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Fig. 1: The interface of our proposed application. (a) The central part is formed by the graph representation of the patrolled site, where
rooms are displayed as nodes and edges depict the routes between rooms, labeled with the probability of taking them within a given
patrolling strategy. Nodes can be collapsed (b) and expanded (c), aiding the strategy exploration and understanding. (d) Interacting with
the slider, we can filter out edges with the transition probability under a given threshold. (e) The Transition Matrix helps in understanding
the deterministic nature of the strategy. (f) Linked bar charts enable the users to see the distribution of the recurring visits for individual
nodes and routes between two selected nodes. (g) Animation slider that controls the movements of simulated patrols for the exploration
of the temporal characteristics of the strategy.

Abstract—Effective security patrol management is critical for ensuring safety in diverse environments such as art galleries, airports,
and factories. The behavior of patrols in these situations can be modeled by patrolling games. They simulate the behavior of the patrol
and adversary in the building, which is modeled as a graph of interconnected nodes representing rooms. The designers of algorithms
solving the game face the problem of analyzing complex graph layouts with temporal dependencies. Therefore, appropriate visual
support is crucial for them to work effectively. In this paper, we present a novel tool that helps the designers of patrolling games explore
the outcomes of the proposed algorithms and approaches, evaluate their success rate, and propose modifications that can improve
their solutions. Our tool offers an intuitive and interactive interface, featuring a detailed exploration of patrol routes and probabilities of
taking them, simulation of patrols, and other requested features. In close collaboration with experts in designing patrolling games, we
conducted three case studies demonstrating the usage and usefulness of our tool. The prototype of the tool, along with exemplary
datasets, is available at https://gitlab.fi.muni.cz/formela/strategy-vizualizer.

Index Terms—Patrolling Games, Strategy, Graph, Heatmap, Visual Analysis

1 INTRODUCTION

Security in large public buildings is a prevailing issue that needs to be
seriously considered—and the problem is addressing both visitors of
these sites, as well as objects in them (such as paintings in galleries).
Security agencies have to correctly determine not only the number
of patrols for a given public space but also their routes inside the
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building that should be ideally randomized and thus unpredictable
to the adversary. This presents a complex optimization problem that
needs to be modeled and simulated, which is the core topic of the
so-called patrolling games [3]. The designers of these games handle
the multidimensional space with probabilistic distribution of the patrols
and adversaries over time.

In such a game, the goal of the adversary is to attack and perform a
malicious activity unnoticed, while the goal of the patrol is to minimize
the chance of the attack. The game is usually played on a graph, where
the nodes are the locations of interest (e.g., rooms), and the edges are
connecting paths (e.g., routes between rooms).

When developing a strategy to patrol a site, the experts must con-
sider the worst-case scenario. That means the adversary has complete
information about the game, which is not the case for the patrol. The
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adversary could theoretically know the full strategy of the patrol, as
well as their current position. This type of patrolling game is called
adversarial patrolling game [28]. The solution for the patrol is to create
a randomized pattern, where even the patrol does not know their next
step, so the adversary cannot benefit from the knowledge of the strategy.

In Section 3, we introduce several algorithms developed for creating
patrolling strategies. These algorithms are usually dependent on a met-
ric they are trying to maximize. Even if such a metric is cleverly crafted
to produce good strategies, a number alone provides little insight into
the strategy itself and how it behaves in a particular graph. Will the
patrol move in a circular pattern, visiting all locations one by one, or
will they employ clever tricks, backtracking for a bit or taking an unex-
pected turn to make it harder for the adversary? These are questions
that cannot be easily answered by considering strategy values only,
which opens space and the need for appropriate visual representation
that aids in the exploration of all possible options. In our research,
we aim to develop a visualization system that can visually present the
structure of a strategy on a graph and provide insight into the behavior
of the patrol. The ultimate goal is to aid the designers of the patrolling
games in finding potentially vulnerable spots in their proposed strategy
in a fast and intuitive way.

To summarize, in this paper, we claim the following contributions:
• Design of visual support for patrolling games, addressing the

initial requirements derived from the needs of designers of the
strategies.

• Interface consisting of linked views that help to explore the strate-
gies and their parameters and can simulate the movements of the
patrol.

• Demonstration of the usefulness and utilization of the tool in three
case studies.

2 MARKOV CHAINS

Markov chain is the most natural underlying model for representing
a patrolling strategy with randomization. Since it is the model the
domain experts utilize in their work, we provide a basic overview in
the context of patrolling games. For a more detailed explanation, we
refer the reader to a full textbook [12, 19].

The Markov chain is a simple yet powerful stochastic model captur-
ing a sequence of possible events. In terms of the patrolling strategy, in
each step, the patrol can move to a new position. The basic property of
a Markov chain called the Markov property, is that (the probability of)
the subsequent step depends on nothing but the current position. Hence,
the Markov chain can be expressed as a transition matrix, where each
row is an outgoing position, and each column is an incoming position
(or vice versa, depending on the convention). Then, each element of
the matrix represents the probability of transition from one position
to another, hence the name transition matrix. For each row, the listed
probabilities have to sum to 1.0, as they represent a probability distribu-
tion on subsequent positions. Such matrices are called stochastic. E.g.,
a stochastic matrix
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represents a Markov chain depicted as a graph of positions in Figure 2a.
Due to the matrix being stochastic, it has to include the value 2/3 as a
self-loop that the figure omits in position 2.

