)

where sim(x,A) denotes the cosine similarity between x and text embed-
ding of concept A in embedding space, l is the length of the axis. For
two-end axis, the position of x is calculated as l · (0.5+ µA(x)−µB(x)

µA(x)+µB(x)
).

When users define more than one axis, we use curves connecting the
same instance on two axes to show the correlation. Histogram is also
used to help users see the overall distribution. Apart from displaying
instances of image embeddings, the concept axis can also represent the
whole set or subset as small box at the average position of all the in-set
points, showing users the mean value of the set and supporting further
set-based alignment interaction as described in Fig. 8 and Sect. 5.2. We
also allow users to switch to a scatterplot visualization (Fig. 7 (b)).
Augmentation Panel. The data augmentation panel (Fig. 6 (e)) sup-
ports interactive augmentation of alignment data. In some alignment
scenarios, users cannot find proper alignment data from the original
dataset (for example, users may not find any satisfactory results gen-
erated by a pre-trained generative model). For such a problem, the
augmentation panel first allows users to upload a subset of samples
to supplement the alignment data. For unlabeled raw image data up-
loaded, this panel also integrates an auto-tagging function based on
CLIP-interrogator [1], which can generate tags associated with the
image to enhance the alignment performance. Second, in cases where
users even find it difficult to collect their own data, the augmenta-
tion panel also incorporates a generation function that enables users
to leverage the weighted sum of existing text embeddings [14, 65]
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Fig. 6: ModalChorus system. (a) Settings panel on the left allow users’
choice of task and dataset. The main projection view (b) displays the
MFM dimension reduction result of embeddings. The concept axis view
(d) supports axis-based exploration, while the augmentation panel (e) fa-
cilitates uploading, generating, and tagging additional data for alignment.
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Fig. 7: The concept axis view allows the definition of unidirectional and
bidirectional concept axes, showing the distribution of image embedding
points in relation to concepts by similarity to concept text embedding.
Curves linking data points on different axes display the correlation be-
tween the distribution and reveal patterns such as entanglement.

in a pre-trained generation model to synthesize more candidates of
intention-aligned samples.

5.2 Interactive Alignment
Alignment Interaction Design. We design a series of visual alignment
interactions, which allow users to intuitively express diverse alignment
intentions through visual metaphor and trigger backend fine-tuning
without writing complex training code. As shown in Fig. 8, our interac-
tion scheme supports set and point level intentions for alignment. First,
the common types of alignment mainly concern data points or subsets
of points, which we categorize into two types: point-set alignment
and set-set alignment, as shown in Fig. 8. First, point-set alignment
encompasses various scenarios of aligning a set with a data point and
vice versa. For example, when users want to align a subset of retrieval
results with a query text embedding or when users want to align a
prompt embedding to fine-tune samples provided by themselves. As
shown in Fig. 8 (a), point-set alignment can be performed on either the
projection view or the concept axis. Formally, the high-level idea of
point-set alignment can be summarized as follows: Suppose we have a
CLIP-based model F(·) which can map input text or image to different
sets C1,C2, ...,CN in the sampled data. For example, in classification, Ci
corresponds to the set of embeddings for a predicted class; in retrieval
and generation, Ci corresponds to the set of embeddings for the results
of a single query or prompt. Given a user-selected misaligned image
or text point p, the target of point-set alignment is to tune the weights
of F(·) such that F̂(p) is closer to the correct set Ci in the embedding
space. Although the concrete implementation may vary for different
tasks, in terms of the merged distance matrix, the effect is equivalent to
achieving the following contrastive objective:

1
|Ci| ∑

v∈Ci

MF̂(p),v <
1

|C j| ∑
u∈C j

MF̂(p),u ∀ j ̸= i, (5)

where the estimated distance between F(p) and Ci should be smaller
than any other set C j. Second, set-set alignment involves moving two

(a) Point-Set Alignment (b) Set-Set Alignment

person and bear person and bear

Fig. 8: We design interactions that allow users to visually express their
alignment intentions, including point-set alignment and set-set alignment
performed in both projection view and concept axis view.

subsets of points closer or further in the concept axis or projection
view. Such alignment is intended to close the gap between two sets
or distributions in the embedding space, or contrast two sets for dis-
tinguishing them better, which can be useful for cases like merging or
disentangling concepts in retrieval or generation. As shown in Fig. 8
(b), in the projection view, they can drag a set contour towards another,
while in the axis view, they can drag one set box closer to or away from
another. Formally, the high-level idea of set-set alignment is: Suppose
users identify a misaligned set or subset of embeddings Ce, where Ce
is not align with the input p. Next, users find another correct set Ci
either by visual exploration of other projected data points or by data
augmentation. The goal of set-set alignment can then be formulated as:

