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Fig. 1: DataGarden supports sketching personal, expressive designs and formalizing these as structured visualization templates. To
express (A) a visualization design idea, a user sketches a few representative glyphs in (B) the canvas, making their vision explicit.
DataGarden provides the means to structure the freeform sketch into a visualization template by (C) capturing implicit style and explicit
data mappings via user interaction and machine support. ‘Real’ data can then be fed to the template. This featured visualization is
generated from a template created with the tool. For additional examples, see: https://datagarden-git.github.io/datagarden

Abstract— Sketching is a common practice among visualization designers and serves an approachable entry to data visualization for
non-experts. However, moving from a sketch to a full fledged data visualization often requires throwing away the original sketch and
recreating it from scratch. Our goal is to formalize these sketches, enabling them to support iteration and systematic data mapping
through a visual-first templating workflow. In this workflow, authors sketch a representative visualization and structure it into an
expressive template for an envisioned or partial dataset, capturing implicit style as well as explicit data mappings. To demonstrate
our proposed workflow, we implement DataGarden and evaluate it through a reproduction and a freeform study. We investigate how
DataGarden supports personal expression and delve into the variety of visualizations that authors can produce with it, identifying cases
that demonstrate the limitations of our approach and discussing avenues for future work.

Index Terms—Personal visualization, Visualization template, Sketch input, Sketch-based visualization, Visualization by-example

1 INTRODUCTION

Sketching is a common practice among visualization designers, and is
also an approachable entry to visualization for individuals interested in
personal data. Designers use sketches as a “device to help us make our
vision explicit” [43], to externalize envisioned data mappings and visu-
als before getting into the reeds of data cleaning, and sometimes even
before data is available [2]. Sketching and other forms of visual-first
data visualization authoring workflows are also being encouraged as
an approachable medium to get non-experts engaged in data visualiza-
tion [34]. However, these sketches often remain just sketches. To move
from a sketch to a full fledged data visualization requires throwing
away the original sketch and laboriously redrawing it from scratch, or
changing mediums and recreating it in existing visualization software.
Can we instead formalize these visualization sketches to enable them
to support iteration and systematic data mapping?
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Fig. 2: (A) Traditional data-driven workflows assume pre-existing data,
with authors specifying data mappings to create visuals. (B) Alternative
visual-first workflows start with creating visuals, which are then linked
to pre-existing data to form data mappings [21, 65]. (C) Our workflow
enables authors to sketch visuals, generate a data schema from their
envisioned data mappings, and record data from their sketches.

Freeform sketching gracefully blends personal aesthetic taste and
data analytics [31]. Examples include Lupi and Posavec’s hand-drawn
visualizations from Dear Data [33, 34] and Bremer and Wu’s Data
Sketches [3], featuring creative, informative, and visually unique data
representations. The expressive and flexible nature of sketching makes
it a powerful yet highly-accessible medium that anyone can harness [2,
32]. Its flexibility in particular makes it well suited for crafting personal
visualizations, whose design is limited only by one’s imagination.

Perhaps more importantly, a freeform visual-first approach frees
authors from many constraints imposed by existing visualization work-
flows. Systems often assume pre-existing data, and prioritize data-
driven workflows at the expense of creative freedom (Figure 2.A).
To achieve more expressiveness, approaches that focus on graphics,
layout, and aesthetics have been proposed, with some integrating vector-
graphics editing [21,37,41,70] and sketching [65] within the authoring
workflow. In these approaches, visual authors start by laying graph-
ics on a canvas, and then bind the visual properties to the underlying
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data—a process referred to as lazy data binding (Figure 2.B). While
such workflows offers greater flexibility, data binding still assumes an
existing dataset with which to reconcile the graphics representation.
This imposes an artificial limitation to the creation process [51], which
our work aims to address.

We propose a workflow in which authors formalize a personal sketch
into a structured visualization template through specifying data map-
pings (Figure 2.C). Authors express a representative visualization for an
envisioned or partial dataset by giving examples of the range of values,
mappings, and the overall layout through sketch-based interaction, and
then specify the intended data mappings. We aim to preserve the unique
qualities of hand-drawn visualization, such as small variations in shapes
and color, unorthodox layouts and glyphs, and idiosyncratic sketching
styles. To maintain the advantage of sketching in that it is free from
busywork, we also seek to semi-automate the sketch structuring process.
Semi-automation is preferable to full automation because while sketch
recognition can significantly reduce the workload of instrumenting
hand-drawn sketches, fully automated methods often cannot handle
ambiguity in visuals, and author input is needed to specify, for example,
which visual properties are representational and which are aesthetic.
We therefore seek to have interaction and machine support work in
tandem, showing the author the structure inferred by the system, while
also enabling the author to modify and expand on the structure. This
workflow aligns with the visual-first approach common to designers [2],
but we believe it is also applicable to non-experts as a tangible way to
engage with data visualization [12, 13].

In order to demonstrate and evaluate our proposed workflow, we
implemented DataGarden, a sketch-based authoring system supporting
a small subset of data visualizations we call ‘plant-like’ visualizations,
characterized by a hierarchical structure resembling tree branches and
leaves. This specialized focus allows us to study our visualization tem-
plate creation workflow through a more constrained yet still expressive
and highly idiosyncratic family of representations. We describe how
an author can create a custom template in DataGarden through an il-
lustrative scenario (Section 4) and describe the computational methods
that support our workflow (Section 5). We evaluate how DataGarden
supports individuals to use and establish an understanding of the sketch-
based templating workflow through the system and tutorial we provide
(Section 6.1). We also assess how this workflow supports the creation
of custom visualizations with four visualization experts (Section 6.2).
We complement the two studies with a gallery of visualizations crafted
using the system (Section 6.3). Drawing from our findings, we discuss
how DataGarden supports personal expression, and delve into the vari-
ety of visualizations that authors can produce with it. We also identify
cases which demonstrate the limitations of our approach and discuss
avenues for future work (Section 7).

2 RELATED WORK

DataGarden’s design draws upon an extensive body of prior research
on sketch-based data visualization and visualization authoring tools.

2.1 Visualization Sketching

Functions of visualization sketching. Professionals commonly tran-
sition between sketches on paper and computers to develop new visu-
alization designs [11]. Lupi [32] explains that before working with
actual data, sketches enable them to “visualize the architecture of the
infographics and cultivate ideas for shaping the data visually,” while
later, sketching with data can “help raise new questions about the data
itself.” Bremer emphasizes the benefits of sketching “to discover and
remove thinking errors” when externalizing a concept on paper [3].