An important characteristic of a Markov chain is the so-called sta-
tionary distribution π . This is a probability distribution on the positions
that does not change in the next step

π ·P = π,

where P is the transition matrix. The stationary distribution represents
the long-term coverage of the particular positions. The higher the
probability, the higher the frequency of visits. It serves as an important
metric since it reveals potentially vulnerable spots that are not visited so
often. Similarly, we can compute distribution on the edges representing
the frequency of their usage.

(a) (b)

Fig. 2: Node-link diagrams depicting Markov chains. (a) a typical ex-
ample with probabilities as edge labels (self-loops are omitted) [19]. (b)
probabilities are displayed as the edge line weight [5].

(a) (b)

Fig. 3: (a) Example of a plain Markov chain strategy. The probability of
going from left to right without returning is 25 %. (b) In the expanded
version, where the patrol retains memory, the probability is 100 %.

While the Markov chain is a simple stochastic model with plenty of
easily computable properties, the Markov property is sometimes too
restrictive. Consider the following example: the patrol is trying to walk
to the end of a long corridor, stopping at each intersection, taking one
step forward or one step back. In a strategy presented as a Markov
chain with a uniform distribution in each intersection (Figure 3a), the
expected number of steps to get from one end of the corridor to the
other one takes (n+1)2 steps, where n is the number of intersections
on the way. Moreover, the probability that the patrol takes the direct
path (of n+1 steps) is as small as 2−n. If we had used a non-uniform
distribution in the intersections, it would have been easy to go one way
but not the other. Let us imagine that the optimal patrolling strategy is
to go straight from one end to the other and back. The solution is to
take into account the patrol’s previous steps, but this does not satisfy the
Markov property. We solve it by splitting each location into one or more
copies of the location that hold the information about where the patrol
came from. We call these copies memory nodes, as they effectively
act as a memory of the patroller’s past behavior. As is apparent from
Figure 3b, the task of walking down the corridor becomes trivial when
the strategy is represented as a Markov chain on the memory nodes.

3 RELATED WORK

This section summarizes the existing works that are closely related to
the domain of patrolling games and our proposed solution for their
visual support. After discussing the patrolling games and the existing
visualization approaches, we briefly summarize the basic background
works in graph drawing.

3.1 Patrolling Games
The problem of patrolling deals with the security of important locations
(e.g., airports, art galleries, or schools) and those (people and objects) in
them. The point of view of patrolling games deals with the question of
“How should the patrols be scheduled to catch the most intruders?” [3].
And, since the focus is on planning ahead of any action, patrolling
games assume the worst situation when the intruder already knows
everything about the patrol.

Formally, patrolling games, for which our visualization is designed,
are based on the Stackelberg model [25]. It is an interaction between
two types of actors. The adversary (or intruder, attacker, perpetrator,
and he by convention) is trying to attack a specific target, corresponding
to a node in a patrolling graph. The patrol (or defender, guard, and she
by convention) is trying to prevent this attack. We assume the patrol
lacks the resources to mount permanent supervision over all locations.



(a) (b)

Fig. 4: Node-link diagrams laid out to resemble a map. (a) a three-floor
hotel [15]. (b) a storage facility with six zones [16].

Therefore, she must patrol them by following a path through the edges
of the patrolling graph. We also assume that the adversary is intelligent
and can obtain the patrolling schedule. Therefore, the schedule is
randomized to be efficient even against an intelligent adversary. All of
this considered, the problem is “How should the patrolling schedule be
randomized to be most effective against the adversary?”.

The patrolling games we visualize can be further extended by assum-
ing that the defender has memory (i.e., her strategy is not memory-less)
and keeps a history of nodes she visited along her patrolling path. This
extension can be implemented in various ways. For example, the nodes
of the patrolling graph could be duplicated, each representing a different
state of the patrol [2, 6]. Alternatively, a finite set of memory elements
can be associated with each node [15]. Nevertheless, frequently, only
the patrol’s current state is considered, even though the optimal strategy
may require her to remember the entire route. In these cases, Markov
chains may be used to model the patrol’s decision process [10].

Patrolling games are not only a theoretical formalism but have also
been successfully used in practice. In Los Angeles, they have been
used to schedule checkpoints at the International Airport through the
ARMOR system [20]. Still in L.A., the game-theoretic approach has
also been deployed in the metro system to schedule fare inspection [10,
31]. There is also IRIS, which schedules flights of US air marshals [25],
PROTECT aiding US Coast Guards protecting their ports [24], and
PAWS safeguarding wildlife in Uganda from poachers [9].

3.2 Existing Visualizations of Patrolling Games
The current state of the visualization of patrolling games is rather
limited. Literature on patrolling games frequently contains simple
drawings and visualizations. They differ in their faithfulness to the
patrolled environment, the ability to portray multiple strategies, and
their readability, which is heavily impacted by the number of sites (e.g.,
rooms) to be guarded.

The most straightforward way of depicting the route of a patrol is
through a map. They clearly show the problem’s spatial circumstances—
the patrolled buildings’ physical shape. However, it only shows one
selected route, failing to capture any other possibilities, let alone the
probability of each decision along the route.

Alternatively, the connected locations can be drawn as traditional
node-link diagrams. These diagrams can then be laid out to resemble the
original space (Figure 4a). In cases where several nodes are spatially
closely tied together or can be visited simultaneously, it is visually
clearer to depict them as a nested graph (Figure 4b). However, a node-
link diagram alone does not communicate much besides the topology of
the patrolling graph. Specifically, it omits the probability of transition
between nodes—the patrolling strategy itself.