1
|F̂(p)| · |Ci|

∑
v∈F̂(p),u∈Ci

Mu,v <
1

|F̂(p)| · |Ce|
∑

v∈F̂(p),u∈Ce

Mu,v. (6)

Alignment Fine-tuning Implementation. Our system provides a
general framework to map users’ visual interactions shown in Fig. 8
to backend fine-tuning operations that align the model’s output in the
embedding space. As the visual representations are decoupled from
actual backend implementation, our framework can incorporate any
kind of specific fine-tuning methods. For demonstration purposes, our
study implements two methods. First, for the classification and retrieval
cases, we implement triplet loss [58] based alignment. Second, for the
generation cases, we implement the low-rank adaptation method [35].
More detail is provided in the supplementary material.

6 CASE STUDIES

In this section, we perform three case studies to demonstrate the useful-
ness of the Modal Fusion Map and ModalChorus system, which cover
three different tasks based on multi-modal embeddings, including zero-
shot classification, text-to-image retrieval, and generation. Particularly,
we demonstrate how our visual probing integrates with and enhances
interactive few-shot alignment [22, 36].

6.1 Case 1: Zero-shot classification
In this case, we demonstrate how our system can be used to visualize the
zero-shot classification [52] based on multi-modal embedding cluster-
ing and help refine the embedding interactively with one-shot point-set
alignment. Specifically, we use the CIFAR-10 image classification
dataset [40] to show an example. Here we suppose no ground-truth
labels are available. This is to simulate real-time analysis of zero-shot
embedding-based classification in the wild for unknown data, where
interactive visual analysis with human intervention is most helpful.

Users first select the classification task and the dataset. Then, users
subjectively select some classes that they suspect may be confusing for
CLIP, including classes of small wild animals and classes of vehicles.
Specifically, they select 6 class concepts they want to explore, including
airplane, automobile, truck, ship, bird and frog. Then, the system
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Fig. 9: In zero-shot classification with CLIP, users can leverage Modal-
Chorus to identify potential examples of misalignment (in this case,
classification mistake) and perform point-set alignment to refine CLIP.
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Fig. 10: In cross-modal retrieval with CLIP, users can leverage ModalCho-
rus to visualize both the query text and image results embeddings. Users
can further select subsets of data and perform axis-based alignment.

predicts the class of each image according to the cross-modal proximity
between the image embedding and class text embedding. The system
samples the data for visual probing. Specifically, it retrieves 50 closest
images to each class text based on the CLIP embeddings. They can see
that the CLIP embedding sets of the bird and frog clusters are indeed
quite close, and they can find that the highlighted point corresponding
to the data item selected in the concept view is at the border of the bird
cluster. In fact, when users see the image, they find that this item is
actually frog but misclassified as bird. By retrieving similar images
in the instance retrieval view, users can further understand that this is
because there are some birds and frogs with similar colors and outlines.
Subsequently, users perform point-set alignment by dragging this point
closer to the correct frog cluster, as shown in Fig. 9.

In the backend, we use the ground truth to verify that our visual
alignment is indeed helpful. Specifically, before the alignment, the
overall accuracy is 69.28%. Particularly, the category with the lowest
accuracy is frog, with only 32.82%. After the visual alignment of only
one single data point in this case, the accuracy for frog category rises
to 45.24% among the 10,000 images in batch 1 of CIFAR-10. At the
same time, overall accuracy also increases to 70.66%.

6.2 Case 2: Instance Retrieval and Compositional Logic

In this case, we show how our system can be used to visualize and
refine the compositional logic in instance retrieval. Specifically, we
test cross-modal retrieval on the COCO 2017 dataset [44]. The training
set of the COCO dataset consists of more than 110,000 images with
annotations of captions and objects in the image from 80 categories.

