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Fig. 1: Class-Based Comparison. Left: Comparing embedding visualizations is a common downstream task, serving as a proxy for 
contrasting latent representations of the same (top) or different (bottom) high-dimensional datasets. Right: Our framework uses class 
labels to guide visual comparison of such embedding spaces based on three concepts: (1) confusion, (2) neighborhood, and (3) size. 
The metrics are visualized by color to reveal intra- and inter-class relationships. E.g.: the brown cluster of the tissue data (bottom left) 
is almost entirely missing in the cancer data (bottom right), as highlighted by the orange color in the size scatter (bottom middle). 

Abstract—Projecting high-dimensional vectors into two dimensions for visualization, known as embedding visualization, facilitates 
perceptual reasoning and interpretation. Comparing multiple embedding visualizations drives decision-making in many domains, but 
traditional comparison methods are limited by a reliance on direct point correspondences. This requirement precludes comparisons 
without point correspondences, such as two different datasets of annotated images, and fails to capture meaningful higher-level 
relationships among point groups. To address these shortcomings, we propose a general framework for comparing embedding 
visualizations based on shared class labels rather than individual points. Our approach partitions points into regions corresponding to 
three key class concepts—confusion, neighborhood, and relative size—to characterize intra- and inter-class relationships. Informed by 
a preliminary user study, we implemented our framework using perceptual neighborhood graphs to defne these regions and introduced 
metrics to quantify each concept. We demonstrate the generality of our framework with usage scenarios from machine learning and 
single-cell biology, highlighting our metrics’ ability to draw insightful comparisons across label hierarchies. To assess the effectiveness 
of our approach, we conducted an evaluation study with fve machine learning researchers and six single-cell biologists using an 
interactive and scalable prototype built with Python, JavaScript, and Rust. Our metrics enable more structured comparisons through 
visual guidance and increased participants’ confdence in their fndings. 

Index Terms—visualization, comparison, high-dimensional data, dimensionality reduction, embeddings 

1 INTRODUCTION 

Dimensionality reduction (DR) techniques are used extensively in high- visual inspection. The goal is to represent the high-dimensional data 
dimensional data analysis, generating lower-dimensional embeddings structure to enable effective perceptual reasoning [3, 26, 27, 48]. For 
for tasks such as data exploration [5,18,66], data quality assessment [17, this work, we only consider these 2D scatter plots, hereafter referred to 
63], and model optimization [22, 30]. In this context, data points are as embedding visualizations. For example, a researcher might compare 
commonly projected to two dimensions to create a scatter plot for the distribution of words like “doctor” and “nurse” in two sentence 

embedding visualizations generated from news articles (called model-
driven comparison) to identify potential gender bias in how different 
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Fig. 2: Jaccard Similarity Limitations. Comparison of two single-cell embedding visualizations using Jaccard similarity shows minimal overlap, 
despite only differing by randomization seed (right). With k=7 neighborhoods, over 90% of points have a Jaccard similarity below 0.1 (left, green line). 

is invalid in many comparison scenarios, such as comparing embedding 
visualizations of different datasets, and moreover, it fails to capture 
higher-level relationships between groups of points [16]. Consequently, 
there are scenarios where current comparison metrics and visual per-
ception are at odds, like in Figure 2 where point-based metrics suggest 
substantial differences between the two embedding visualizations, yet 
perceptually, the two visualizations look almost identical. 

How can we facilitate more effective and systematic comparisons 
of these complex 2D scatters? The key challenge lies in establish-
ing meaningful relationships between points in different views. The 
shared data in model-driven scenarios allows points to be directly com-
pared [8, 23], whereas data-driven scenarios often require higher-level 
correspondences through shared class labels, given the uniqueness 
of points in each dataset [5, 13]. We refer to the comparison of em-
bedding visualizations based on common class labels as class-based 
comparison. 

Classes provide a natural and fexible lens for comparing embed-
ding visualizations. They enable tasks like identifying, evaluating, 
and relating clusters at different levels of abstraction, since the same 
set of points can be regrouped. At the most granular level, individ-
ual points can serve as classes (i.e., direct correspondence), while at 
broader scales, classes group points with higher-level semantics. This 
fexibility allows comparisons across hierarchies of class labels. Even 
in scenarios with direct correspondence, class-based comparisons can 
provide nuanced insight into data patterns. For example, when com-
paring two embedding visualizations for models trained on images of 
handwritten digits [12], the coherence and arrangement of digit classes 
are arguably more informative than the precise placement of individual 
digits. Capturing and quantifying these class-level relationships not 
only benefts specifc tasks [16], but also facilitates comparisons across 
different embedding visualizations. 

We present a general framework for the structured comparison of 
two embedding visualizations based on shared labels. Our approach 
is grounded in perceptual theory [51] and focuses on relationships 
between classes and their internal compositions. For each class, we 
examine groups of points from three distinct areas, identifed using 
modifed one-reach and two-reach methods on a Delaunay graph [51], 
aimed at capturing inter-class relationships [15, 16]. This approach de-
lineates a “core” region focused on within-class features, and a “context” 
region encompassing neighboring classes as illustrated in Figure 3. 

The “core” region captures patterns of visual intermixing to facili-
tate tasks like class separability [15, 70]. We refer to this concept as 
CONFUSION, where the set of points in the “core” region is referred 
to as the confusion set. The “context” region supports relation-seeking 
tasks, such as ranking the nearest classes to a given reference class [16]. 
We refer to this concept as NEIGHBORHOOD, where the set of points 
in the “context” region is referred to as the neighborhood set. Finally, 
the classes captured in the “core” and “context” regions defne the 
“combined” region, which is used to evaluate the size of a reference 
class [15] relative to its neighborhood, which we refer to as SIZE. 

For each concept, we defne summary metrics for their respective 

point sets, enabling the comparison of these concepts across two em-
bedding visualizations. For a class C, CONFUSION is quantifed by the 
degree of visual overlap between C and others. NEIGHBORHOOD is 
determined by the strength of connections between C and other classes. 
SIZE is assessed by comparing the relative size of C to its surround-
ing classes. Our metrics can be computed on the same embedding 
visualization for different class labels. 

To inform our approach, we conducted a formative crowdsourced 
within-subject study to understand how people perceive class CON-
FUSION and NEIGHBORHOOD stability. Using these insights and 
our conceptual framework, we developed an interactive embedding 
visualization comparison tool for Jupyter notebooks. Our prototype 
(Figure 1, right) visualizes the CONFUSION, NEIGHBORHOOD, and 
SIZE metrics with point color in the 2D scatter plots, enabling the 
comparison of two embedding visualizations and revealing class-based 
relationships. 