Assuming a Markov chain describes the patrol’s behavior, the node-
link diagram can be further extended. Typically, a Markov chain is
depicted as in Figure 2a — oriented node-link diagrams where edge
labels represent the probability of transition between nodes. How-
ever, since probability values are constrained to the [0,1] interval, they
can also be easily displayed as the edge line thickness, as shown in

Fig. 5: A line-graph-like approach [32]. Even with a small number of
locations, the graph gets very cluttered and unreadable.

Figure 2b. This approach retains the node-link diagram’s ability to
resemble the patrolled space. It can even show the long-term proba-
bility of the patrol’s decisions. Unfortunately, this approach quickly
becomes unreadable when applied to strategies that equip the patrol
with memory since each location in those strategies may be represented
by many distinct nodes.

A different approach to the visualization of patrolling games presents
the concept of dedicating the horizontal axis to time and the vertical
axis to locations. Assuming a situation with only a handful of locations,
this concept can be applied to a Markov chain node-link diagram. With
many locations and strategies, the diagram can be scaled, becoming
essentially a line graph (Figure 5). This concept can be quite useful
when explaining the problem of patrolling games [30]. Nevertheless,
it quickly becomes cluttered and gives up the ability to represent the
situation spatially. Therefore, as such, this representation does not
fulfill the need for interactive exploration of a strategy.

3.3 Graph Drawing
Since patrolling games intrinsically model the problem as a graph,
we were intensely studying options for visualizing them. Here, we
summarize the most related findings. The literature surrounding graph
drawing is extensive. Therefore, we refer to a chapter by Eades et
al. [8], introducing the topic from an algorithmic point of view.

A common way of visualizing graphs in an interactive setting is
by simulating physical forces between the nodes — applying a force-
directed layout. There are many algorithms for computing this layout.
It was pioneered by Eades [7] and later built upon by, for example,
Fruchterman and Reingold [11], or Jacomy et al. with their ForceAtlas2
algorithm [14], which focuses on generating recognizable clusters of
highly connected nodes.

Graph nodes tend to be associated with multiple attributes (e.g.,
files in a file system have size, age, type, owner, etc.), resulting in
multivariate network graphs. For a high-level overview of those graphs,
we recommend the state-of-the-art report by Nobre et al. [18]. We also
acknowledge work by van den Elzen and van Wijk [26] focusing on
user interaction in multivariate graphs.

If the node needs to encode information stored in it, we can provide
many examples of their rendering, such as glyphs [29, 33]. It is also
common for nodes to contain other nodes. In such compound graphs,
some edges are represented as lines, and others are implicit by composi-
tion [4]. However, this approach is just one possible way of visualizing
groups in a graph. Other solutions include differentiating nodes by
color or painting contours around them [27].

4 DESIGN REQUIREMENTS

The design requirements for our proposed solution were derived from
numerous discussions with our collaborating domain experts in design-
ing algorithms and strategies for patrolling games. Our collaboration
group, focusing on applications of logic, game theory, and discrete
structures, consists of five senior and four junior researchers, who were
consulting the topic with us. The most involved senior researcher, who



also conducted the case study, is the co-author of this paper. Within
numerous discussions, we aimed to understand their traditional ap-
proaches to the exploration of the proposed strategies and identification
of their weaknesses. Then, we identified the target audience of the
proposed solution, which primarily consists of experts on patrolling
games and, secondarily, the public audience to whom the experts want
to explain the background and importance of their research.

The first sessions with the experts consisted of observing the explo-
ration process of strategy development with a specific focus on visual
aids that help them analyze the outcomes of their algorithms. When
developing a strategy, the domain experts would start with a layout of
the patrolled area, described by a list of nodes and edges. Based on
the goal of the strategy (e.g., catch the adversary, guard the valuable
location, periodic maintenance), they specify a set of criteria, which the
algorithm is trying to optimize, and design the algorithm itself. They
run several experiments with a range of changing parameters. The
experiments are conducted by designing a graph in which the domain
experts would expect one strategy to occur and then trying to find that
strategy. While this approach can verify the expected functionality of
the algorithms, it is unsuitable for the exploration of the strategies in
real-world scenarios. After finding the solutions of these experiments,
they need to verify that the algorithm produces feasible results. Since
the domain experts conduct research on patrolling games, the param-
eters of the experiments change constantly, and so do the metrics of
success. Rather than trying to find a universal solution, the aim is to
provide a set of visual tools that are general enough to apply to a wide
range of scenarios.

Based on the discussions with the experts, we have developed the
visualizations with the following assumptions to limit the design space.
Since the graphs represent building floorplans, we can usually assume
that the graphs will be planar. The size of the patrolled sites is expected
to be no more than thirty individual locations. Each location can have
multiple memory nodes, but auxiliary locations (offices and other rooms
with single entry/exit) tend to have fewer memory nodes. There is no
hard limit, yet we assume there will be no more than ten memory nodes
in a location. Lastly, we expect the Markov chain to be irreducible,
i.e., the transition matrix contains only one graph with no isolated
subgraphs.

It is also crucial to mention that the strategies we are operating
with are computed for a 1v1 version of the game (one patrol vs. one
adversary). The design of the tools for visual analysis of the multi-
patrol scenarios requires a different approach and will be a subject of
our future collaboration and research.