Bigelow et al. [2] who observed how designers work with data
confirm this sketching practice. However, sketching is also readily
accessible to non-designers as a medium for swiftly exploring per-
sonal data representations [60], maintaining visual diaries in everyday
life [34], or introducing children to visualization and data science [18].
DataGarden targets users who may not be experts in design but are
eager to explore creative ways to collect and represent their own data.

Sketch-based visualization systems. Information visualization re-
search has studied sketch-based systems that cover a wide spectrum of
data-oriented activities. SketchStory [24], SketchInsight [25], Sketch-
Sliders [58], and ActiveInk [44] focus on data-exploration tasks, while
VoyagerInk [22] targets data-analysis tasks when analysts annotate their
graphs and their notes. These systems often combine sketching with
pen and touch interaction.

Other research efforts have been dedicated to visualization authoring
tasks. Early systems like NapkinVis [6] primarily aimed at inferring
common chart types, such as scatter plots and bar charts, from rough
sketches. More recent work, however, studies sketching as a means of
crafting personal data representations and narratives. Many of these
approaches draw inspiration from projects like DearData [33]. For
instance, DataInk [65] allows users to create artistic glyphs on custom
layouts defined through sketching. Dear Pictograph [45] extends this
concept to immersive environments, while DataQuilt [69] combines
sketch input with image processing of photographs or illustrations.
DataSelfie [20] enables users to sketch custom data representations,
which can then be linked with data collected through questionnaires.

Another line of research focuses on sketch-based interaction for data
storytelling and creating new visualization design, including author-
ing of data comics [19], expressive timelines of personal data [38],
immersive representations of scientific data [17, 53], and personal rep-
resentations of algebraic expressions [49].

While DataGarden shares similar motivations with existing sketch-
based authoring systems like DataInk [65] and DataSelfie [20], it dis-
tinguishes itself through its support for flexible, hierarchical structures
and its unique authoring workflow centered around generalizable visu-
alization templates, as elaborated upon later in this section.

Structuring sketches. When users can sketch freely on a canvas,
structuring sketches can be difficult. Computer graphics algorithms
can assist this process, for example, by grouping together individual
strokes [28,29] and parameterizing these groups [39]. The HCI commu-
nity has also investigated interaction mechanisms for managing sketch
recognition and semantics. In Musink [59], for example, a music com-
poser can sketch strokes that express a custom representation, but the
actual structure of these strokes and their semantics are defined at a
later stage through an interface that combines automatic recognition
and manual control. In WritLarge [66], users can interactively spec-
ify which portions of their sketches they want to be recognized and
then transform strokes in flexible and easily reversible representations
that define structure and semantics at different levels. DataGarden
incorporates techniques and concepts from this entire line of research.

2.2 Visualization Creation Workflows

Graphics-driven workflows. Visualization systems traditionally fol-
low a data-driven workflow which Bigelow et al. [2] observe restricts
the creative freedom of visual thinkers interested in crafting novel data
representations with a focus on graphics design, layout, and aesthet-
ics. The visualization literature has explored various paths to address
this problem. One approach is the ink-data settling procedure [52],
developed within the context of scientific visualization, which automat-
ically infers associations between data and illustrative marks drawn by
an artist. Systems like Gold [37], Lyra [50], Charticulator [41], and
Data-Driven Guides [21] integrate vector-graphics editing tools into
visualization authoring workflows. These systems enable authors to
draw their data marks and glyphs before binding their parameters to
the data. Data Illustrator [30] introduces further flexibility through
a lazy data binding mechanism, where data bindings only partially
constrain the visual objects. This allows authors to directly manipulate
non-bound visual properties or remove bindings to explore alternatives.

While these systems offer greater flexibility, Satyanarayan et al. [51]
note that they still assume that authors have a “desired visualization in
mind” and “a dataset in the appropriate format.” These assumptions do
not always align with some visualization creation workflows, especially
when the data or schema is not available upfront.

Addressing personal data collection practices, DataSelfie [20] elimi-
nates the need for pre-existing datasets. However, its applicability is



Fig. 3: Lupi’s visualization (cropped) of “thank yous” (Week 3) and their
notes on the data mappings [33]. DataGarden helps authors formally
define the data mappings of sketched visualizations and use them to
convert sketches into generalizable visualization templates.

limited to visualizing responses to questionnaires and requires authors
to design the questionnaire before drawing visuals. Tailored towards
design-oriented workflows, StructGraphics [57] offers a more versatile
data-agnostic approach by deriving the data schema directly from the
visualization structure. DataGarden expands on this approach to sup-
port personal representations for users who are not necessarily experts,
focusing particularly on helping them structure their freeform sketches.
Visualization by example. Once created, DataGarden templates serve
as examples for generating new visualization instances. By-example
or by-demonstration visualization workflows have been used in past
research to generate charts from a partial example [37], to infer vi-
sualization grammars [62], or to transform visualizations for data ex-
ploration purposes [48]. Unlike DataGarden, which supports custom
sketch-based data representations, these approaches were limited to a
small set of traditional charts such as bar charts and scatter plots, and
typically required a well-formatted input dataset.
Input visualizations. Traditionally, data visualizations are visual rep-
resentations of pre-existing datasets. Nevertheless, as Huron and Wil-
let [14] and, more recently, Bressa et al. [4] explain, a visualization can
also serve as the medium of direct data collection. The authors iden-
tify various instances of input visualizations, including those designed
for personal reflection [55], personal planning [40], and engaging in
public debates [23]. Sketching is commonly used for adding annota-
tions [22,38] or data hunches [27] over existing data marks. DataGarden
templates take this a step further by allowing users to input new data
points directly through sketching on the canvas.

3 APPROACH AND DESIGN CONSIDERATIONS

We target supporting authoring of personal, expressive visualizations
in scenarios where the actual data may initially be unavailable or only
partially accessible [51], such as in the case of an individual planning
what personal data to collect. Creating a new visualization design
always requires establishing a data schema and defining the visual
encodings that map the drawn elements to data values, and vice versa.
We propose to support such scenarios by enabling users to author
a visualization template through freeform sketching. This template
describes the graphical structure of the visualization, and the mappings
between the visualization structure and the data schema. It can then be
used as an archetype for entering new data points through sketching
or generating new visualization instances using entirely new data. Our
approach is guided by the following design considerations.