We applied our framework across model-driven and data-driven us-
age scenarios in computer vision, natural language processing, and 
single-cell biology, showcasing its wide applicability and ability to 
uncover relationships overlooked by existing methods. Through an 
evaluation with six single-cell biologists and fve machine learning 
scientists, we assessed the usefulness of our framework and metrics. 
Our metrics increase confdence in the insights derived from comparing 
two embedding visualizations, and participants made more concrete 
and specifc observations with fewer interactions. Our open-source pro-
totype is available on GitHub (https://github.com/OzetteTech/ 
comparative-embedding-visualization) and PyPI as cev. 

2 RELATED WORK 

2.1 Evaluation of Embedding Visualizations 
DR embeddings can remain high-dimensional, which complicates di-
rect visualization. While various methods exist for visualizing high-
dimensional data [38], vectors are commonly projected into 2D [48,68] 
or 3D [61] scatters for visual analysis. This is a common step even if 
the overall DR pipeline has a different goal (e.g., feature engineering). 

DR inherently introduces distortions, affecting the accuracy of the 
lower-dimensional representation. A key concern is characterizing 
these errors [7, 48]. Distortion types primarily focus on point-point 
changes [3], either with pairwise distances between points [3] or using 
the overlap of nearest neighbors between spaces [48]. To address 
these issues, visualization techniques have been developed to aid in the 
analysis of embedding distortions [25, 26, 35, 48, 49]. 

Quality measures assess distortions at different scales. Most mea-
sures focus on relationships between individual points, including the 
global data structure [1, 29] and the preservation of local neighbor-
hoods [32, 35, 47, 59]. Jeon et al., extend these pointwise concepts to 
clusters, introducing measures that characterize cluster-level distortions 
and more accurately represent inter-class relationships [16, 26]. 

Our work focuses on comparing two distinct 2D scatter plots, rather 
than evaluating the quality or reliability of embeddings. Inspired by 
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distortion measures, our framework relates these spaces without re-
quiring identical data points. We defne class-level concepts that can 
be measured and compared for separate datasets. CONFUSION and 
NEIGHBORHOOD in our framework are most similar to class-level 
reliability distortion types [26]. However, our framework is designed to 
operate on distinct datasets where the presence or absence of inter-class 
relationships carries a different meaning. 

2.2 Visual Quality Measures and Tasks with Labeled Point 
Clouds 

Class labels inform downstream analysis with embedding visualiza-
tions [5, 15, 16, 19, 28, 36, 56], both computationally (distortion mea-
sures) [26] or perceptually through visual cluster analysis [16, 55–57] 
or class separation measures [4, 6, 55]. Several quantitative metrics 
assess spatial characteristics of these embeddings, ranging from a scalar 
value for the entire embedding [14] to more local, pointwise neighbor-
hoods [44]. 

Metrics can diverge from human perception of cluster struc-
ture [36, 58]. Separation measures evaluate class clustering in embed-
dings (cluster-label matching) [28, 70], assessed by cluster-validation 
measures [39, 54]. Efforts aim to align these measures with human per-
ception [4,6], but they can bias toward well-matched clusters regardless 
of data separation quality [28]. Additionally, visual clustering and class 
separation do not address core relation-seeking tasks with labeled data, 
such as “which classes are most similar to a given class?” or “rank the 
top-k classes that are most similar to a given class.” [15, 16]. Projec-
tion Space Explorer [13] considers inter-class relationships, allowing 
exploration of points, classes, and their hierarchies, but relies on prior 
or user-defned relations. 

In this work, we introduce representations of class-level relation-
ships to compare between embedding visualizations of distinct datasets. 
Our framework does not presuppose that cluster structure aligns with 
class labels (which is often the case with real-world data). Instead, 
it partitions points into regions characterizing intra- and inter-class 
relationships to facilitate comparison. 

2.3 Neighborhood Graphs for Perceptual Groups 
Given that the visual analysis of embedding visualizations is inher-
ently human-centric, we base the implementation of our conceptual 
framework on graphical representations with perceptually meaning-
ful attributes. The Relative Neighborhood Graph (RNG) [64] is one 
such representation, which simplifes Delaunay triangulations based on 
proximity. The Reduced Delaunay Graph (RDG) [50] further develops 
RNG by identifying “relatively close” groups. Peng et al. [51] proposed 
a model for dynamic perceptual grouping based on tolerance space the-
ory [62], using one- and two-reach methods to depict the dot patterns’ 
structure more accurately. Our implementation draws inspiration from 
RDG and simplifes point groupings into “core” and “context” regions 
through an traversal inspired by Peng et al.’s two-reach approach [51]. 
Our formative user study (section 3) confrms its alignment with human 
perception. 

2.4 Techniques for Comparing Embedding Visualizations 
Several visualization systems aid in comparing embedding visualiza-
tions but primarily focus on relating the same set of points between 
views. Boggust et al. [8] introduced Embedding Comparator, which 
uses k-nearest neighbors to highlight points of comparison, featuring a 
global scatter plot and detailed neighborhood views. embComp [23] 
scores relatedness with additional metrics (distance, spread, density) 
and a distribution summary but limits direct set comparison. Parallel 
Embeddings [2] uses parallel coordinates to compare embedding vi-
sualizations, clustering edges to reduce clutter and showcase broader 
patterns. Emblaze [60] offers animated scatter plots for interactive 
comparison within Jupyter notebooks but lacks support for distinct 
datasets with corresponding classes. Polyphony [10] merges interactive 
visualization of single-cell latent representations to aid human-driven 
cell annotation about an “anchor” embedding, but its primary design 
focuses on cell type annotation, leaving a gap in tools for comparing 
annotated cell types between groups. 
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Fig. 3: Conceptual Approach of our Framework. Two hypothetical 
embeddings of fruit images (rows 1 and 2) are compared using our 
framework. Oranges serve as the reference class. Points within each 
embedding are categorized into “core,” “context,” and “combined” regions 
(light gray area) to enable comparison of CONFUSION, NEIGHBORHOOD, 
and SIZE concepts. Each region is summarized numerically, as illustrated 
by the bar charts between the two rows. For example, the frst embedding 
visualization has lime images appear in orange’s “core” region, resulting 
in a non-zero CONFUSION, absent in the second embedding. However, 
in both embeddings, three lime and two blueberry images are contained 
in orange’s “context” region, resulting in an identical NEIGHBORHOOD. 
Despite the similar absolute sizes of the orange class, the increased 
blueberry presence leads to a relatively smaller SIZE value compared to 
the frst. 