The only time the researchers have been working with a visual
representation of the graph is either when they draw it by hand or
during the evaluation phase when they utilize the transition matrix,
visualized as a heatmap. One of their main concerns in the evaluation
of the correctness of the strategy is to find stable paths that are created
in the graph. Heatmaps cannot be intuitively used for tracing the paths,
so for this task, they had to sketch the results as graphs.

Another task that needs to be addressed by our newly designed
solution is the fact that one physical location can contain multiple
memory nodes, and the user needs to get an overview of the locations, as
well as the details on demand about selected locations and their memory
nodes. This connection between the locations and their memory nodes
needs to be clearly visually depicted. Similarly, we need to handle the
edges connecting the nodes and their appropriate aggregation when we
aggregate the memory nodes into locations.

When evaluating the strategy, one needs to track the behavior of the
patrol over time. The user needs to see the probability distribution of
visiting other locations from a starting location. We need to design a
set of interactions that support exploration of the temporal aspect of
the strategy, both short-term such as tracking an individual patrol, and
long-term, as which locations are visited the most or which are omitted.

From the above-described problems and tasks, we compiled the
following set of requirements that need to be addressed by our solution:

R1 Visualize stable paths that are created in the graph.

R2 Aggregate overview of the strategy but keep the details accessible.

(a) (b)

Fig. 6: (a) A representation of a building with each location marked by
a different color. (b) The same building, with a strategy applied. Each
location can be present multiple times as a memory node. Coding by
colors is insufficient to track the behavior of the patrol.

R3 Clearly associate the memory nodes with their locations.

R4 Track the probability of the patrol visiting other locations from
the selected starting point.

R5 Identify the patrol’s long-term behavior, such as how often the
locations are visited.

R6 Track the dynamic behavior of the patrol in all locations.

5 APPLICATION DESIGN

The design decisions behind our proposed solution are mirroring the
stated requirements. In the following, we will present individual views
of our application, which is depicted in Figure 1, along with the ratio-
nale behind them. The process was in line with the well-established
guidelines for defining the design space of visualization tasks [21]. The
design process was iterative: after prototyping the first version, we
discussed it with our collaborators, and based on their feedback, we
updated the design and prototype accordingly. This process had several
rounds until we reached the final consensus and design presented in
this paper.

5.1 Node Graph

A node graph forms the central part of the application; a well-known
representation of Markov chains that translates very naturally into the
spatial layout of a map, such as a museum or an airport. This design
choice was logical as it was also one of the main visual depictions the
domain experts originally used for sketching their strategies on paper.
However, the nature of the strategy that needs to be captured by the
graph does not allow for a simple one-to-one mapping of nodes and
edges, as we need to communicate not only the locations but also the
memory nodes inside them. Figure 6a shows the site’s original layout
depicting only locations, whereas Figure 6b shows a version where
locations are expanded to their memory nodes; here, each location
is represented by several nodes of the same color. The naïve layout
spreads the memory nodes corresponding to one location across the
whole graph, which results in the loss of correspondence. Moreover, it
is evident that coding by color is insufficient to track multiple copies of a
location. When the domain experts draw the example, they need to keep
all copies of the physical location close together. Put in visualization
design terms, it is necessary to create an overview of locations with
aggregated memory nodes but also provide the details about individual
memory nodes on demand (R2, R3).

To visually distinguish between locations, we encode them by color.
To create a color palette, we use the tool “I Want Hue” by Medialab [13],
which is designed to generate visually distinguishable colors in the
L*a*b* color space. Our goal is to generate colors that are easy to name
so that the user can easily talk and think about them and point them out.
One can argue that this approach is not robust when we have to deal
with large graphs. However, as confirmed by our collaborating experts,
the number of locations in the graph is mostly limited to dozens at



(a) (b)

Fig. 7: (a) The original design of node aggregation. The outer rectangle
would stretch to wrap all the inner squares that can be positioned any-
where, which would quickly crowd the canvas and waste space. (b) The
improved design allows the opening and closing of the locations, which
saves space. The memory nodes on the perimeter of the closed location
create very recognizable patterns that allow for quick counting of inner
memory nodes at first glance.

maximum; therefore, they prefer this option for distinguishing between
them.

The oriented edges between nodes encode the probability of taking
the route between the given nodes by the patrol. This corresponds to the
weights of edges in the Markov chain. In our solution, we are visually
depicting these weights by double-encoding them into the thickness
and luminance of the arrows representing the edges.

5.1.1 Node Aggregation

When aggregating the memory nodes into locations, it is necessary to
inform the user about the inner constitution of the locations, i.e., the
number of its memory nodes. The first idea came from the requirement
of associating the memory nodes with their locations. By drawing a
rectangular boundary around all associated memory nodes, we created a
location that ties them visually together (Figure 7a). However, as more
locations are drawn this way, too much space is wasted in between, and
the locations can overlap with one another. We improved the design
by changing the shape from a rectangle to a circle, fixing the size of
the location, and forcing the nodes to stay in the location around the
perimeter (Figure 7b) (R2, R3). The closed location shrinks to save
space, and the nodes move around the border, resembling flower petals,
which shows the number of memory nodes at a quick glance. The open
location has all memory nodes floating within with all of the edges
visible.

5.1.2 Edge Aggregation

By aggregating the memory nodes into locations, it is possible to
obtain multiple parallel edges connecting nodes between two locations
(Figure 8). These edges create visual clutter and it is hard to extract the
real probability of traveling between the locations, so it is necessary to
somehow aggregate their values as well. In the following, we describe
three possible approaches to edge aggregation (R2).