D1: Support By-Example Visualization Specification
Since data may not be available or not yet be formatted or digitized [2],
the visualization authoring workflow should start from the drawing
canvas as a constraint-free and expressive medium [3, 34]. We take a
lazy-data-binding-like approach [30] where visualization authors can
start by creating visual elements and defer data mapping to later in
the process. Borrowing ideas from StructGraphics [57], our goal is to
deduce the data tables directly from the visualization. Thus, we treat
the sketched elements as an input visualization [4, 14], where authors

have the capability to input data by directly drawing data points onto
the drawing canvas itself. Combined together, these approaches enable
a flexible visual-first workflow tailored to sketching, where users can
draw new visual elements, create new hierarchy levels, and arrange the
visualization structuring at any point in the process.

D2: Preserve the Idiosyncratic Qualities of the Sketch
Sketching is often viewed as a swift and informal method of creation.
However, a sketch inherently carries the distinctive signature of its
creator. In the context of DataGarden, the focus is on scenarios in-
volving personalized data visualization, where the user who crafts the
visualization is also its primary consumer. Consequently, our aim is to
uphold the idiosyncratic aesthetics of the sketch. This is not only to
enhance support for memory functions [61], but also to encourage user
engagement with the visualization [63] and strengthen the system’s role
as a tool for personal expression.

D3: Support Interactive Sketch Recognition
Working with free-from sketches is challenging because unstructured
sketches are difficult for a system to recognize. We employ a semi-
structured delayed interpretation [59] approach where sketch recogni-
tion can be partial and unfolds progressively across multiple semantic
levels. Individual strokes are grouped, acting as the basic visualization
elements, which then compose the larger visualization structure. Their
visual properties (e.g. color, angle) are interlinked through this struc-
ture. Subsequently, the visualization author can assign semantics by
binding these elements to data dimensions.

The transition from sketches to structured visualization templates
requires close interaction between the human and the machine, sup-
porting partial and iterative specification essential for visualization
novices [10]. The visualization authors must communicate their visual
intent and the intended data abstraction, while the machine must convey
its understanding of the visualization structure and its modifications.

D4: Facilitate Smooth Transitions between Representations
The creation of visualization templates demands authors to engage
with various visualization representations, each catering to different
aspects of the creation workflow, including drawing, structuring at
different semantic levels, and specifying data dimensions. Throughout
this process, it is crucial to enable authors to seamlessly navigate across
semantic levels [66], enabling them to assess and refine recognition
without being constrained to a specific sequence of actions. These
representations should therefore be fully synchronized, incrementally
changing as the author edits the different representations.

However, aiding authors in deducing mappings between these repre-
sentations is equally crucial. We draw inspiration from the interaction
model of Histomages [7], where the pixels of an edited image corre-
spond to those in its histogram, allowing for their selection and mod-
ification in either synchronized view. In DataGarden, the elementary
components preserved across views are not pixels but strokes and their
groups that compose the visualization glyphs.

4 DATAGARDEN

To scope our exploration, we focus on a particular class of visualiza-
tions, borrowing from the metaphor of a garden from older work in
personal informatics [9] to characterize a custom representation of a
personal data collection. DataGarden’s representations draw inspiration
from hierarchical plant-like visualizations featured in the Dear Data
dataset [33] (see Figure 3). These representations offer flexible, or-
ganic layouts that can be easily extended, such as by directly sketching
free-from branches or custom-shaped glyphs that represent individual
data points. The unrestricted nature of such layouts mirrors the nature
of many personally significant data contexts, which are often messy,
idiosyncratic, and evolving [54, 55].

DataGarden’s user interface is composed of two fully synchronized
components (Figure 1): the sketching canvas, where glyphs are drawn
and laid out (Figure 1A), and the structure inspector, which includes
three complementary views of the visualization structure (Figure 1B):
(1) The overview shows the visualization hierarchy as deduced by the
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Fig. 4: A visualization authoring workflow (A) Mary begins by sketching her design concept. DataGarden supports customized hand-drawn glyphs
that can be composed of many strokes, like the rose Mary draws on the sketching canvas. To support structuring the strokes into glyphs, DataGarden
includes polymorphic selection, so Mary can select her strokes in the canvas or in any of the structure inspector views. Here, she does so in the
overview. (B) The selection and highlighting propagates across all the views so Mary can be sure she has the right strokes selected. Mary merges
the strokes into a single glyph using the merge option in the context menu. (C) The structure inspector views support reviewing and correcting the
systems inferred structure. Mary notices her carnation is not parented correctly, so she drags it to the correct child group. (D) Mappings are specified
through direct manipulation. Mary drags the carnation to its own category in her dimension. (E) For continuous channels like position, the elements
are displayed along a linear projection. Mary specifies that her data range covers a portion of the channel range.

system (Figure 4A) and allows the author to directly manipulate glyphs
to make corrections (Figure 4A-C). (2) The dimensions view provides
tools for defining data dimensions and establishing mappings between
the dimensions and the visual channels of the glyphs (Figure 4D-E).
DataGarden supports mappings from categorical and continuous data to
identity and magnitude visual channels. And (3) the table view shows
the data tables derived from the dimensions and mappings specified by
the author (Figure 6). The data tables are interactive, so the author can
change values and append new rows, thereby changing and generating
new instances of glyphs and therefore visualizations on the canvas.

We walk through DataGarden’s workflow principle through a usage
scenario outlined in Figure 4 and the video figure in our supplemental
materials. This workflow is supported by several automatic classifica-
tion algorithms described in Section 5.

4.1 Sketching the Visualization Template
The visualization author, Mary, has decided to create a visualization of
her activities to reflect on when she finds time for her creative pursuits.
She wants to break down her activities by day and be able to see how
many of her activities are work-related or recreational versus actually
creative. She decides to draw each day as a separate plant, and have
multiple leaves and flowers on each plant to show her activities.

DataGarden’s visual-first workflow (D1) means Mary can start
sketching her idea without needing to reference her activity data (Fig-
ure 4A-left). To defer to the author’s style (D2), DataGarden performs
minimal beautification, and complex shapes are supported through the
ability to compose them from multiple strokes, either layering by draw-
ing them in order from bottom to top (Figure 4A) or "oversketching"
lines (Figure 5) as traditionally used by artists [28, 29].

4.2 Structuring the Visualization Hierarchy
While Mary sketches on the canvas, DataGarden attempts to infer her in-
tended glyphs and hierarchical structure, communicating this structure
in its overview (D3). DataGarden does not require the visualization to
be complete to start structuring the glyphs and may misinterpret the au-
thor’s intent. Mary notices that while the system has correctly inferred

the hierarchy of leaves, the strokes of the rose have not been grouped
into a single glyph (Figure 4A). Mary uses the lasso tool to select the
strokes in the overview, or alternatively on the canvas (D4), and applies
a merge from the context menu (Figure 4A-B). Later, when a newly
drawn flower is not parented correctly, she corrects the visualization
hierarchy (D3) by dragging her glyph in the overview (Figure 4C).
Glyphs are represented here as directly manipulable icons, helping
Mary associate them with their original canvas representation (D4).