Our framework is tailored for comparing embedding visualizations 
of both identical and distinct datasets using shared class labels, focusing 
on broader group patterns rather than individual object relationships 
(section 8). This design choice complements and addresses the limita-
tions of existing systems, facilitating comparisons of distinct datasets 
as well as new usage scenarios for model evaluation. 

3 APPROACH: A FRAMEWORK FOR COMPARISON 

Our visual analysis methodology is guided by a conceptual frame-
work for comparing two embedding visualizations with corresponding 
classes. We divide the points into two distinct regions (“core” and 
“context”) to construct representations of intra- and inter-class relation-
ships, tailored for embedding visualization tasks [16] and downstream 
comparison. 

Our metrics (defned in section 5) summarize the composition of 
these regions into three key concepts: CONFUSION, NEIGHBOR-
HOOD, and SIZE (illustrated between the top and bottom row in Fig-
ure 3). These concepts serve as the foundation for comparing two 
embedding visualizations with shared class labels. 

CONFUSION: For each class, its “core” region includes all its points 
and points from other classes with similar distributions, allowing mea-
surement of class overlap (i.e., within-class relationships [15, 70]). 
Analyzing the degree of visual intermixing provides valuable insights. 
For instance, in Figure 3, oranges and limes overlap in the top em-
bedding visualization but not in the bottom. Measuring this overlap 
is particularly useful when exploring large-scale, dense point clouds, 
where superimposed points can make perceptual reasoning challenging. 

We defne this concept of visual intermixing as the CONFUSION 
of a class, which accounts for the degree of visual class intermixing 
and the composition of the confused classes. Importantly, unlike many 
class separability measures, we do not assume or verify an underlying 
cluster structure but simply assess the extent of CONFUSION and its 
variation between two embedding visualizations. 

Comparing CONFUSION reveals differences in data distributions, 
with lower confusion indicating better alignment with class labels. 
For different DR pipelines, variation in CONFUSION helps explain 
downstream model behaviors, such as classifcation. When comparing 
datasets, reduced CONFUSION suggests more well-resolved classes. 

NEIGHBORHOOD: The “context” region focuses on inter-class 
relationships, quantifying the consistency and changes in these rela-
tionships. It constructs a representation of the class neighborhood, 
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Fig. 4: Comparing Single-Cell Data. (1) Three embedding visualizations of cell populations derived from two datasets: healthy tissue and cancer 
tissue, distinguished by expression of six proteins. Left: Standard UMAP of healthy tissue. Middle: Transformed UMAP of healthy tissue. Right: 
Transformed UMAP of cancer tissue. Between Left and Middle, the scatters visualize CONFUSION (top) and NEIGHBORHOOD (bottom) relative to the 
embedding visualization in the middle. Between Middle and Right, the scatters show SIZE relative to the right (top) and middle (bottom). 

weighting the infuence of neighboring classes as a continuous vector. 
For instance, while the oranges class in the top embedding visualization 
in Figure 3 is more confused, the NEIGHBORHOOD of the oranges 
remains unchanged as the composition of neighboring classes is the 
same in both. 

We defne this concept as the NEIGHBORHOOD of a class. As-
sessing the stability and consistency of NEIGHBORHOOD across 
embedding visualizations is crucial in contexts where understanding 
inter-class relationships is important, such as recommendation sys-
tems. When comparing different DR pipelines, minimal changes in 
neighborhood composition suggest that the class structure is stable, 
implying consistent downstream model behavior. Conversely, stable 
neighborhood relationships between two different datasets indicate that 
the relative distributions of classes are preserved, which is important 
for ensuring the transferability of insights across different datasets. 

SIZE: Size denotes the proportional composition of a class relative 
to its class neighborhood. By contrasting the adjusted frequencies for 
each class in a pair of embedding visualizations, we identify those that 
undergo relative changes in size. Observing size changes highlights 
classes in fux and reveals broader trends in how similarly embedded 
classes vary between datasets. The adjusted frequencies of a class 
are normalized using the expanded “core” and “context” regions, or 
“combined” region. For smaller combined regions, this normalization 
offers insight into a class’s relative size compared to its immediate 
neighborhood. Conversely, for larger combined regions which encom-
pass the rest of the embedding visualization, the relative size indicates 
shifts in the class’s absolute size. SIZE is thus related to confusion 
and neighborhood dynamics because less stable and more confused 
neighborhoods result in larger combined regions. 

Relative size differences are useful for comparing different datasets 
or facets of the same dataset. It helps to identify class imbalances or 
biases, providing an understanding of data representation issues. For 
example, faceting news article embedding visualizations by year could 
reveal shifts in media focus, highlighting evolving societal trends. 

Our framework bridges traditional clustering and classifcation con-
cepts, using distinct regions to characterize embedding visualizations. 
Importantly, this approach considers all three concepts to be related, 
meaning the defnition of the “core” region impacts the “context” re-
gion, which in turn infuences the “combined” region. This integration 
ensures each concept uniquely measures properties while avoiding the 
confounding factors that arise when these concepts are considered in 
isolation. We propose a sequential application of the three concepts 
(CONFUSION → NEIGHBORHOOD → SIZE). Understanding the 
level of confusion is critical for interpreting neighborhood stability and 
relative size differences. For instance, unstable neighborhoods with 
low confusion might indicate a shift in a class’s data distribution, while 
high confusion with unstable neighborhoods suggests high similarity 

between multiple class distributions, complicating conclusions about 
individual shifts. Despite this integration, our framework remains ver-
satile and is not tied to any specifc method for defning the “core,” 
“context,” and “combined” regions. The algorithms for partitioning 
points into these regions and summarizing them are designed to be 
extensible beyond our initial prototype. 

4 MOTIVATING USE CASE: SINGLE-CELL BIOLOGY 

In single-cell biology, researchers analyze millions of cells to under-
stand cell populations and their role in health and disease. For instance, 
Mair et al. [41] examine protein expression in healthy versus cancerous 
tissues to correlate these populations with clinical or biological features. 
Embedding visualizations assist in analyzing these populations. To 
improve the visualization of computationally identifed cell populations, 
Greene et al. [19, 20] developed a data transformation, as shown in 
Figure 4.1 Middle. This transformation [19] effectively segregates cell 
populations compared to the untransformed data embedding (Figure 4.1 
Left). 