The trivial solution is to sum the values that now point in the same
direction. Since there can be more than one memory node pointing
from one location, the sum of the outgoing edges would be equal to the
number of memory nodes hidden in the location, which would bias the
values towards locations containing more memory nodes.

The second option is to take all edges and choose the maximum
value, which clamps the results into the range (0;1]. Here, the problem
is that the maximum function hides other edge values and, more impor-
tantly, does not have corresponding meaning in terms of the strategy.

Finally, the third option is to take the average value, i.e., a sum of all
parallel edges, and divide it by the number of nodes. Not only does the
average produce a valid Markov chain, but it also has a clear explanation
in terms of the strategy. When considering a closed location, choosing
the starting memory node is usually not important. The process of
normalization by the number of memory nodes places the patrol in one

(a) Open to open. (b) Open to closed.

(c) Closed to open. (d) Closed to closed.

Fig. 8: Four different configurations of edge aggregation. Edges that go
the same way (all in or all out) after aggregation are summed and divided
by the number of points they could come from. The edges that would
stay inside the location are taken out and treated the same way as other
edges. The resulting graph is also a true Markov chain.

of the nodes at random and, from there, considers the probability. The
final measure is the combination of these two actions.

If there is a connection inside a location, it will be effectively hidden,
and the edge values lose their meaning altogether. Even though a
connection inside the location does not occur in any of the strategies
we encountered, we include the solution for completeness. As seen
in Figure 8, the inner edges are taken out as a self-connection and
treated in the same way, i.e., divided by the number of memory nodes.
This preserves Markov properties for every configuration. In theory,
this form of aggregation can be applied to any Markov chain and by
progressive closing of nodes, create a hierarchy of the chain. We do not
explore this feature further, as this case is not present in the patrolling
game strategies with which we are operating.

5.1.3 Graph Layout

A comprehensible representation of the graph layout is one of the key
features. For that, we decided to use the force-directed approach as it
can converge to a distribution of nodes and edges that tries to maintain
the proximity of nodes according to selected parameters and minimizes
the edge crossings. The basis of this layout is ForceAtlas2 [14] with
several alterations. We differentiate between the layout of locations
and their memory nodes. The layout of the whole map is driven only
by locations, not the memory nodes. The memory nodes interact
generally with other memory nodes in the same location. This creates a
separation of concerns that keeps the layout manageable. The following
paragraphs present the forces that shape the final layout.

The attraction force pulls together every pair of locations that shares
an edge. It is a weighted force, where we use the weight of the edge.
Even though the edges are oriented, the forces are applied to both nodes,
and the larger of the two is chosen. Only locations attract each other by
this force, never memory nodes.

ForceAtlas2 is designed with a social network in mind; it uses a
“repulsion by degree” variation. For our layout, we implement the repul-
sion force only as the inverse of the distance multiplied by a repulsion
factor to keep all elements spaced out. All locations repel each other.
However, memory nodes repel only when inside the same location.

The gravity force discounts the degree of the node as well. It is
scaled by the radius of the node instead as a measure of its weight.
Gravity keeps nodes from floating away. Locations are attracted to the
middle of the canvas, while the memory nodes follow the center of their
parent location.

The three forces are sufficient for the layout of locations. However,
the memory nodes in open locations create extra crossings that obscure
the graph (Figure 9a). For this reason, we created the axial force that
is exerted on the memory nodes to untangle the edges (Figure 9b).
The direction of the force is always perpendicular to the axis between
the memory node and the location. The magnitude is the dot product of
the edge E and the unit vector of the axial force F̂x multiplied by the



(a) (b) (c)

Fig. 9: (a) Open location without using the axial force. (b) Open location
with axial force applied to the memory nodes. (c) Schema of the axial
force computation. The direction of the force is always perpendicular to
the memory node-location axis. The magnitude is the dot product of the
edge E and the unit vector of the axial force F̂x multiplied by a constant kx.

(a) (b) (c)

Fig. 10: (a) Original strategy, where only the first edge of the loop has
a low probability. The rest has a 100% probability, which distorts the
importance. (b) The Path Preference graph shows correctly how often
the patrol travels around the whole loop. The proportion of time spent
in the location is encoded both as a number and a luminance of the
locations. The edge probabilities are normalized for a higher range. (c)
When the edge threshold is raised over 25 %, one of the loops is severed.
The locations that no longer complete a loop are shrunk, and only the
strongly connected components remain.

constant kx

|Fx|= kx · ⟨E, F̂x⟩.

The axial force uses the edges to pull the memory nodes towards them.
If the force were applied in the direction of the edge, it would stretch the
memory nodes out of the bounds of the location. Instead, the perpen-
dicular force rotates the memory nodes into a more favorable position
while keeping them on the same radius (Figure 9a vs. Figure 9b).

5.1.4 Path Preference (Stationary Distribution)

In Section 2, we discussed the stationary distribution of a Markov chain.
Visualizing it on the graph conveys the long-term distribution on the
map. The locations and memory nodes can show how much time the
patrol spends in them relative to all locations (R5). We encode this value
as number and luminance values of the locations (Figure 10b). The
edges display the probability of using it relative to all other edges. This
number gets smaller for larger graphs since it is divided among more
edges. The user can switch between absolute and relative measures
in settings. In the relative one, the edge weights are normalized. The
result represents the overall edge preference.