4.3 Specifying Data Dimensions
Mary switches to the dimensions view to externalize the data mappings
that she has in mind. Mary wishes to map each branch to a different
day, the position of each leaf node to time, and the shape to a differ-
ent type of activity, i.e. "Creative" (roses), "Fun" (carnations), and
"Work" (leaves). She considers the six visual channels supported by
DataGarden (shape, color, position, size, angle, and label), and begins
by creating a categorical dimension bound to shape for her activity map-
ping. DataGarden attempts to automatically cluster the glyph shapes
into the intended number of categories (D3). As clustering is often
difficult or ambiguous, Mary can specify the number of categories,
assign them labels, and correct the classification of individual glyphs
by dragging their icon to the right category (Figure 4D). DataGarden
enables Mary to map data dimensions to glyphs appearing at any level
of the visualization hierarchy. For example, Mary maps days to indi-
vidual branches using the "label" channel of the top level. DataGarden
can then infer that the branches’ day values apply to their children.

Mary then decides to create a continuous numeric dimension to
represent time within a day and bind it to the position channel of her
glyphs. She specifies the extreme values of time (e.g., from 0 to 24) as
well as their range along the spine of the branch (Figure 4E).

For continuous channels like position, size, and angle, DataGarden
infers the visual value from the sketch, along with the dependency tree
for relative values like position. If the inferred values are incorrect, the
author can use DataGarden’s tools to reveal the spine structure of the
glyphs on the canvas (Figure 5). The author can then manually correct
the spine of a glyph (D3) by redrawing it, or by requesting the system



Fig. 5: A visualization with a primary stem (perch), two branches (bodies),
and two leaves (heads), showing the individual spines (dashed lines),
roots (circles) and angles (arrows). Users can freehand draw spines for
glyphs to specify the layout relations between parent and child glyphs.

to automatically infer a new spine (discussed in Section 5). Similarly,
the glyphs’ inferred angle can be manually changed by placing the root
(which serves as the base of the rotation) and manipulating the direction
of the representative arrow (Figure 5).

4.4 Interlinked Views and Two-way Data Mapping
With a dimension specified, DataGarden infers the data values currently
represented in the canvas, and displays them in the table view (Figure 6),
thereby providing the data schema for this visualization (D1).

To support both manipulation and comprehension across different
views (D4), DataGarden offers polymorphic selection tools [1]. The
selection tools can be applied to objects in any view, and the selection
is populated across all the views (Figure 4A-B). Mary can therefore
select items from the table (Figure 6) to ensure that her glyphs are being
represented correctly and there are no errors in the structure, or the
data mappings (D3). In addition, to further support forming the con-
ceptual link between the different template abstractions, DataGarden
also supports animated transitions between the structure views. If Mary
switches between the dimension view and the overview, the nodes will
shift between their respective positions in each view (D4).

The binding between the table and the canvas extends beyond the
selection. Updates to the table values will update the glyph sets and
their visual attributes. Updates to the glyphs will likewise update the
table values. Therefore, when Mary has collected and formatted her
data to match the table, she can input her dataset to create one or many
complete versions of the visualization (Figure 6).

With DataGarden, Mary can thus author a simple instance of the
visualization which captures all the properties of the data and mappings,
by drawing just a few exemplar glyphs and specifying their structure
within a hierarchical layout (D1). Once done, she can apply these
template specifications to automatically scale this to a larger dataset
(Figure 6). Conversely, Mary can use the template as input visual-
ization [14], drawing a new branch every day, and documenting her
activities during that day by sketching new flowers and leaves.

5 TECHNICAL IMPLEMENTATION

DataGarden is a Web application implemented with JavaScript using
the D3 library to support tree (Overview) and animated force-directed
layouts (Overview and Dimensions view). DataGarden implements
heuristics and algorithms for automatic inference and classification,
including for stroke merging, glyph parenting, assigning spines, gener-
ating new elements, and revising the layout. In this section, we detail
the structure of DataGarden visualizations and the techniques used to
support sketch recognition and template-based visualization generation.

5.1 DataGarden Visualization Structure
The core of a DataGarden visualization is its glyphs. A glyph can have
an arbitrary shape, is composed of one or many strokes with optional
color, and is parameterized through a root, spine, and angle. Glyphs
are hierarchically nested, so each glyph can have multiple children,
positioned along its spine. For example, the branch in Figure 5 is

Fig. 6: With her template specified, Mary can add rows to the data table
to create the final version of the visualization. The selection propagation
can support her in inspecting her data mappings.

the parent of the two owl bodies, which in turn are the parents of the
respective owl heads. Each glyph’s root defines the base of the glyph
around which it is rotated. The root is projected onto the closest point
on the parent’s spine to determine the glyphs relative distance along
its parent. The root also determines the orientation of the glyph’s
own spine, the end of the spine closest to the root being considered
as the start. We designed this structure to enable support for five
visual channels (position, angle, size, color, shape) chosen from those
accepted as most effective for continuous and/or categorical data [36].
We included a sixth channel value label, which is not a visual channel
but rather a means to specify that data is represented by glyph presence.

DataGarden departs from visualization conceptualization of repre-
sentative authoring systems [51] by treating all visual elements as the
same sort of object, a glyph, rather than distinguishing between axes
and leaf nodes. By doing this, DataGarden can easily support arbitrarily
deep trees, and a flexible workflow where authors are not required to
specify whether a glyph is meant to be a leaf node. Since each hierar-
chy level contains a different type of glyphs, DataGarden’s interface
allows authors to map different data dimensions to each level, e.g., the
angle of the stems in Figure 1 are mapped to time whereas the angles
of their child leaves are mapped to energy. DataGarden’s design also
departs from tree visualization grammars [26]: instead of using a global
coordinate system, the spine of each glyph defines the 1D curvilinear
position coordinates for its own children.

5.2 Automatic Template Structuring

To enable automatic template structuring, we opted to develop sim-
plistic ‘good enough’ algorithms that would reduce the burden of the
visualization structuring enough to enable us to demonstrate the no-
tion of template creation. We expect that future work will be able to
substantially improve on the algorithms outlined here.