Beyond a frst glance, we wonder which intermixed cell populations 
were separated by the transformation and whether any remain distinct. 
Additionally, we consider how the transformation affects the overall 
neighborhood structure of the embedding visualizations. Specifcally, 
we would like to know if cell populations that are neighbors before 
transformation remain so afterwards. Finally, we would also like to 
understand how the embedding visualization properties change if we 
incorporate more proteins in the cell population discovery, which can 
result in the discovery of more specifc and rare cell populations. 

Answering these questions is diffcult and time-consuming with large 
embedding visualizations. Common, visually dominant cell popula-
tions can overshadow rarer ones [24], which are often more interesting 
to immunologists because they might indicate unique biological behav-
iors. CONFUSION and NEIGHBORHOOD guide our visual attention to 
cell populations of potential interest. 

For instance, comparing CONFUSION and NEIGHBORHOOD of the 
untransformed against the transformed UMAP embedding visualization 
(Figure 4.1 Left vs Middle) confrms our high-level assessment that the 
untransformed UMAP is more intermixed, indicated by color gradients 
from dark purple (unconfused) to bright yellow (confused). However, 
CONFUSION reveals variation in the extent to which individual cell 
populations overlap with others. For instance, the large cluster repre-
senting T helper cells (i.e., CD3+ and CD4+ cells) in the untransformed 
UMAP mixes cells with CD27 expression (purple points), without 
CD27 expression (gray-green points), and with CD45RA expression 
(gray-yellow points). In contrast, the transformed UMAP separates 
these cell populations (Figure 4.1.1). 

Do the separated cell populations remain consistent across embed-
ding visualizations, or has the transformation altered their relationships? 
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Fig. 5: Realization of our Conceptual Metrics. The implementation of all three metrics involves summarizing regions of points derived from a 
Delaunay graph of the 2D embedding visualization. The illustrations demonstrate the construction of the “core,” “context,” and “combined” regions for 
the blue class. First, we create a candidate set of points that are h hops away from each blue point (default h = 1). We then remove points whose 
distances exceed the τ , based on the average intra-class distance. This pruning defnes the fnal “core” region. Next, the “context” region includes all 
points that are h + 1 hops away from each blue point, excluding the “core” region. A continuous neighborhood representation of the points in the 
“context” region is created by weighting the connections and distances of the “core” to “context” boundary edges. 

In the NEIGHBORHOOD visualization, point colors indicate neighbor-
hood similarity, ranging from dark purple (similar neighborhood) to 
bright yellow (dissimilar neighborhood). The neighborhood around 
the T helper cell cluster (Figure 4.1.1) shows minimal change. Despite 
the visual separation of cell populations in the transformed UMAP, 
the neighborhood of the T helper cells remains stable compared to the 
untransformed. 

With increased confdence in the data transformation’s ability to 
reduce visual mixing of cell populations while maintaining stable neigh-
borhoods, we compared the healthy tissue against a cancer tissue dataset 
(Figure 4.1 Middle vs Right). Applying the data transformation on both 
datasets aligns the embeddings (see Greene et al. [19, 20] for details) 
and enables us to examine the relative cell population size differences 
using SIZE. Differences are color-coded from sky blue (smaller than 
reference) to bright yellow (larger than reference). Overall, we observe 
that the cell populations of the cancer tissue are larger (Figure 4.1 Right 
Bottom Size: the majority of points are yellowish). However, there is 
a smaller set of activated cytotoxic T cell populations (Figure 4.1.2) 
that is more abundant in the healthy tissue. Identifying this pattern 
without guidance is challenging. Biologically, this could suggest that 
the cancer tissue has fewer tumor-infltrating lymphocytes, classifying 
it as immunologically “cold.” 

Initially, we used six proteins for classifcation, limiting the ability 
to identify rare cell populations. By incorporating an additional twelve 
proteins, we refne our analysis (Figure 1, right). Since our framework 
and metrics can be applied across class hierarchies, we repeat the same 
comparisons using the same datasets except with more specifc cell 
populations. Focusing on Figure 1 model-driven comparison (top), we 
see that the classes in the untransformed are now much more intermixed 
compared to the transformed. This indicates that UMAP [45] alone is 
not able to visually resolve highly-specifc cell populations. The most 
well-separated cell populations in the untransformed embedding are B 
cells (Figure 1.1 and Figure S1.2 Confusion Set: Circled Area vs the 
Rest). Their neighborhood stays relatively stable also (Figure 1.2 and 
Figure S1.2 Neighborhood Scatter: Circled Area vs the Rest). Both 
metrics indicate that there are fewer and less-diverse B cell populations. 
Shifting our focus to the comparison between the healthy and cancer 
tissue, we see how some cell populations dramatically change in size 
(Figure 1 Right Bottom). For instance, as highlighted in Figure 1.3, the 
terracotta-colored class (a specifc B cell population) nearly disappears 
in the cancer tissue, as indicated by the bright orange color in the 
central SIZE scatter. These shifts are immediately apparent in the SIZE 
visualization. 

In summary, our framework enhances comparison of embedding vi-
sualizations by analyzing CONFUSION, NEIGHBORHOOD, and SIZE 
at the class level, addressing the challenge of missing point corre-
spondences. Visualizing these metrics enables rapid identifcation of 
actionable insights, improving data interpretation. 

5 METHODS: SIMILARITY MEASURES 

We realize our conceptual framework on a Delaunay triangulation of 
the embedding visualization (Figure 5), using a variation of Peng et 

al.’s two-reach approach [51] to defne three regions per class. For each 
class, we use a two-step process: frst, identifying the “core” region 
through a set number of hops on the Delaunay graph, then defning the 
“context” by additional hops from the “core.” We detail this process and 
our summary metrics for the “core,” “context,” and “combined” regions 
in subsequent sections. Special edge cases are discussed in Section S3. 

5.1 User Study: Assessing Human Perception of Confu-
sion and Neighborhood 

We conducted a preliminary user study with 100 participants to as-
sess the perception of confusion (Task 1) and neighborhood (Task 2), 
guiding our implementation to match human perception. Below, we 
summarize the tasks and fndings (see Section S1 for details). 

In the frst task, participants rated the intermixing between two point 
clouds (Figure 6, Task 1). We initially found low to moderate agreement 
among participants, setting an upper limit for predicting perception 
of confusion with our metric. Nevertheless, transitioning from an 
unweighted one-hop search to integrating boundary edge lengths and 
distance thresholds to defne a “core” region improved correlation of 
our confusion metric with human perception, refning our approach. 