There is one more reason why we created the visualization of the
stationary distribution. As shown in Figure 10a, if the path travels
around a loop, only the first edge from a crossing shows the correct
probability of entering. The rest of the loop has a 100% probability,
which visually distorts the importance of the whole path. In Figure 10b,
the stationary distribution, or Path Preference as we call it in the tool,
shows the path correctly along the whole loop (R1). However, this
representation is not a Markov chain anymore.

(a) (b)

(c) (d)

Fig. 11: The Selected Node Panel. The Distribution of Recurring Visits
chart can show either the probability of returning to the same node (a,
c) or arriving at a different node (b, d). The charts (a) and (b) show
relatively fast mixing, i.e., the probability of visiting is becoming more
homogeneous. An example of a deterministic path is in (c) and (d). No
mixing is occurring, as the patrol follows only one loop.

5.1.5 Loop Detection
An important characteristic of a strategy is the possibility of using it
indefinitely, therefore following a loop. When a location has edges
coming out of it, but none are coming in, it cannot be visited more than
once (R5). This trait will be visible in the path preference, as these
abandoned locations will show a 0% probability of a long-term visit.
To further facilitate the discovery of unfinished loops, we implemented
Kosaraju-Sharir’s algorithm [23] to compute strongly connected com-
ponents. When the location or memory node is not part of a closed
loop, it shrinks, and all of its edges, both inbound and outbound, fade
out (Figure 10c). The loop detection is recomputed every time the edge
threshold slider (Figure 1b) is moved, so the user can dynamically find
the exact value when the loop breaks and locate the weak spot. On
the other hand, the path preference is computed only for the original
strategy, where all edges are taken into account.

5.2 Additional Tools
The graph network is well-suited for the exploration of static features;
however, when examining the strategy, it is necessary to inspect its
dynamic aspects as well.

5.2.1 Selected Node Panel
By selecting any location or memory node, it is possible to see its
details in the Selected Node Panel (Figure 11). The most important
feature is its Distribution of Recurring Visits chart. We compute the
probability distribution for the next 100 steps from the selected starting
point and show it in a bar chart. By hovering over another location or
memory node, the user can even inspect the probability distribution of
any node with the selected node as a starting point.

The resulting chart captures the temporal behavior of the patrol
between any two points (R4). It shows whether the patrol follows a
predetermined path (Figure 11c, d) or if she tends to walk randomly,
which homogenizes the distribution over time (Figure 11a, b).

5.2.2 Transition Matrix
Before we started working on the visualization tool for patrolling games,
the transition matrix was the only means of automatic visualization
the domain experts utilized. While the matrix is lacking in tasks such
as tracking the paths, it still provides a quick overview of the whole
strategy. For example, it is very easy to see whether the strategy con-
tains only one deterministic path, which shows as black points, or if the
strategy is branching, which registers as gray spots (Figure 12). Fur-
thermore, we made the matrix interactive so that it shows the weight of
every path on hover, and the user can open the location from the matrix.
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Fig. 12: (a) Transition Matrix with no branching. All edges are black and
there is only one point in each row and column. (b) Transition Matrix
with branches. There are many more edges with lower probability (gray
points).

Fig. 13: The simulated agents show the strategy in action. Each agent
has a precomputed path for 100 steps, and the user can move them
using a slider. The image captures a moment after the first step from the
central node.

5.2.3 Agent Tracking

The tool for inspecting the dynamic properties is the Agent Tracking.
By selecting a location or memory node, the user can let the agents
out. This populates the node with 400 simulated patrols, each with a
precomputed strategy for 100 steps (Figure 13). The agents, shown as
orange dots, represent possible paths a patrol can take, thus showing
the probability distribution of the patrol’s presence and its development
in time. The number of agents was experimentally set to represent
the distribution sufficiently and still enable interactive rendering. The
number of steps within the simulation was also determined experimen-
tally, as it can capture the major events occurring within the strategy.
Using a slider on the bottom of the screen (Figure 1d), the user can
move all of the agents step by step and inspect their behavior (R6).
The current position is also displayed in the Selected Node Panel in the
Distribution of Recurring Visits chart. This tracking allows the users to
see the strategy in action, as big clusters of agents break into smaller
groups in random strategies or stay together on a predetermined path.
It is also possible to switch to only one agent in case the user wants to
replay the strategy in a real scenario.

5.3 Implementation
The tool was designed as a web-based application using the p5.js li-
brary [17]. For the generation of colors, we employed the I Want Hue
library developed by Mathieu Jacomy [13]. The prototypical imple-
mentation is available at https://gitlab.fi.muni.cz/formela/
strategy-vizualizer, together with the exemplary testing datasets
used in the case study.

6 CASE STUDIES

We conducted three case studies involving a senior researcher special-
izing in patrolling games from our collaborative group. We focused
on examining real strategies the researcher is operating with, where
we could assess the potential benefits of all aspects of our proposed
visualization tool. Initially, we asked the expert to provide us with a
set of exemplary datasets of strategies his research group developed
and is operating with. The aim was to select datasets covering the most
crucial tasks and problems in their exploration process, focusing on
those strategies they struggled with.

For the testing in a one-to-one session, we used a 4K screen, and
we recorded both the screen capture and the audio, as we employed a
think-aloud protocol. The session started with the initial presentation
of all functions of the application to ensure that the researcher could
fully focus on the exploration process within the testing.