Stoke merging is conducted based on line overlap. If n points of the
new stroke fall within a δ distance of an existing stroke, we assume they
should belong to the same glyph. This heuristic is primarily accurate
for overdrawing scenarios [29, 39]; in other instances like in Figure 4A,
the system will often fail to identify parts of the flower as a single glyph.
We experimented with a more sophisticated algorithm, StripMaker [28],
but as the current implementation is not designed to work in real-time,
more work is required to integrate it into a workflows like this.

Glyph parenting is performed by comparing the size of the new
stroke relative to the size and distance of the surrounding strokes. This
assumes a) that people draw parent items before drawing their children,
and b) that parent items will be larger than their children. Since in
plant-like visualizations these two prerequisites are generally met, these
heuristics function well in many cases.

To calculate distance and relative angle from parents to children, we
need a simplified path representation of glyphs, which we call a spine.
In order to calculate spines, we integrated StrokeStrip [39]. StrokeStrip
was designed to create a clean spline from multiple overdrawn strokes,
and is therefore suitable for generating a spine for any line-like glyph.
However, the algorithm does not work for non-linear glyphs such as
the plant roots in Figure 1. As its original implementation does not run
in a browser, we connect it to DataGarden’s Web interface through a
server. We also provide a backup heuristic which takes the two most



distant points on the glyph, projects all points onto that axis in order to
bucket them, and then takes the average of the buckets to create a spine.

For clustering and classification, we use basic k-means and k-nearest
neighbors algorithms over the pixels of miniature versions of the glyphs
in their upright orientation, where DataGarden initially tries to infer an
optimal k by using the silhouette score [47] of the Euclidean distance.
We apply clustering and classification to both shape and color, allowing
DataGarden to support collections of colors that can then be bound to
the same categorical value.

5.3 Visualization Generation
To show how the visualization structuring results in a usable template,
we developed a naive algorithm to generate a full visualization from
a DataGarden template and a dataset. For each row in the table, Data-
Garden will create a new glyph by copying one of the corresponding
shapes from the template (or a glyph picked randomly from that of
the right level if shape is not bound). If a parent glyph does not yet
exist, it will copy a new parent from the template. If bound to data, the
glyph’s size, angle, color, and position will be updated. If not, glyphs
will remain unchanged and be distributed evenly, retaining their relative
angle, along their parent’s spine.

6 EVALUATION

In line with past evaluation approaches [42], we conducted a reproduc-
tion and a free-from user study to evaluate DataGarden. A visualization
gallery provides additional examples that demonstrate the expressive
potential of our approach.

6.1 Reproduction Study
Our reproduction study evaluated whether new users could establish a
functional understanding of the visual-first workflow, as well as how
DataGarden’s interaction and automatic recognition supports and fails
to support them in creating visualization templates.

6.1.1 Method

Participants. As the visual-first workflow can be applicable to both
visualization experts and non-experts, we aimed to recruit participants
with a range of visualization experience. We recruited 12 participants
(6 men, 6 women) from our university campus and a student residence.
Three participants reported no previous experience with data visualiza-
tion, nine reported using data visualization occasionally or frequently
for analysis. Of those, three reported designing new data visualizations
occasionally or frequently.
Apparatus. Participants were seated in a quiet room and interacted
with a (1920 × 1080) Wacom Cintiq 16 pen display connected to a
Dell laptop running Windows 11 with DataGarden on Google Chrome.
A slide deck with task instructions and a 7-minute video tutorial of
DataGarden were presented on a separate computer screen, next to the
pen display. For the preparation task, participants were provided with a
paper worksheet and colored pencils.
Task. Participants were asked to create a DataGarden template for a
visualization visually inspired by Giorgia Lupi’s visualization from
Week 27 of Dear Data [33] (Figure 8-Reference). The visualization
captures activities (either work or personal) with different outcomes
(productive or unproductive) during a single week. The participants had
to implement three categorical data dimensions (Day, Type of activity,
and its Outcome) and one continuous (Time). They were required to
establish mappings with visual channels at various hierarchy levels:
each day had to be mapped to a unique branch, the position of leaves
in a branch had to be mapped to a different time of the day, while the
color and relative angle of each leaf had to be mapped to the type and
outcome of an activity. The participants were asked to envision using
their template in a scenario in which they would track their activities,
in coordination with a bunch of friends.
Procedure. After completing a background questionnaire, the par-
ticipants were briefed on the scenario, the data dimensions, and the
mappings of the target visualization template. They were then given
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Fig. 7: Timelines for the main task of the reproduction study, showing
how the 12 participants iterated between sketching branches, leaves,
and applying color •, editing the visualization structure, including the
hierarchy, spines, and angles •, and specifying data dimensions •.

a paper worksheet with a copy of the visualization that served as in-
spiration (Figure 8-Reference), and were asked to locate the leaves
corresponding to three data entries. This preparation task ensured that
participants understood the visualization and the data mappings.

After following the video tutorial and familiarizing themselves with
DataGarden’s user interface, participants were then instructed to use
the system to complete the main task while thinking aloud. During this
process, the experimenter intervened only when participants were stuck
or engaged in lengthy unnecessary actions.

The participants were given an interview where they were prompted
to articulate their comprehension of the system’s sketch structuring
concepts, such as the visualization hierarchy, the data dimension types,
and the visual channels. Sessions lasted 47 to 94 min (Median = 65.5).
Data collection. We recorded audio, and the screen of the pen display.
We analysed audio transcripts together with the screen recordings.

6.1.2 Results
Some participants such as P10 chose to stick closely to the example,
whereas others such as P1 took a creative and idiosyncratic approach
(Fig. 8). We refer readers to our supplementary material for detailed
results. Overall, most participants were able to reason with abstract
data, grasped the concept of a visualization template, and correctly
completed the task.
Authoring workflows. Participants took a variety of approaches to
creating their visualization (Figure 7). Some drew the visualization
elements in one go, before creating dimensions (P2, P3, P8, P10, P11).
Others took an iterative approach (P1, P4, P5, P6, P7, P9, P12), creating
dimensions between the activities of drawing branches, drawing leaves,
and coloring leaves.

Some participants adjusted the hierarchical structure (P1, P2, P5,
P8, P9, P11) and spatial interpretation (spines/angles) (P9), during
or after drawing while others noted and corrected hierarchy (P6) and
spatial interpretation (P3, P8, P10, P11, P12) issues when they bound
the elements to dimensions. Some participants (P4, P7) made no
corrections as the system interpreted their sketches to their satisfaction.