In the second task, participants identifed neighboring classes to a 
central class (Figure 6, Task 2). Initial analysis based on exact neighbor 
matches showed low to moderate agreement. However, considering the 
frequency of each neighbor’s identifcation revealed higher consensus, 
indicating that neighbor presence is better represented as a continuous 
vector rather than a binary condition. This insight led us to evaluate 
class neighbor connectivity as a continuous value. We refned our 
representation by normalizing boundary connection strengths based on 
their empirical distribution across the embedding, capturing the relative 
nature of determining local neighbors within the broader embedding 
context. 

5.2 Defnitions 

We introduce formal defnitions for our CONFUSION, NEIGHBOR-
HOOD, and SIZE metrics, based on an understanding of human percep-
tion from these preliminary user studies. 

5.2.1 Confusion Metric 

The class confusion metric quantifes the extent to which points from 
a given class mix with points from other classes. We frst identify all 
graph edges which connect points i and j within the same class (C), 
referred to as intra-class edges, denoted as EC = ei j|i, j ∈ C. Given the 
pairwise distances for all intra-class edges DC = d(i, j)|ei j]inEC, we 
defne the distance threshold τ + k · σDC , where µDC and σDC = µDC 

denote the mean and standard deviation of the intra-class distances. This 
thresholding accounts for Delaunay’s tendency to connect distant points 
which are not perceptually reasonable [51]. Here, k, a user-adjustable 
parameter, is set to 3 based on its effectiveness in our experiments. 
Increasing k enforces stricter criteria for the “core” region. We then 
traverse the graph for h hops (default h = 1), pruning inter-class edges 
that exceed τ . The “core” region Rcore is then defned: 
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Fig. 6: Preliminary User Study – Task Examples & Neighborhood Results. Task 1: Participants rated the level of intermixing of two point clouds. 
Task 2: Participants selected all classes they considered in the neighborhood of the blue class. Neighborhood representations: Predictions for 
individual (Pred. (Ind.)) and collective (Pred. (All)) weighting are compared to actual class frequencies, with collective weighting vs. actual for a few 
examples. Distribution of Similarities: ECDFs of cosine similarities between actual and predicted neighborhood frequencies in Task 2 with different 
weightings. For the collective weighting (blue), less than 25% exhibit similarity below 0.9; for individual weighting (red), about 50% show similarity 
under 0.9. 

[
Rcore = T (v,h,τ) 

v∈VC 

where VC represents the vertices in class C, and T (v, h,τ) is the 
set of vertices traversed from v within h hops, constrained by the 
distance threshold τ . We compare the summaries of these sets, such 
as the proportion of class C points versus others, rather than the sets 
themselves, allowing for comparisons even if they are of different sizes. 

5.2.2 Neighborhood Metric 
The neighborhood metric scores inter-class connections in the graph, 
scoring the likelihood of other classes being neighbors. We defne the 
“context” region Rcontext : [

Rcontext = ( T (v,h + 1,∞)) \ Rcore 
v∈VC 

Vertices reachable from v within h + 1 hops, without distance con-
straints, defne the context region Rcontext after subtracting the core 
region Rcore. Boundary edges connecting VC to Rcontext defne the 
neighborhood scores. The likelihood that class X is a neighbor to class 
C, denoted by the connectivity κC→X , is derived from the number and 
length of boundary edges connecting C to X in Rcontext . The score is 
the quantile from the empirical distributions across all classes. Class 
neighborhoods are thus represented as a continuous vector. 

5.2.3 Size Metric 
Given the neighborhood representation, we defne the size metric by 
multiplying this continuous vector κC with the relative sizes of these 
neighboring classes, calculated using the centered log ratio of the 
absolute number of associated points from the Rcombined set. This 
normalization adjusts for class size variations, ensuring the metric 
mirrors the true distribution. The “combined” region is defned as: 

Rcombined = {v ∈ V | label(v) ∈ Lcore ∪ Lcontext } 

where label(v) is the class label of vertex v, and Lcore and Lcontext 
are the sets of class labels in the core and context regions, respectively. 

6 PROTOTYPE 

We developed a hybrid Rust, Python and JavaScript prototype for 
interactive comparison of embedding visualizations in Jupyter-like en-
vironments. This enables users to create embeddings with various 
Python DR libraries and compare them using our tool. To handle the 
scale of single-cell embeddings (section 4), we implemented core met-
rics in Rust for effciency and made them accessible through Python. 
For interactive scatter plots, our visualization extends Jupyter Scat-
ter [34], built on anywidget [42,43] and uses regl-scatterplot [33] 
for GPU-accelerated rendering. The embedding comparison metrics 
take 0.02s for 1k points, 0.06s for 10k points, 0.35s for 100k points, 
and 3.3s for 1M points on an Apple M3 MacBook Pro. The system 
supports dynamic interactions with up to 20M points [33]. The metrics 
and visualization tool are open-source and published on PyPI under the 
package name cev. The code is available at https://github.com/ 
OzetteTech/comparative-embedding-visualization. 

7 USAGE SCENARIOS 

We now demonstrate our framework’s applicability to data types and 
domains other than single-cell embeddings (section 4). 

Comparing Embedding Methods With Unclassifed Data. 
Embedding visualizations are common in contexts lacking ground truth 
labels or with loosely structured data, making comparisons challeng-
ing. Fortunately, we can still apply our framework by establishing 
correspondences between points with automatic clustering methods. 
Assigning cluster labels from one embedding visualization to another, 
we compare the extent to which the 2D structure is preserved. 

To illustrate, we applied our framework to embedding visualizations 
of headlines from news topic dataset [46]. We compared MiniLM [52] 
and Mpnet [53] sentence transformer embeddings visualized with t-
SNE [65], using the MiniLM as the reference to derive clusters for the 
news articles as shared labels. The results are shown in Figure 7.1 where 
the cluster labels are visualized by point colors and propagated as labels 
to the Mpnet embedding to establish correspondences. Using MiniLM 
as the reference, we analyzed CONFUSION and NEIGHBORHOOD 
changes to assess cluster stability. 

Overall confusion with Mpnet was low (see Figure S2), indicating 
well-resolved classes from MiniLM. However, neighborhood stability 
varied. Examining the headline text, we identifed two clusters with 
contrasting neighborhood similarity (Figure 7.1, center). The frst clus-
ter (Figure 7.1.1) exhibits higher neighborhood similarity and contains 
articles on Mars and space-related topics. The second cluster (Fig-
ure 7.1.2), including articles about video games, shows substantial 
changes in its neighborhood. Mpnet places some video game articles 
differently than MiniLM, suggesting they capture different associations. 
The video game cluster found in MiniLM is less stable than the space-
related cluster. 