6.1 Case 1: Detection of Anomalies
The first examined strategy is an airport layout with one central location
(pink node in Figure 14a) and branching halls with gates. This strategy
is interesting namely, because of two errors in it—there is an unused
memory node and one duplicated path. When using the traditional
approaches (simple graph drawings and heatmaps), these were very
hard to reveal, and the researchers would have to know what they were
looking for. Therefore, we were very much interested if these issues
could be revealed using our representation.

After loading the dataset, the researcher first interacted with the
graph layout to familiarize with the arrangement of the site. While he
was opening the locations (Figure 14a), he revealed a cluster of edges
with small probability values that were going from one of the memory
nodes in the central location. To examine this more, he decided to hide
these low-probability edges using the threshold slider, which filtered
out edges with low probability. More importantly, it also shrunk one
memory node in the central location (Figure 14b), signaling that this
memory node was largely unused in the strategy. To confirm this, he
switched to the Path Preference view, which clearly showed that the
memory node was indeed never visited. This can be derived from
the fact that the node is not part of any loop anymore, and it is fully
white with a zero probability value. This view additionally revealed the
second issue of the strategy, the duplicated path, when the researcher
noticed that two of the memory nodes in one of the locations showed a
lower visit rate (marked by arrows in Figure 14c) than the other memory
nodes in the strategy. From this representation, he easily identified that
the paths going through these memory nodes duplicate the same path
between the neighboring locations. The final conclusion from this case
is that the memory node is redundant.

6.2 Case 2: Agent Tracking
For the second case, we analyzed an office building. It has a circular
hallway, where at each junction, there are entrances to two or three side
offices. The specialty of this strategy is that the locations contain only
one memory node each, so the patrol is memory-less.

To initially check the distribution of probabilities across the graph,
the researcher turned on the Preferred Path view (Figure 15). There,
it is clear that the distribution in the hallways and the side offices, re-
spectively, is uniform. This suggests that the strategy nicely covered
the whole office building area. However, the accompanying Distribu-
tion of Recurring Visits chart for one selected node (highlighted with
a halo) shows a noticeable dip (marked by an arrow). To investigate
the reason for that, he decided to track the strategy using agents to see
the simulated transition of the patrol. After exploring the first steps
of the simulation, he was quickly able to identify the reason for the
dip in the graph. The one-way nature of the central loop caused the
agents to gradually spread to other locations, while the starting location
had fewer and fewer agents. After finishing the round, they returned,
creating the wave effect. Since then, the distribution has become uni-
form, which is clearly visible from the chart. Additionally, by using the
hover feature of the Distribution of Recurring Visits chart, examining
the probability of walking from one location to another, the researcher
was able to track the wave moving through the hall.

https://gitlab.fi.muni.cz/formela/strategy-vizualizer
https://gitlab.fi.muni.cz/formela/strategy-vizualizer
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Fig. 14: (a) The map of an airport, the first examined strategy of our case study. The top memory node of the pink central location has a lot of edges
with a lower probability. (b) After setting the edge threshold to 2 % of the probability of using the edge, one memory node shrinks (marked by a black
arrow) because it is not visited anymore. (c) The Path Preference view verifies that this shrunk memory node in the central location is not part of any
loop anymore. Further, it shows a duplication of the path going through the nodes marked by black arrows.

Fig. 15: The distribution of probabilities in the office building layout. The
Recurring Visits chart evidences a dip in the early steps of the simulation.

The major takeaway for the researcher was, however, the quick
dispersing of the agents he observed at the start. It is the consequence
of the patrols not remembering their previous path and possibly visiting
the same location multiple times. This was also confirmed by the
second round of agent tracking, where only one agent was sent out,
and the researcher observed its route through the graph. The single
agent was able to return to one office even three to four times, after
which it would circumnavigate the whole hall without entering even a
single room. Although this is a known consequence of the memory-less
strategy, it was valuable to see the behavior graphically. The main
observation made here was that while strategies without memory nodes
can express satisfactory long-term behavior, it does not necessarily
mean that it is a good strategy overall.

6.3 Case 3: Overall Strategy Evaluation

In this case, the task was to explore the strategy in general and see if the
researcher could reveal any interesting observations about the strategy.
The selected strategy contained locations with diverse probabilities of

visiting them. This time, the researcher first analyzed the Transition
Matrix (Figure 16a). He noted that at a glance, the matrix seems to
be a well-formed diagonal, which would suggest a fully connected
graph. As he continued with the exploration of the graph, he raised the
threshold for filtering out the edges with low probability. Immediately,
with the threshold value set to 1%, the graph representation shrunk the
unreachable nodes, and only a central subgraph loop was preserved
(Figure 16b). By investigating the inner loop, he found that there is
only one path to the outer locations, reachable with the probability of
0.1%, thus making it virtually inaccessible. To ultimately confirm this
assumption, the researcher switched to the Path Preference view, which
clearly showed that this is the case. The inaccessibility of the majority
of locations was not visible from the initial exploration of the matrix
nor from the original graph layout.

7 RESULTS, DISCUSSION, AND FUTURE WORK

The observation of the researcher interacting with the tool and the think-
aloud protocol helped us to reveal the most interesting observations
within the study, as well as suggestions for future improvements. In
the first case study, we observed that in the initial phase, the researcher
was slightly confused about the aggregation of nodes and edges, and
he tended to open all locations to see all memory nodes. While the
aggregation is useful for layout purposes and first impression of the
site, the inspection requires expanding the locations. The researcher
noted that although he understands the rationale behind choosing the
averaging for aggregation of the edges, he would intuitively expect
to see the maximum value instead. This leads us to believe that the
researchers do not need to see a proper Markov chain when investigating
a strategy but rather to see the strongest path.