Participants were successful at reasoning in terms of creating a
template by-example, with no data table to refer to per se. Some
evidently created arbitrary, yet well-chosen data items on the fly (e.g.,
Figure 8-P9), whereas others more closely tried to reproduce data from
the reference (e.g., Figure 8-P10). A few participants (P1, P9, P10)
found DataGarden’s unconventional workflow to be confusing: “I’m
doing data. I’ll write down the data and then I’ll do the drawing, but
it’s the reverse, so it’s kind of tricky” (P1). P9 also found that “it’s
weird because it’s both creating the data and doing the mapping at the
same time. [...] As a designer, I would always work with a sample of
data” but added that this habit “might be a deformation from working
with computer scientists all the time and working with data sets.”
Dealing with sketch recognition issues. Ten of the 12 participants used
DataGarden’s tools to correct the system’s inferred structure: seven
participants restructured the tree hierarchy, six corrected the leaf angles,
and one revised the spines. Corrections to the tree were mostly minor,
except for P6 and P8. P6, who reported no previous experience with
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Fig. 8: Visualization from Dear Data [33] Week 27 by Georgia Lupi used as inspiration for the reproduction study (reference), and selection of
DataGarden templates authored by participants.

data visualization, sketched axes and labels over their branches. Since
DataGarden’s prototype does not support free annotations, its sketch
recognition mechanisms resulted in a messy tree. The participant tried
to correct the problem: “I don’t know why I’m grouping them to the line.
I just feel that it would be good to connect everything” (P1). However,
cleaning up the hierarchy proved to be challenging. Because the tree
was not structured properly, the dimension settings did not make sense,
so the participant was unable to recover and complete the task for all
four data dimensions. In contrast, P8 was able to correct the issue but
noted that it might pose more challenges for users without a technical
background: “I think because of my computer science background, I
understand the meaning of normal and projections, so maybe for artists,
maybe they won’t be clear about this” (P8).

Finally, participants made frequent use of cross-view highlighting
to verify how the system structured their sketches, such as to verify
glyphs when specifying mappings (6 participants) and their mapped
positions (9 participants), their angles (8 participants), as well as the
resulting table (5 participants). However, some participants complained
that it was often difficult to distinguish which element was highlighted
(P5, P11) and that highlighting colors were “distracting” (P7).

6.2 Free-form Study with Visualization Experts
To collect critical insight about the extent to which our approach
(mis)aligns with experts’ mental models, and prompt creative ideas that
push the system’s boundaries, we conducted a complementary study
with data visualization experts on an open-ended task.

6.2.1 Method

Participants. We recruited four visualization researchers (E1–E4)
from our direct network (convenience sample) across Europe and
North America. The participants included two Computer Science
faculty members, one senior research scientist in industry, and one post-
doctoral fellow, with one participant having 5-10 years of visualization
experience, and the remaining three having over 10 years of experience.
Apparatus. The study was conducted online, and participants used
their personal equipment, typically consisting of a computer equipped
with a mouse or trackpad, and Google Chrome to access DataGarden.
Task. We asked the experts to devise a template example that would
test the limits of DataGarden, straying from canonical examples to
avoid potential overfitting. While participants were invited to provide
feedback on usability issues, it was explicitly stated that the study’s
objective was to gather their impressions on the concept of formal-
izing visualization design through template sketching, and to assess
DataGarden’s workflow as a possible instantiation of this concept.
Procedure. Participants connected to a video-conference call and filled
out a questionnaire asking about demographics data and familiarity
with sketch-based and hierarchical visualizations. Participants were
then asked to watch a video tutorial (same as in our first study), and
familiarize themselves with DataGarden’s interface with a concrete
example (the one used for the reproduction task). Once comfortable
with how to operate the tool, they were asked to use it to design their
own visualization. Since learning issues were not the focus of this
study, participants were free to seek assistance from the experimenter
to execute their vision.

After exploring and iterating on their template, participants were
asked to discuss the concepts embodied in DataGarden, their impres-

sions about the workflow, as well as ideas building on this approach.
Each session lasted approximately 1.5 to 2 hours. Participants were
offered a gift card for their time, although most declined it.
Data collection and analysis. Audio and video of the participant’s
shared screen were recorded. We conducted a thematic analysis of tran-
scripts and screen recordings, using an affinity diagramming approach.

6.2.2 Results

The experts worked on a diverse set of visualization styles, covering
nested layouts (E1, E2), relative color filling (E2), and traditional charts
(E3). Figure 9 presents polished versions of the templates envisioned
by the experts, as finalized by the experimenter.
Current sketching practice. All participants reported sketching on
paper or whiteboard as part of their everyday practice to “just brain-
storm or ideate” (E1), or to “help people to understand what’s going to
happen” (E3). Their process involves sketching from real or made up
data. For instance, E2 described generating “partial and even fictional
representations” when brainstorming a design, and for tasks such as
iterating on a figure, “it’s more based on real data, but it’s still not
precise and not complete [...] I cherry pick some data points that gives
some variety, but also gives an idea of the overall distributions.”

Sketching to externalize a data structure. E1 and E2 commented on
the fact that while they did not start from an existing data table for their
visualization example, the data structure was at least partially formed
in their mind: “you have a very good mental model of what the data
looks like” (E2). E1 reported that “the data exists implicitly in your
head” and compared this workflow with the writing process: “You
know what you want to say [...] You don’t know how to get there yet.
But the process of writing allows you to better formalize that knowledge
in your head.” As E4 further explained: “I’m thinking about my data
while I’m drawing. And I think this is really interesting [...]”

Working with abstract vs. concrete data values. In most cases,
the experts worked with unspecific, or even placeholder values, as
they verbalized data dimensions and externalized specific instances on
the canvas: “I can give them random names, it doesn’t really matter.
Name0, Name1, that works.” (E1), and “I’m not really specific on any
of my real data [...] Let’s just make it up” (E4). E3 commented that
working without real values as in DataGarden, “I think I can be more
expressive, I can be more creative.”