Establishing correspondence allows for comparisons between em-
bedding visualizations lacking ground truth labels. In this scenario, we 
identifed variable cluster stability when comparing MiniLM to Mpnet. 
This technique can be extended to compare dimensionality reduction 
methods (details in Section S2), emphasizing our framework’s fexibil-
ity and broad applicability. 

Faceted Comparison of Captioned Images While SIZE is 
valuable for comparing distinct datasets (see Figure 4), its use for the 
same dataset might be less intuitive. Here, we present an alternative 
data-driven comparison approach using faceting to understand class 
size distribution across different facets of the same dataset using SIZE. 

We demonstrate this approach on the COCO image dataset [37] 
(Figure 7.2). Briefy, we create a single embedding visualization for 
all image captions and facet into two groups: images with people and 
images without people, using ground truth annotations (Figure 7.2, 
upper left). Since we facet by the term “person,” we exclude it from 
the fnal class to harmonize the labels between facets. With shared 
correspondences we then apply the SIZE metric to compare the relative 
class sizes in the facets. 

The faceted embedding visualization reveals variation in relative 
sizes of image classes, and immediately draws attention towards classes 

https://github.com/OzetteTech/comparative-embedding-visualization
https://github.com/OzetteTech/comparative-embedding-visualization
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Fig. 7: Usage scenarios Left: AG’s news headlines [21] (details in [72]), embedded with both Mpnet [53] and MiniLM [52] sentence transformer 
models and represented with t-SNE [65]. MiniLM is the reference used for clustering, with point colors indicating clusters and dark gray for noise. The 
NEIGHBORHOOD metric view for Mpnet is centered, highlighting a high stability (1) and low stability (2) neighborhood. Right: Embedding visualization 
of COCO imaging dataset [37]. Image captions embedded with MiniLM and faceted into “with person” and “without person.” Each point represents 
an image colored by its annotation (excluding “person”). The SIZE for each facet (centered) compares the relative sizes of classes across facets, 
highlighting classes which display relative changes in size. Specifc examples are shown, with (1) “surfboards” enriched in the “with person” facet and 
(2) “birds” enriched in “without person.” Notably, the (3) “horse” class size is consistent across both facets. 

which display potential shifts. The enrichment of “surfboards” in the 
“with person” facet (Figure 7.2.1) suggests they are rarely photographed 
alone. This aligns with surfng’s focus on people riding boards, explain-
ing their frequent co-occurrence in images. In the upper right side of 
the “without person” facet, there is a broad enrichment of images with 
animals. In this region, birds are more prevalent without people, likely 
refecting natural habitat photography (Figure 7.2.2). Interestingly, the 
“horse” class size remains consistent (gray), suggesting frequent capture 
in both solo portraits and interactions with humans (Figure 7.2.3). 

Facet comparisons offer a powerful tool to understand data composi-
tion and variations. This is especially true when faceting dimensions 
complement classifcation, as seen in time series. Our use of images 
here highlights the framework’s generalizability to various data types. 

8 EVALUATION 

We conducted a user study with single-cell biologists and machine 
learning scientists to assess the usefulness of our proposed framework 
and metrics by comparing two embedding visualizations with and 
without our metrics. 

8.1 Study Design and Participant Recruitment 
The study followed a within-subject experiment design with one factor 
– guidance, with two levels: unguided and guided. In the unguided 
condition, participants compared embeddings without visual cues on 
focus areas. In the guided condition, they compared embeddings with 
two extra visualizations highlighting one of our three metrics. 

We recruited 11 participants from the frst author’s university, knowl-
edgeable in machine learning or single-cell biology and experienced in 
using embedding visualizations, using fyers and mailing lists. They 
received a 25 USD gift card upon completing the study. 

8.2 Tasks 
In four tasks, participants were shown side-by-side interactive scatter 
plots of two embeddings, with point classes color-coded consistently 
across both visualizations (see Figure S3, top). For guided tasks, two 
additional plots highlighted our metrics (Figure S3, bottom, with dashed 

outline). Participants compared the embeddings and reported their 
fndings and insights by thinking aloud. Different embeddings were 
used in each task to avoid memory effects. 

Task 1A: Unguided Methods Comparison. Participants com-
pared two embedding visualizations of the same dataset created with 
different methods (i.e., model-driven comparison [8]). 

Task 1B: Unguided Datasets Comparison. Participants com-
pared two embedding visualizations of different datasets created with 
the same methods (i.e., data-driven comparison [8]). 

Task 2A: Guided Methods Comparison. Same as Task 1A, 
but included an additional scatter plot per embedding visualization 
displaying our CONFUSION or NEIGHBORHOOD metric through point 
color. Participants could select and change the metric they visualized 
during exploration. The SIZE metric was excluded since the data points 
were consistent across both embedding visualizations. 

Task 2B: Guided Datasets Comparison. Same as Task 1B, 
but included an additional scatter plot per embedding visualization 
displaying our SIZE metric. The other metrics were disabled due to 
their use in the previous task. 

8.3 Data 
Participants were divided into machine learning and single-cell biology 
groups based on their expertise, with each group receiving tailored 
embeddings to ensure data familiarity (detailed in Section S4). Briefy, 
we prepared four embedding visualization pairs of the COCO imaging 
dataset [37] for the machine learning group using the annotations as 
class labels. For model comparison tasks, we created two embedding vi-
sualizations of the same images: one using a vision model and the other 
using a sentence transformer on their captions. For data comparisons, 
we split one image embedding visualization into two facets (e.g., "with 
person" vs. "without person", described in Section 7). For the single-
cell biology group, we prepared two embedding visualization pairs 
using annotations from FAUST [19] as the shared labels. For model 
comparison, we prepared single-cell embeddings with and without the 
Greene et al. [19, 20] data transformation (see section 4 for details). 



For the dataset comparison, we prepared embeddings of healthy versus 
diseased tissue, both processed with this data transformation. 

8.4 Procedure 

Each session began with a brief introduction to embeddings and an 
overview of the study process. Participants completed a questionnaire 
on their familiarity with embeddings. We then introduced our software 
prototype. Participants completed four tasks in a fxed sequence with 
randomized embedding visualization pairs to avoid memory biases. 
After each task, they assessed their confdence in their fndings. Before 
tasks 2A and 2B, we demonstrated our framework and metrics in the 
prototype. After all tasks, participants evaluated the framework and 
metrics’ usefulness. 