One of the most valuable features was the interaction with the thresh-
old slider that filters edges of a lower probability and consequently
shrinks the inaccessible nodes. The researcher spent a significant
amount of time exploring the consequences of changing the threshold
values. He commented that this simple feature is very valuable and
significantly speeds up the exploration process. He also stated that
revealing the anomaly features of the strategy was one of the most time-
consuming tasks within their exploration using the traditional approach.

The second study revealed that the Distribution of Recurring Visits
chart gives valuable hints about the behavior of the strategy, even
when the distribution of probabilities across the nodes and edges in the
graph does not evidence any anomalies. The possibility of exploring
the probability distribution using the chart in a single node, as well as
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Fig. 16: In the third case, (a) the diagonal in the Transition Matrix suggests a clear path covering all nodes. However, (b) changing the probability
threshold revealed that the majority of the graph is unreachable.

between two selected nodes, was very appreciated by the expert. It gave
him a new perspective on the exploration process and navigated him to
further investigate the strategy, which he otherwise would already mark
as successful. The subsequent agent tracking confirmed the suspicion
he made when checking the charts. The third examined case helped
the researcher confirm that their traditionally used transition matrix can
suggest false assumptions about the strategy. Therefore, it needs to be
linked with additional means for further exploration.

In summary, the researcher stated that our approach has a surprising
additional outcome—the visual depiction of the strategies and the
interaction possibilities opened new perspectives for looking at the
analysis of the strategies. We revealed potential for several future
expansions within the testing and design process. When using this
tool to analyze bigger strategies, we will inevitably run into the issue
of visual clutter in large graph-based visualizations. To address this
concern, we can repurpose the node and edge aggregation approach
presented in Figure 7 and Figure 8. By merging larger logical units (e.g.,
whole buildings) together, we can create a natural hierarchical system
that shows aggregated information at a glance while still providing
details on demand. Another improvement is to consider the time the
agent spends in a certain node or at the edge between two nodes.
Currently, every edge takes exactly one timestep to traverse. However,
many strategies can depend on this parameter, and in the future, we
want to extend the simulations and visual representations by taking
this into account. Another interesting extension would be to further
adjust the graph layout so that it better resembles the appearance of the
original layout of the site. The natural solution is to overlay the graph
over the map of the patrolled area. Most importantly, it is necessary to
focus on investigating the multi-patrol (and multi-adversary) strategies.
For this, a straightforward extension of our current solution is not
feasible.

7.1 Beyond Patrolling Games
Though the visualizations have been designed with patrolling games
in mind, our approach for aggregating Markov chains can be applied
to virtually any domain that is using them. The Markov chain has a
unique property we are exploiting in the visualization. We can choose
any number of states (memory nodes in the context of patrolling visual-
ization) and compute a substitute meta-state (location) that still satisfies
the Markov property, therefore being a valid part of the Markov chain.
These meta-states can be treated as ordinary states, and we can cluster
them repeatedly, creating a whole hierarchy above the Markov chain.
This opens up a potential use in any Markov chains application we
want to explore in a future publication.

Here is an exemplary scenario that illustrates the usage of the new
type of visualization: In 1948, Claude Shannon [22] proposed modeling
a language as a Markov chain. By processing a language corpus and

marking every character (a, b, c, . . . ) as one state, he creates a so-called
first-order approximation to a language. This Markov chain can be
used to generate text with properties similar to the original text. By
processing two different corpora, we can compare them based on their
Markov chains.

We can improve on the original idea by applying clustering. All vow-
els and all consonants can be merged into two meta-states. This hides
the details of the original chain but introduces new relationships in the
languages. This approach can be further enhanced by using an Interna-
tional Phonetic Alphabet [1] corpus that records the spoken language.
The experts could visually explore the similarities and differences be-
tween the world’s languages by using any of the many classifications of
the sounds (plosive/nasal/fricative consonants, etc.). The hierarchical
clustering of Markov chains can open up many possibilities throughout
the scientific fields.

7.2 Takeaways for Network Visualization

We presented two concepts we believe are useful for the general domain
of network visualization. The first is the type of glyphs used for node
aggregation (Figure 7b). The style of hidden inner nodes drawn as
flower petals around the center node effectively conveys their amount.
It also clearly differentiates between open and closed nodes, which
improves readability. While we have not tested it in practice, the
flower style of a glyph could be, in theory, applied to arbitrary levels of
hierarchy. Each petal can become a center for its own flower, creating
a fractal-like structure.

The second concept is the introduction of axial force into the graph
layout algorithm ForceAtlas2 (Figure 9). The axial force is useful
for increasing the readability of graphs with nodes constrained into a
circular layout, such as our memory nodes in the unfolded locations.

8 CONCLUSION

Patrolling games are an important problem in the field of game theory
with many valuable practical applications. The subsequent analysis of
patrolling strategies has a significant impact on the evaluation of their
expected behavior. As the current state in the field of visual support
for the exploration of patrolling game strategies was very limited, we
stepped in. In close collaboration with experts in the field, we designed
a novel tool aiding the visual exploration of strategies and their behavior
over time. We carefully designed the visualizations to cover the initial
requirements of our collaborating group and the final tool went through
testing with the senior researcher in the group. Within the testing,
we investigated several case studies, which revealed the benefits and
potential of the tool, as well as suggestions for improvements. Three
of these we described in detail. This forms a solid background for our
ongoing research efforts in this domain.
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