While working with true data values was not deemed necessary,
the process of sketching still prompted the participants to think about
plausible data ranges and distributions. For instance, E1 quickly felt the
need to work with a concrete, yet arbitrary selection of existing songs.
Similarly, after sketching a few circles to represent countries, E4 turned
to the data table to “fix up” the values to match reality closer. Having
the sketched template reflect real data was also noted as an important
milestone for evaluating whether a design would scale: “I would really
like adding more data and see [because] when you scale it, you realize
it just doesn’t work right? It’s overlapping 20 values.” (E3).
Specifying visualizations through templates. The experts appreciated
the directness of creating representative examples on the canvas as a
mechanism for specifying a target representation – “I think it’s really
cool that it is generating the entries based on my sketch [...] like the
more fun way of specifying a visualization” (E1). Reporting on their
strategies for creating templates, E2 explained: “I draw multiple so
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Fig. 9: Results from the expert study. Visualizations generated from templates (insets) created by participants – the templates were reproduced and
further optimized by the authors. E1: Christmas carols represented as Christmas balls, whose color encodes the genre, and position in the tree the
overall ranking (higher in the tree, higher ranked); snowflakes within the balls represent people rating the song (same shape = same person). E2: a
whimsical activity tree whose branches represent different research (dark purple), teaching (pink), and service (light pink) projects; with each project
comprising tasks (gray bubbles) with associated level of completion (dark gray filling). E3.a: Books (to) read on a given month (i.e. shelf); the tilting
of the book indicates the number of pages read, and color encodes rating (low, medium, high). E3.b: A bubble chart inspired by GapMinder [46],
showing countries’ life expectancy (x) against income (y); the paper authors extended to add size to encode population, and color for continent. E4:
A journey around the globe, where the central sphere represents Earth, each bubble around corresponds to a country where the participant lived
(size = length of stay), and bubbles around countries indicate activities which the participant liked/disliked (color).

that I capture variation in the data,” later adding: “You draw a big one
and a small one. You draw variation of color, these kind of things, to
show a bit the the spread that you might have in your data set, and then
it informs some meaningful specification based on that.” E3 described
a similar conceptualization of templates: “To me, a template is just a
collection of all the extreme versions of all the marks for continuous
data, and an enumeration of all of them when it’s categorical.”

However, experts were somewhat frustrated that the system could not
extrapolate beyond extreme (magnitude) and specific (identity) values
that their marks captured. For instance, E1 and E3 proposed that the
system should infer complete visual palettes from partial specifications,
reducing manual effort: “Say that I want five colors. I would not want
to draw five elements [...] You want to draw one shape and say: "map
a color" and just do it all at once and have a color” (E1). Participants
also expressed a need for intelligent mechanisms for shapes: “It would
be helpful that [the system] interpolates between the shapes trying to
have something in between and maybe create more shapes like this.
Yeah, I wish we had more possibilities to increasing diversity” (E3).
Specifying custom dependencies and constraints. Besides explicit
data-to-visual mapping rules, the experts expressed a desire to formalize
other implicit graphical constraints. For example, E1 wished to indicate
that color does not encode data: “I want them to be randomized. Maybe
I want them to be whimsical, right?” The same expert also wanted
the snowflakes to remain within their nesting snowball (Figure 9-E1).
E2 sought to create a filling mark whose size is relative to the size
of its parent to indicate a ratio (Figure 9-E2), while E4 wanted to
describe property dependencies between parent and children: “If I have
something of a large workload, it would have to increase the size of the
parent as well” (E4).

Finally, the experts envisioned graphical specifications that could
express implicit degrees of freedom and design constraints driven by
aesthetic considerations. Interestingly, some experts had specific ex-
pectations regarding the level of intelligence the system should exhibit
in populating the canvas with glyphs whose positions were not ex-
plicitly specified. They encountered instances of both success, e.g.,
books neatly placed on shelves (Figure 9-E3), and failure, e.g., uneven
distribution of circles around the Earth (Figure 9-E4).
Iterating between visualizations and their templates. All partici-
pants alternated between sketching and specifying mappings, and then
generating new visualization instances by adding new data. According
to E4, “it’s easy to explore new ideas because you would just sketch”,
while E3 compared it favourably against coding, where “alternatives
are difficult to test.”

We observed that a clearer separation of the initial minimalist tem-
plate from the more complete visualization might be beneficial. Partici-
pants experimented with applying the template to actual data and then
reverting back to the template. While maintaining integrity between the
canvas and the data table was acknowledged as a strength – “the act of
generating that table is, I think, one of the most powerful things about

this tool” (E1) – the process became more challenging when adding
additional data to generate more glyphs: “I would do a separation
between my actual values and the values I use for the template [...]
especially because when I add the data, then it becomes much more
difficult to edit” (E3).

6.3 Gallery
To evaluate the expressive capabilities of DataGarden, we curated a
gallery of visualizations 1. The gallery includes simple visualizations
with two or three hierarchical levels that showcase the spectrum of
visuals achievable with our approach, and others that demonstrate how
drawing freeform spines (e.g. Figure 5) can support flexible layouts. It
also includes two visualizations that test the scalability of our approach.
Figure 1 illustrates encoding seven visual channels into multistroke
glyphs. Another visualization encodes a year-long dataset of work
activities. With larger datasets, we found creating the final version
required iterating between tweaking the template and testing with data,
as the full datasets had too many glyphs to directly manipulate.

We also reproduced three representative visualizations from Dear
Data [33]: Posavec’s Week 1, and Lupi’s (Figure 3) and Posavec’s Week
3 visualizations. Reproducing Posavec’s Week 3 was straightforward
as its structure aligned with DataGarden’s canonical example, featuring
a hierarchy with data entries placed on branches by time. Posavec’s
Week 1 and Lupi’s Week 3 could only be partially reproduced due to
their stacked branches, which are not explicitly supported.

7 DISCUSSION AND FUTURE WORK

Our evaluation confirms the effectiveness of freeform sketching of
visualization templates as a means of personal and creative expression.
We reflect on both the technical and conceptual contributions as well as
the limitations inherent in our approach.

7.1 Support for Personal Expression
The two user studies and our gallery provide variety of expressive and
idiosyncratic instances of visualizations. Our participants’ comments
also provide evidence that DataGarden preserves individual style and
supports personal expression (D2). However, our sessions with experts
also highlight several limitations of our current implementation.
Layouts and links. DataGarden is specifically designed for hierar-
chical structures. Its support for infinitely nested glyphs using spines
distinguishes it from similar systems, such as DataInk [65], whose flat
glyph design cannot deal with hierarchical representations, such as
those in Lupi’s visualization in Figure 3. However, as DataGarden does
not currently incorporate intelligent layout mechanisms, it does not
fully support the rich layouts specified in hand drawn sketches, and the
generated distribution occasionally results in overlap, requiring tedious
manual correction. Additionally, new glyph instances are simple copies