8.5 Measurements 

Confdence. After each task, we asked “How confdent are you in 
your insights/fndings when comparing these two embeddings?”. The 
participants provided their answers on a 5-point Likert scale ranging 
from (1) “not confdent at all” to (5) “very confdent.” For model 
comparison tasks 1A and 2A we additionally asked “How confdent 
are you in your ability to determine the level of intermixing between 
classes?” and “How confdent are you in your ability to determine how 
the neighboring classes differ between the two embeddings?” using 
the same scale. Similarly, for data comparison tasks 1B and 2B we 
asked “How confdent are you in your ability to determine changes in 
the relative sizes between classes?”. Our goal was to gauge whether 
our metrics enhanced participants’ confdence in their insights and 
conclusions with the embedding visualizations. 

Usefulness. After completing all tasks, we asked participants, 
“How helpful do you fnd having a framework to think about and com-
pare embedding visualizations?” and evaluated the usefulness on a 
5-point Likert scale, from “not helpful at all” (1) to “extremely helpful” 
(5). We also asked, “How useful is the concept of <metric> for thinking 
about and comparing embedding visualizations?” to evaluate each 
metric on the same Likert scale. Our aim was to assess the perceived 
usefulness of our framework and its three components. 

Qualitative Measurements. We also collected qualitative mea-
surements through open-ended questions and think aloud observations. 
In the pre-study questionnaire, participants were shown an embedding 
visualization of the Fashion MNIST [71] dataset using UMAP [45] 
and posed the question: “When observing this embedding, what visual 
patterns did you focus on?”. They were then presented the same visual-
ization alongside a second embedding visualization of the same data 
that used t-SNE [65] and asked, “Have you ever considered comparing 
two embeddings before? If so, what do you visually focus on when 
examining these two embeddings side by side?” Finally, we asked, 
“How important are the individual points to you? Are you more focused 
on individual data points, or the broader patterns of groups of points 
with the same class?” 

8.6 Results 

8.6.1 Confdence 

To evaluate the change in confdence when using our metrics versus 
unguided visual comparison of two embeddings, we compared the 
confdence ratings of Tasks 1A and 2A as well as 1B and 2B. The 
ratings distribution is shown in Figure 8. We performed ordinal logistic 
regression with guidance (yes/no) and focus (none, confusion, neigh-
borhood, size) as independent variables, and ratings as the dependent 
variable. Using no guidance and no focus as the reference, we found 
that the odds of being more confdent were 5.24 times higher (95% CI, 
2.52 to 11.28) with guided comparison, a statistically signifcant effect 
(p<0.0001). Focus (confusion, neighborhood, size) had no signifcant 
effect on confdence ratings. However, the mean confdence difference 
between guided and unguided comparisons was strongest for confu-
sion (M=1.36) and size (M=0.91), followed by overall (M=0.68) and 
neighborhood (M=0.36). 
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Fig. 8: User Study Results on Confdence and Usefulness Confdence 
ratings are on a 5-point Likert scale, comparing unguided and guided 
embedding visualization tasks using our framework. The usefulness 
ratings are also on a 5-point Likert scale and refect the overall perceived 
usefulness of our conceptual framework. 

These results suggest that guided comparisons increase participants’ 
confdence when comparing embeddings, particularly when focusing 
on confusion and size metrics. 

8.6.2 Usefulness 
To evaluate our framework’s utility, participants rated its overall use-
fulness and the usefulness of specifc metrics. Since our tool uniquely 
supports class comparisons within embeddings, direct comparison with 
existing methods was not possible. We report the following means and 
standard deviations: framework usefulness M=4.4, SD=0.67; confusion 
metric usefulness M=4.4, SD=0.51; neighborhood metric usefulness 
M=3.3, SD=1.6; and size metric usefulness M=4.1, SD=1.3. 

In the post-survey, participants predominantly rated our framework 
for comparing embedding visualizations as useful, with a mean rat-
ing of 4.4 (SD=0.67) (8). The confusion metric was favored, with a 
mean of 4.4 (SD=0.51); P4 and P8 noted its value in revealing inner 
cluster structures and understanding overlap. The neighborhood metric 
received mixed reviews, with a mean of 3.3 (SD=1.6). While P6 found 
it benefcial in scenarios with class hierarchies, P5 and P7 found it less 
intuitive. P2 expressed concerns with its implementation, stating, “The 
neighborhood calculates the similarity of the neighboring groups but 
without the group itself, which seems a little indirect in indicating pat-
terns.” The size metric was praised for its utility in comparing samples, 
with a mean of 4.1 (SD=1.3). However, P10 expressed diffculty in 
grasping this concept and its use case. 

In summary, participants rated our framework as useful for com-
paring embedding visualizations, with the confusion and size metrics 
being particularly appreciated, though feedback on the neighborhood 
metric was mixed. 

8.6.3 Pre-Study Questionnaire 
Participants emphasized two key features when presented with the frst 
embedding: clusters [P1-P11] and classes [P1, P2, P5-P9]. Internal 
attributes of clusters (size [P4, P9], shape [P4, P8], number [P1]) 
and classes (size [P5], number [P1]) were important to some, but 
most participants were interested in specifc patterns that relate these 
features [P1-P3, P5-P6, P8, P10], such as extremes in cluster density 
[P3], similarities in class distribution within clusters [P2], and the 
relationship between clusters and class geometries [P6]. Additionally, 
participants frequently noted the distances between groups [P1, P3, 
P8, P11] and the degree of class overlap within and between clusters 
[P2-P4, P6-P7]. Only P5 mentioned individual points or outliers. 

When comparing two embeddings, 8 out of 10 participants had prior 
experience. P1 approached the comparison abstractly, focusing on 
pattern identifcation and correspondence between two spaces. Others 
identifed specifc patterns between spaces: class intermixing or overlap 
[P1, P8, P10]; relative positioning of classes both locally [P1, P3] and 
globally [P3]; and the spread, density, or size of clusters and classes 



 

 

 
 

 

 

 
 

[P3-P4, P9-P10]. All participants prioritized groups of points with the 
same class over individual points, though some noted an interest in 
individual points for identifying outliers [P1-P2, P4, P9]. 

Overall, the responses show that participants focused primarily on 
clusters and classes, their relationships, and patterns within and between 
them, with less emphasis on individual points or outliers. 