Table 2: Accuracy of "person and bear" before and after the alignment.

top 5 top 20 top 30 top 40 top 50
Before 60.00% 50.00% 43.33% 40.00% 40.00%
After 80.00% 60.00% 53.33% 52.50% 52.00%

For the retrieval, users enter two queries: the first one is a simple
keyword: "person" while the second one is composed of two elements
using natural language logic expression: "person and bear". Users
first leverage our MFM method to project the respective top 50 image
results of the two queries in relation to the keyword texts in CLIP
embeddings. In the contextual projection shown in Fig. 10 (a), users
can see that there is an obvious dense cluster near the text embedding
of the composed query "person and bear". In contrast, the distribution
of image embeddings is rather sparse near the text embedding of the
simple query "person". When users mouse over some data points
to explore particular instances, they find that the retrieval results of
"person" are more diverse than those of "person and bear". More
importantly, they even find that the cluster actually contains many
similar incorrect results only containing bear in the wild without any
person, which shows that the CLIP embeddings do not sufficiently
understand the logic in "person and bear". Users can further verify
this finding by adding another keyword query "bear" and visualize the
results together, as shown in Fig. 5 (b).

Upon identifying the misalignment issue for the composed query,
users can proceed to interactively align the CLIP embeddings in the
system’s align mode. Specifically, in the projection view, they first
lasso to select samples of the incorrect cluster, which are added to
the first alignment subset represented by pink color. Next, they also
discover some individual samples of correct images containing both
person and bear near the text embedding, which are added to the second
alignment subset represented in blue. Subsequently, users can see that
the incorrect subset and correct samples are quite close and hard to
separate. Finally, users can perform set alignment by dragging the
incorrect subset farther away, triggering fine-tuning in the backend.

After the alignment, users can exploit the new CLIP embeddings
to re-rank the previous top 500 results. We implement re-ranking
instead of completely indexing all the data points in the dataset for
faster system reaction. This only takes a few seconds, together with
the few-shot alignment. To verify quantitatively that such alignment is
indeed helpful, in the backend, we calculate the top k accuracy of the
new results compared to previous results, as shown in the table.

6.3 Case 3: Concept Injection and Disentanglement in
Cross-modal generation

In this case, we show how our system can be used for alignment in cross-
modal generation, with examples of aligning text-to-image Stable Dif-
fusion model. Particularly, compared to specialized AIGC fine-tuning
tools such as IntentTuner [76], which only focuses on data augmenta-
tion and training functions like LoRA [35] and DreamBooth [56], our
visual probing framework allows users to visually inspect and compare
the generation results, augmentation data, and prompt keywords before
and after fine-tuning through embedding visualization. We choose
Stable Diffusion V1-4, which uses CLIP as the input encoder.

The first example (Fig. 11) shows the case of alignment for concept
injection, where the pre-trained model does not understand a concept,
and users try to inject it into the model’s knowledge. For example,
as shown in Fig. 11, users may want to input prompt "Rem rezero",
which is the name of an animation character, to generate images of the
character. However, after the generation of 50 samples by the original
model, users can find that our system detects some visual keywords
such as "purple hair" that is unexpected since the desired character has
a prominent feature of short blue hair. Users also enter another concept
keyword "maid", which describes the signature dressing style of the
expected character. Then, MFM produces a joint projection of the
keywords and the generated images, as shown in Fig. 11 (a). Users can
find in this projection view many abnormal results. For example, the
outliers like Fig. 11 (a) (1) are images of realistic photos. Users can also
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Fig. 11: Alignment for text-to-image cross-modal generation. The first case shows concept injection, where the original model does not understand a
concept, and users provide visual samples to align with the textual concept keywords.

confirm that some images close to the "purple hair" text embeddings
contain distinct purple hair from the expected blue hair (Fig. 11 (a) (2)).

To align the model with this new concept, users collect 20 correct
sample images of Rem and upload them to the system. The newly
uploaded samples are added to the projection as shown in Fig. 11 (b).
We can see the projection view clearly shows the gap between the
pre-generated results (red) and the correct samples (blue), while the
prompt keyword "rem rezero" sits somewhere in the middle between the
two clusters, indicating insufficient alignment to the correct set. After
observing this, users can directly drag the text embedding point of "rem
rezero" towards the correct sample set, as shown in Fig. 11 (c). This
action triggers the backend alignment process. When the alignment is
finished, the system generates 50 samples (green) of "rem rezero" with
the newly-aligned model (Fig. 11 (d)). We can see that compared to
the red set, the green set are much closer to the correct sample cluster,
which signifies successful alignment to the correct concept. Users
further explore the details of the new generated images and find that
they have captured the most important features of the desired character,
including the signature short blue hair and the maid dress.