1https://datagarden-git.github.io/datagarden

https://datagarden-git.github.io/datagarden


of template glyphs, which while this retains the authors style, does
not have the same organic appeal of fully hand drawn visualizations.
We encourage future work to explore algorithms to achieve both or-
ganic layout and organic glyph variation. Promising avenues for the
latter could include generative AI variations [68] or techniques like
Parametric Drawing Tools [15]. In addition, several examples in Dear
Data [33] include free-shaped links between glyphs. Those features
require further support for sketch recognition and structuring, as well
as developing new data mapping functions.
Axes, labels, legends. To interpret a DataGarden visualization, viewers
may rely on their own memory (if they are the actual authors) or refer to
the visualization specifications in the structure inspector. However, P6’s
attempt to sketch axes and labels directly onto the canvas underscores
the need for additional, more direct mechanisms. Embedding inter-
pretation elements such as axes, labels, and legends into sketch-based
visualizations remains an unexplored area of research, posing numerous
challenging questions. For instance, should authors be provided with
tools to draw these elements alongside their visualization templates?
Beyond hierarchical visualizations. DataGarden demonstrates how
our workflow supports the design of hierarchical visualizations, but its
primary goal is to serve as a probe for thinking through how to sup-
port a visual-first, machine-supported approach to structuring sketches
for visualization authoring. Our evaluation showed that DataGarden
can support more than plant-based visualizations (e.g. bubble chart,
Figure 9E3b), but it takes a certain mindset to make these designs
hierarchy-compliant. For an application to directly support more types
of visualizations the underlying structures (e.g. child vs container rela-
tions) need to match those of the desired visualization. As the number
of possible underlying structures increases, so does the ambiguity of
the authors intended structure. Designing interactions to resolve this
ambiguity remains an open challenge for future work.

7.2 Getting the Idea Across with Few Examples
DataGarden enables visualization authors to use partial or fictional data
to convey the essence of their design through a few examples. This
approach presents both opportunities and challenges.
Working with partial or fictional data. Some participants found
working without data liberating, as they could focus on the design
rather than the data (D1, D2). This observation echoes visual artists
who describe sketching as a means to “focus on just getting the idea
across, instead of obsessing and fine tuning every detail” [3]. We
also observed that sketching without data challenged some participants’
habits and mindset. Further, we learned from the visualization experts
that while making data "real" is not necessary, doing so regularly during
the process helps ground one’s thinking and test the design. Therefore,
we see value in approaching the design problem from both directions.
An area for future research is to explore dedicated support for effective
switching between partial and complete or between envisioned and real
data during visualization design. For instance, experts suggested keep-
ing templates distinct from their real data instantiations, or providing
previews of populated instances of a partial template design.
Specifying visualizations through examples. Our participants found
value in creating a data schema using examples and were quick at pick-
ing up strategies to fully specify data ranges. However, they wanted
the system to take our approach further through mechanisms for inter-
polating and extrapolating glyphs. Such mechanisms would be useful
for template iteration, as well for generating visualizations that sup-
port more organic shapes. Potential solutions in this direction may
include skeleton-based deformation [21], by-example shape synthesis
techniques [16, 56], or stable diffusion [64]. Future work needs to
explore whether such approaches could fit to an interactive authoring
workflow, while still supporting authors’ idiosyncratic drawing style.

7.3 Extracting and Formalizing Intent from Sketches
The driving concept of DataGarden, along with its core technical chal-
lenge, is to turn unstructured sketches into visualization templates.
While DataGarden demonstrates the potential and challenges of gener-
ating sketch-based visualizations from templates, offering a complete

and robust solution to the problem was beyond the scope of this work.
We reflect on challenges involved in inferring the authors’ intent, or
conversely, in helping authors convey their intent to the system.
Support for explicit and implicit visual specifications. DataGarden
allows authors to specify their data mappings by directly manipulating
glyphs in the Dimensions view (D4). Participants appreciated this ap-
proach, especially for encoding the same data value with similar yet
nonidentical items, adding a nice touch of diversity (D2). There are,
however, other decisions which merit further examination, such as en-
abling authors to constrain their layouts (e.g., plot glyphs within an area,
align glyphs, avoid collision) or specify high-level design constraints
(e.g., randomize colors such that the final result is whimsical).

Beyond the explicit mappings, participants were many times pleased
at the decisions made by the simple heuristics (D3) to fill-in the gaps
for aesthetic choices (e.g., books did not defy laws of physics), but we
also observed instances where they wished the system was smarter or
had a better “design taste.” More work is needed to achieve greater
user control while maintaining the ease of freehand sketching. Offering
functionality for explicit specifications not directly derived from data
(e.g., for alignment [8]) could provide users with more control but may
require additional effort. On the other hand, employing more advanced
sketch recognition methods (e.g., using image embeddings for cluster-
ing [67]) or integrating tacit knowledge of good design practice [35]
could improve the inference of design specifications but would still
require authors to manually correct inference errors.
Gaps in the interpretation of free sketches. When designing a visual-
ization system that supports partial specification, we have to accept that
all sketch recognition algorithms will, at some point, make mistakes.
We chose to address this challenge through direct manipulation tools
that complement automatic recognition (D3 and D4). Still, we observed
that this approach may not suffice. If the user’s mental model of what
the system can interpret from a free sketch is erroneous—for exam-
ple P6 assumed that DataGarden could distinguish between sketched
visualization glyphs and annotations which was not the case—then,
additional guidance is needed to make the direct manipulation effective.
Additionally, as the size of the visualization scales, the interfaces for
doing direct manipulation can become unwieldy. While DataGarden
demonstrates the potential for the visual-first workflow, additional work
is still needed to make visual data encoding explicit through interaction,
and to manage such interactions at higher levels of complexity.

7.4 Risks and limitations

Visualization misuse. Personal visualizations like the plant-like ones
we study may not necessarily result in functional (e.g., supporting data
analysis) or "good" visualizations in terms of accurately conveying data.
Our work targets personal expression through creative visualization
but does not guard against potential misuse. In future research, it may
be valuable to explore the integration of guidance for visual artists
new to data visualization, particularly regarding common ethical and
informational threats in visualization design [5].
Study participants. While participants in our evaluation had diverse
expertise and experience with data visualization, they were recruited
from our personal network (free-form study) and local student pool
(reproduction study). Future studies should strive for broader diversity.

8 CONCLUSION

We studied a sketch-based structuring approach for authoring personal
plant-like data visualizations. We introduced DataGarden, which imple-
ments a sketching-to-data approach to visualization creation. DataGar-
den enables authors to interactively structure their sketches into gener-
alizable visualization templates that maintain a bidirectional connection
between the sketched representations and underlying data tables. Re-
sults from our two user studies and accompanying gallery demonstrate
the creative and expressive potential of our approach. However, they
also point to limitations and future opportunities, such as expanding
support for more diverse sketch representations, capturing users’ im-
plicit graphical constraints, and integrating advanced sketch recognition
and shape synthesis techniques.
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