8.6.4 Observations From the Methods Comparison Tasks 

Unguided. Some participants had a clear task in mind from the 
start, while others struggled to begin. P1 quickly expressed a goal, “I’m 
just trying to look for concept overlap,” and soon identifed that anno-
tation X often overlaps with X + Person. P3 also noticed this pattern. 
In contrast, several participants felt overwhelmed by the number of 
classes and were unsure where to start [P2-P3, P5-P6]. When asked 
about overall confdence, two participants mentioned they would likely 
be more confdent with more time using the data and tool [P5, P10]. 

Guided. The embedding comparison was primarily informed by 
the metric views. Most participants concluded one embedding was 
more or less confused overall compared to the other [P1-P9]. The 
confusion metric helped some understand local structures [P2, P4, P8], 
noting they would have overlooked or misinterpreted details without 
it. P1 highlighted the metric’s insight, saying, “This is really useful, I 
can clearly see there is less confusion in the languages model.” The 
neighborhood metric was used less frequently than confusion. While 
some were satisfed with identifying global neighborhood differences 
[P1], others were curious why particular classes exhibited more or 
fewer changes to their neighborhood [P2]. P9 saw the conceptual value 
in the metric but required a deeper understanding and trust in its high-
lights to utilize it effectively. When asked about their exploration focus, 
most participants expressed primary interest in broader patterns and 
cluster shapes, with only occasional attention to outliers or individ-
ual data points. This consistent response indicates a preference for 
understanding overarching structures over specifc point details. 

These observations suggest that the guided metric views helped 
participants better understand local and global structures, while the 
unguided approach left some participants feeling uncertain and over-
whelmed. 

8.6.5 Observations From the Data Comparison Tasks 

Unguided. Comparing embeddings of different datasets was rel-
atively unfamiliar for machine learning scientists. Some identifed 
similarities in the embedded spaces [P1, P10], though P10 remarked, 
“This isn’t that important to me. The sizes aren’t something I’m in-
terested in.” In contrast, those working with single-cell embeddings 
immediately looked for size differences [P2, P4, P6]. Participants used 
interactive zoom and pan to analyze point densities. P2 added, “Ideally 
[the differences] should just jump out.” Several participants expressed 
concern about unknown size differences between datasets, complicating 
accurate assessments of relative differences [P1-P2, P5-P6]. 

Guided. Participants experienced with single-cell embeddings 
were enthusiastic about the size view, commenting on its enhance-
ment of their exploration [P2, P4, P7-P9]. P8 noted, “I notice things 
very quickly, much easier than before,” and P4 added, “I can immedi-
ately fnd differences and examine them.” In contrast, machine learning 
participants [P1, P3, P10] found the size view unfamiliar and were 
unsure how to derive meaningful insights. P1 commented, “Groups do 
jump out; I’m just not sure how to interpret it.” However, P5 identifed 
that giraffe and elephant are enriched in images without people. 

Together, these observations suggest the guided size view enhanced 
exploration for participants familiar with single-cell embeddings, while 
those with a machine learning background found it less intuitive. 

9 DISCUSSION 

Our work introduces a framework and prototype system for comparing 
embedding visualizations. Unlike existing methods that focus on indi-
vidual points, we measure and compare relationships between groups 
of points using shared class labels. 

This approach enables us to support both model-driven and data-
driven embedding comparisons, including those between distinct 
datasets—a previously unaddressed use case. It generalizes to many 
data types and applications, evidenced by three usage scenarios and 
positive feedback from the evaluation study. Anecdotal evidence from 
the pre-study survey also suggests our framework also aligns with users’ 
natural analytical processes for comparing embedding visualizations. 
Participants noted class-level patterns like mixing [P2-P4, P6-P7], dis-
tance [P1, P3, P8, P11], and layout [P1, P3] as important, aligning with 
core concepts of our framework. 

Our evaluation study provides evidence supporting the framework’s 
effcacy. Participants using our guided comparison prototype were more 
confdent in their fndings compared to an unguided approach. Further, 
anecdotal feedback suggests our approach facilitates generating specifc, 
and actionable insights. For instance, P2 struggled to contrast relative 
class sizes without guidance, stating, “It seems these Myeloid cells 
have increased in abundance, but I’m searching for a control population 
to mentally normalize.” Upon seeing the SIZE view, P2 exclaimed, 
“This is what I wanted before!” P8 found the confusion view effective 
for revealing misconceptions, noting, “I found some regions I assumed 
were low confusion just looking at the top [class] view, but are actually 
intermixed. This is useful.” 

Additionally, our approach addresses hierarchical structures within 
data, often overlooked by existing tools. It enables drawing compar-
isons at different levels of abstraction, such as more or less granular 
cell-type annotations, shown in Figure 4. Although our evaluation study 
focused on the general usefulness of our metrics and did not highlight 
this feature, several participants anticipated its value. They requested 
features like modifying existing class-label groupings [P1] or applying 
higher-level labels from a cell-type hierarchy [P4]. 

This work demonstrates the value of comparing embedding visual-
izations based on shared class labels, but further research is needed 
to assess the impact of our metrics and visualizations. We emphasize 
the generality and extensibility of our framework. Future studies can 
build on our implementation or introduce new methods for defning and 
summarizing its core regions. These studies should examine how this 
framework affects user insights during comparisons and defne what 
constitutes an insight. Alternative visual representations of the metrics 
are also an area of open research. For example, a glyph summarizing 
the neighborhood representation could enhance understanding of spe-
cifc inter-class relationships. Additionally, extending this approach 
to compare more than two embedding visualizations remains an open 
research question, likely requiring different methods for visualizing 
changes like variance. 

Our approach addresses a specifc gap in the broader analysis of 
embeddings–comparing downstream 2D representations. It should be 
used alongside other methods that assess embedding quality to avoid 
potential misuse from drawing conclusions based solely on 2D sim-
ilarities and differences without understanding the reliability of the 
underlying embedding and DR methods [9, 11, 69]. Note the dependen-
cies between our metrics (NEIGHBORHOOD depends on CONFUSION, 
SIZE on NEIGHBORHOOD), which can affect interpretation. For ex-
ample, if two embeddings are highly confused, neighborhood changes 
might be hard to interpret, and size changes might be relative to all 
classes. Future work exploring independent comparison metrics would 
be benefcial. 

10 CONCLUSION 

In this paper, we argue that traditional methods for comparing embed-
ding visualizations are limited by their reliance on direct correspon-
dences between data points. By focusing on higher-level relationships 
through shared class labels, our approach circumvents these limita-
tions and offers a more fexible lens for comparing two scatter-based 
embedding visualizations. Complementing previous work focused on 
the quality of lower-dimensional embedding representations, we see 
this as a promising frst step towards more structured exploration and 
decision-making with multiple embeddings. 
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