The second example (Fig. 1) showcases alignment for disentangling
the generation. Sometimes, misalignment in the cross-modal gener-
ation model causes concepts to entangle, leading to unexpected and
uncontrollable generation. For instance, when users want to generate
landscape paintings, they enter two prompts with the same subject but
different artists’ names: "waterlily pond by Van Goph" and "waterlily
pond by Monet". The system first generates 50 samples for each prompt
with the same set of random seeds. Apart from textual keywords like
"Monet" and "Van Goph", the system also detects an unexpected visual
concept: "bridge". Then, by exploring our MFM projection view as
shown in Fig. 1 (a), users can find that the points generated by "wa-
terlily pond by Monet" (red) are concentrated in a dense cluster close
to the text embedding of "bridge" while the results of "waterlily pond
by Van Goph" are distributed more sparsely in the projection space.
Inspecting the data points, users can discover that the Monet results
have a highly similar composition, almost always containing a bridge.
This pattern is more evidently shown in the concept axis in Fig. 1 (a),
where the high values on the Monet dimension are strongly bundled
with high values on the bridge dimension for the red set. In contrast, the
Van Goph results are much more diverse with different compositions.
This observation indicates that in the Monet prompt, the name of the
artist is highly entangled with the visual concept of the bridge, thus sig-
nificantly reducing the diversity of the generation. To align the model
for disentanglement, users first need some fine-tuning data but may find
it difficult to collect Monet’s paintings of the waterlily pond manually.
To address the issue, they can exploit the weighted embedding function
provided by our augmentation panel to generate more disentangled sam-
ples. Specifically, users can combine the CLIP embeddings of different
keywords and phrases in the original prompt through a weighted sum of
the embedding vectors to guide the generation of augmented samples.
Users can select from these generated augmentation images satisfactory
samples that match the prompt "waterlily pond by Monet". They can
then add the samples to the projection (green set) in Fig. 1 (b), where
users can find an obvious distance between the pre-generated Monet
set and the augmentation set. Next, as shown in Fig. 1 (c), users can

drag the pre-generated Monet set contour towards the augmentation set
in the projection or drag the box representing the pre-generated Monet
set in the concept axis, which triggers the backend alignment process
of the two sets. Finally, in Fig. 1 (d), the system will generate a new set
(purple) by the same prompt of the original red set ("waterlily pond by
Monet") with the post-alignment model. Users can see that compared
with the red set, the purple set is more aligned to the green set while
having more diversity (containing images with and without bridges).

7 DISCUSSION

Speed limitations. Our system and method have two limitations in
terms of speed. First, even though the parametric method can scale to
large datasets with shorter asymptotic time (as shown in supplemen-
tary), for smaller datasets, it is not as fast as some traditional methods
like t-SNE. Second, the speed of the alignment fine-tuning depends on
the specific implementation for different tasks. For classification and re-
trieval tasks, the triplet loss-based fine-tuning only takes a few seconds.
However, for the generation task, the commonly used LoRA fine-tuning
can take a few minutes. To address this, we can take advantage of the
latest accelerated fine-tuning methods such as HyperDreamBooth [57].
Scalability to more modalities. In this study, we only test our system
and method on embeddings of two modalities. However, some multi-
modal embeddings involve more than two modalities. For example, the
ImageBind [24] embedding models incorporate six modalities including
images, text, audio, depth, thermal, and IMU data. For these data, we
can extract multi-modal semantic features as concepts and extend our
concept visualization to cover more modalities. For modalities that
are difficult to observe visually, such as audio, we can represent their
conceptual features using text or images. Our MFM method can also be
improved to visualize different pairs of modalities, such as text-audio
and image-audio.
Pixel-level alignment. Even though our study enables various set and
point level alignments, sometimes these alignments are not enough
for fine-grained cross-modal tasks. For example, embedding-based
objection detection requires sub-instance pixel level alignment [79].
Our research has not so far touched upon this type of sub-instance
alignment. Regarding this problem, in future work, our system can
integrate interactive semantic segmentation such as Segment Anything
Model [39] into the alignment process to allow users to emphasize
certain parts of the image they want the model to understand.

8 CONCLUSION

In this study, we propose a visual probing and alignment framework
for exploring and interactively refining multi-modal embeddings. Par-
ticularly, for visual probing, we address the modality gap problem by
developing a dimension reduction method called Modal Fusion Map
(MFM) to optimize the display of inter-modal embedding features.
To facilitate interactive alignment, we design an interaction scheme
supporting various alignment intentions including point-set and set-set
alignment. As shown in our quantitative evaluation and case studies,
our framework can help intuitive visual probing and alignment for
diverse tasks. This shows the opportunities for future research to in-
crease human moderation of large models that are growing in size but
decreasing in transparency.
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